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Abstract: The integration of Multi-Objective Optimization (MOO) and Multi-Criteria Decision-
Making (MCDM) has gathered significant attention across various scientific research domains to
facilitate integrated sustainability assessment. Recently, there has been a growing interest in hybrid
approaches that combine MCDM with MOO, aiming to enhance the efficacy of the final decisions.
However, a critical gap exists in terms of providing clear methodological guidance, particularly when
dealing with data uncertainties. To address this gap, this systematic review is designed to develop a
generic decision tree that serves as a practical roadmap for practitioners seeking to perform MOO and
MCDM in an integrated fashion, with a specific focus on accounting for uncertainties. The systematic
review identified the recent studies that conducted both MOO and MCDM in an integrated way. It is
important to note that this review does not aim to identify the superior MOO or MCDM methods, but
rather it delves into the strategies for integrating these two common methodologies. The prevalent
MOO methods used in the reviewed articles were evolution-based metaheuristic methods. TOPSIS
and PROMETHEE II are the prevalent MCDM ranking methods. The integration of MOO and MCDM
methods can occur either a priori, a posteriori, or through a combination of both, each offering distinct
advantages and drawbacks. The developed decision tree illustrated all three paths and integrated
uncertainty considerations in each path. Finally, a real-world case study for the pulse fractionation
process in Canada is used as a basis for demonstrating the various pathways presented in the decision
tree and their application in identifying the optimized processing pathways for sustainably obtaining
pulse protein. This study will help practitioners in different research domains use MOO and MCDM
methods in an integrated way to identify the most sustainable and optimized system.

Keywords: multi-objective optimization; multi-criteria decision-making; hybrid methods; decision
tree; uncertainty; pulse fractionation

1. Introduction

To ensure sustainable development, it is crucial to mitigate the adverse impacts of
industrial systems and to seek to improve the efficiency of industrial processes continuously.
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One of the ways to carry this out is by identifying the most optimal and sustainable indus-
trial systems considering all three pillars of sustainability. However, this can be complicated
as they often conflict with each other. For instance, the most economically feasible systems
might have higher environmental impacts and vice versa. Multi-Objective Optimization
(MOO) and Multi-Criteria Decision-Making (MCDM) methods are widely used methods
to consider multiple conflicting criteria in order to identify optimal solutions on the basis
of integrated sustainability assessment. This study primarily aims to identify the method-
ological approaches to integrating these two methods for sustainability assessment under
uncertainty through a systematic review and to develop a generic methodological decision
tree to guide practitioners.

1.1. Multi-Objective Optimization (MOO)

Generally defined, “optimization” refers to finding the best solution, or a set of
outperforming solutions, given a specific search space shaped by predefined constraints [1].
Outperforming or nondominated solutions refer to outcomes where it is not possible to
improve one objective function’s value without degrading one or more other objective
functions’ values. When the problem contains continuous objective functions with two or
more conflicting goals, it is often considered to be a Multi-Objective Optimization (MOO)
problem [2]. These objectives are designed to either minimize or maximize some functions
related to, e.g., economic (i.e., cost, profit), technical (i.e., energy use efficiency, yield),
environmental (i.e., GHG emissions, land use footprint), or other factors or decision/design
variables. Depending on the nature of the variables (i.e., continuous, categorical, integers,
non-integers, binary) and the linearity of objective functions, different MOO methods are
used [1]. There is a wide range of optimization methods available but selecting the most
suitable method depends on several factors: the linearity vs. non-linearity of the objective
functions; deterministic vs. stochastic/approximate methods; computational simplicity;
and time constraints [3–6].

Stochastic/approximate optimizations are also known as heuristic methods, which
can be classified as either constructive or local search methods depending on how they
iteratively search for optimal solutions [7–9]. More recently, metaheuristic methods that are
not problem-specific have been developed as general frameworks based on natural and
artificial world phenomena to find approximately optimal solutions [8,10]. Metaheuristic
methods can be divided into four categories: evolution-based (genetic cross-over, mutation),
swarm-based (collective intelligence), physics-based (laws of the physical world), and
human-based (sociological behaviour) optimization methods [10–12].

In contrast, deterministic modelling based on mathematical programming methods—
linear programming, non-linear programming, integer programming, mixed-integer pro-
gramming, etc.—are problem-specific [10,13,14]. These methods have limited applicability
due to the impossibility of representing all real-world systems as mathematical models.
Mathematical programming methods are best suited for specific types of problems but
there is no individual method for all types of problems [15]. There are also differences
in the performance of metaheuristic and mathematical methods with respect to solution
quality, computational time, the scale of the system studied, etc. The problem specificity
of mathematical programming makes it relatively inflexible [16,17]. Comparisons among
metaheuristic and mathematical programming optimization methods with their strengths
and weaknesses are presented in Table S1 (in Supplementary Files). The main differences
between the metaheuristic and mathematical programming methods are their flexibility and
adaptability. Metaheuristic methods are very efficient in handling complex, non-linear, and
multi-modal problems whereas mathematical programming methods are problem-specific
and well suited for accurately modelled problems. Mathematical programming models are
deterministic and can find the ultimate optimal solution(s) based on rigorous mathematical
formulations. On the contrary, metaheuristic methods are non-deterministic and can find
the approximate optimal solution(s) but often find merely good ones (Table S1).
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1.2. How Multi-Criteria Decision-Making (MCDM) Methods Can Be Linked to MOO

Conventionally, MOO problems are often converted into single-objective optimization
problems by aggregating similar objectives or through the weighted sum method [18].
In most cases, objective functions conflict with each other, so multiple objectives are
formulated for MOO problems so as to generate a set of Pareto-optimal solutions instead
of one unique solution [2,19,20]. Pareto-optimal solution sets represent non-dominated
solutions with varying degrees of trade-offs between the objective functions. An additional
step for decision-making is required to find the most preferred optimal solution [1,19,21].
Typically, different Multi-Criteria Decision-Making (MCDM) methods (which refer to
problems with no explicit objective functions, and rather comprising a decision matrix with
a list of alternatives/options along with pre-defined criteria values) are applied to find the
best solution from Pareto-optimal sets of MOO according to the preferences of decision-
makers (DMs) [20,22–27]. MCDM, in essence, is a management and decision-making
support approach which involves multiple alternatives and criteria/objectives [27,28]. In
this case, different solutions in the Pareto set become different alternatives in the MCDM
problem and the objective functions’ values become criteria values.

Choosing an appropriate MCDM method is not an easy task as all of the methods have
their advantages and limitations, and decision problems are often complex and delicate,
with several conflicting criteria [29]. MCDM methods keep the DMs at the centre of the
process and may incorporate their preferences for identifying the best alternative [30].
Numerous MCDM methods have been developed for various fields of research and new
and improved methods continue to be developed [31]. The choice among MCDM methods
depends on the required input information and its relative richness, the methods’ param-
eters, and the effort required for modelling [30]. The three broad categories of MCDM
methods are the full aggregation approach, the outranking approach, and the goal and
reference level approach. In the full aggregation approach, alternatives are compared
and ranked based on a global score that is generated from the individual scores of the
criteria. If the utility function of each criterion is known, multi-attribute utility theory
(MAUT) can be used. Otherwise, the analytic hierarchy process (AHP), analytic network
process (ANP), and Measuring Attractiveness by a Categorical-Based Evaluation Technique
(MACBETH) can be used [30,32]. Outranking or non-compensatory approaches comprise
several methods that employ pairwise comparisons and thresholds. When modelling
preferences, some options can be incomparable, which does not allow complete ranking.
The Preference Ranking Organization Method for Enriched Evaluation (PROMETHEE) [33]
and Elimination and Choice Expressing Reality (ELECTRE) [34] are the most commonly
used outranking methods. The goal and reference level approach includes a goal or ref-
erence value for each criterion and picks the best alternative for each criterion closest to
that reference value. The Technique of Order Preference Similarity to the Ideal Solution
(TOPSIS) [35], goal programming, and data envelopment analysis (DEA) are commonly
used goal and reference level methods [30].

MCDM methods are commonly used in the context of sustainability assessment.
Among the MCDM methods reviewed by Huang et al. [36], 48% of the studies used either
AHP or ANP and 16% and 13% of them used MAUT and outranking methods, respectively.
The main characteristics, advantages, and disadvantages of these common MCDM methods
are illustrated in Table S2 (in Supplementary Files), based on information from Aruldoss
et al. [37], Figueira et al. [38], Ishizaka and Nemery [30], and Velasquez and Hester [39].

1.3. Uncertainty Consideration

Along with combining MOO and MCDM methods, the consideration of uncertainty in
these methods is also of increasing interest among researchers. If MOO methods consider
uncertainty, then it is called robust optimization [40,41]. There are similarly robust MCDM
methods. For robust decision-making, uncertainty consideration is an integral part [42].
Uncertainty consideration aims to protect DMs from dealing with ambiguity in model
parameters/input data and/or subjective preferences [41]. Robust optimization can be
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applied either by robust regularization, by a probabilistic threshold, or by a possibilistic
approach. Robust regularization is a deterministic approach for optimizing based on the
worst-case scenario and assumes that any alternative will be better than the worst extreme
under uncertainty [41,43,44]. The probabilistic threshold maximizes the probability of ob-
taining an acceptable solution by including uncertainty ranges in the problem [45–47]. The
possibilistic approach applies fuzzy set theory principles and assumes that all the necessary
probability distributions are known [48,49]. Robust regularization is less computationally
intensive than probabilistic and possibilistic methods [45].

Uncertainty can be included with MOO methods either a posteriori (sensitivity analy-
sis) or a priori (during model development) [2]. On the other hand, uncertainty in MCDM
methods is mostly addressed by using stochastic methods to consider the ambiguity in
DMs’ subjective preferences and the associated weights assigned to each criterion/objective
function [27]. It can be quantified via a statistical probability distribution [27,50].

1.4. Current Approaches to MOO/MCDM Meta-Analysis

There are countless research articles on MOO and MCDM methods. As described ear-
lier, integrating these two methods for identifying the best options from among numerous
alternatives/Pareto solutions is an emerging research area. The a priori method integrates
DMs’ preferences for different objective functions before conducting the MOO. The a pos-
teriori method integrates DMs’ preferences after obtaining Pareto-optimal solutions from
the MOO algorithms [51]. Several recent studies combined MOO and MCDM methods,
including optimal planning for electric vehicle charging stations [52], polymer extrusion
problems [53], chemical engineering processes [54], reservoir operation [55], developing
transport plans [56], etc. Padhye and Deb [57] used two MOO methods, Non-Dominated
Sorting Genetic Algorithm (NSGA)-II and Particle Swarm Optimization (PSO) and three
MCDM methods (marginal utility method, aspiration point method, and the L2 metric
method) for the selective laser sintering process. A combination of genetic algorithm
(GA)/NSGA with TOPSIS was discussed by both Kesireddy et al. [58] and Kabadayi and
Dehghanimohammadabadi [59]. Including TOPSIS and the Best-Worst Method (BWM)
with MOO methods was reported by Goodarzi et al. [60] for green supplier evaluation and
optimal order allocation, and by Ridha et al. [61] for designing battery storage systems.
Jafarian-Namin et al. [62] employed an evolutionary algorithm to obtain the Pareto front
and then used both DEA and VIKOR (VIekriterijumsko KOmpromisno Rangiranje) as
MCDM methods to identify the optimal solution for control chart design.

Numerous review articles summarize the separate uses of MOO and MCDM methods
in the different research areas. Only a few review papers to date, however, have focused
on integrating MOO and MCDM methods. Ridha et al. [63] considered recent articles in-
vestigating the current state of the art of designing standalone photovoltaic systems using
MOO and MCDM methods. Pereira et al. [64] reviewed the literature on MOO in mechanical
engineering problems and found that employing metaheuristic methods with a posteriori
MCDM methods is increasingly popular. Odu and Charles-Owaba [65] reviewed the literature
on MOO and MCDM methods and concluded that there is no single superior approach. The
selection of a suitable method is mainly dependent on the available information, input type,
DMs’ preferences, and solution requirements [65]. Durbach and Stewart [66] reviewed the
literature to identify different tools for including uncertainty considerations in the MCDM
process. Broekhuizen et al. [67] focused on healthcare decisions in their review to classify the
approaches used to deal with uncertainties in the MCDM process.

1.5. Motivation and Objectives of the Present Article

To date, and to the best of the authors’ knowledge, there has been no systematic report
that develops a decision tree with methodological choices for integrating MOO and MCDM
methods, including the consideration of data uncertainty under a given application area. To
fill this gap, the current manuscript aims first at a systematic review of the limited literature
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that integrated MOO methods with MCDM methods, either a priori or a posteriori. The
review was designed to specifically answer the following questions:

i. What types of MOO methods have been most commonly used in integrated studies?
Are there any specific reasons articulated to justify the use of those methods?

ii. How did the reported works integrate MOO methods with MCDM methods?
iii. What types of MCDM methods (weighting and ranking methods) have been most com-

monly used? Are there any specific reasons articulated to justify the use of those methods?
iv. What is the current practice to include uncertainty considerations within these inte-

grated (hybrid approach) frameworks?

Next, based on the findings from these questions, a novel generalized decision tree
is proposed in order to better help practitioners make methodological decisions on how
to combine MOO and MCDM under each given application. Finally, the decision tree
is demonstrated using a case study on the sustainable optimization of pulse processing
pathways based on economic, technical, and environmental criteria.

The remainder of this paper is structured as follows: Section 2 presents the meta-analysis-
based review using the PRISMA method. Following this, findings for the above questions
are presented in Section 3: Results. Next, a decision tree based on the review findings is
developed and demonstrated for the selected case study in Section 4: Discussion. Finally,
Section 5: Conclusions highlights the major findings and presents a set of recommendations
for potential follow-up studies, along with the limitations of the current study.

2. Methodology Used for The Systematic Review

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
method [68,69] was followed to conduct the review of the articles that integrated MOO and
MCDM methods. The PRISMA method comprises a 27-item checklist and it has been used
in different fields of research [70–74]. There are three stages in the PRISMA method: search
strategy, screening criteria, and the extraction and synthesis of data, which are explained in
the following sections in detail.

2.1. Search Strategy

For searching published peer-reviewed primary research articles, the Web of Science
search engine was used. Different keyword combinations with logical operators ‘AND’ and
‘OR’ were used to identify the relevant literature. The combination of search terms was TS
(“multi-criteria”) AND TS ((“multi-objective”) OR (“multiple objective*”)) AND TS (“optimi*”)
AND ALL (“uncertain*”). TS stands for ‘Topic search’, where it only searches in the title,
abstract, author keywords, and Keywords Plus. A special operator ‘*’ was also included with
the search terms to capture more literature with that group of characters, i.e., “optimi*” will
capture optimize, optimization, optimized, etc. both in American and British spellings. For the
term “uncertain*”, ALL fields were considered, as sometimes authors do not use uncertainty
in the title, keywords, and/or abstract despite considering it in their studies.

2.2. Screening Criteria

The Web of Science search identified 224 papers during the initial search, among which
186 papers were primary research articles. The temporal range of these articles was from 2000
to 2022. In the next step, abstracts and highlights (if any) were screened to narrow down the
sample size. The literature that did not perform both MOO and MCDM was excluded in
this step, resulting in a shortlist of 53 research articles. Among the excluded articles, most
used ‘multi-criteria optimization’ instead of ‘multi-objective optimization’ but did not use any
additional MCDM methods. Also, some of them used only Multiple Objective Optimization
on the basis of Ratio Analysis plus Full Multiplicative Form (MULTIMOORA), which is an
MCDM method, not an MOO method. After the abstract screening, 10 more papers were
excluded based on being published before 2018. Since the main focus is to capture recent
research trends, only articles published within the last 5 years (2018–2022) were selected.
Moreover, during the full-text review, 2 more articles were excluded as they conducted MOO
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and MCDM separately. The final sample size was 41 research articles. Figure 1 illustrates
the systematic review method for selecting and screening published articles. The screening
criteria were (i) studies that are primary research articles, (ii) studies that used both MOO
and MCDM methods, (iii) studies in which MOO and MCDM methods were integrated (i.e.,
outcomes of MOO were input for MCDM problem or vice versa), and (iv) studies that were
published between 2018 and 2022.
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2.3. Extraction and Synthesis of Data

To collate information from the reviewed articles, an Excel-based synthesis table was
used (Table S3 in Supplementary Files). Review question 1 aimed at identifying the type of
MOO method(s) used and the justifications/reasons behind using specific methods. All
the MOO methods were classified as either being mathematical-linear, mathematical-non-
linear, or metaheuristic. If the authors mentioned why they chose that method, this was
also extracted and discussed in the Results Section. For review question 2, the type of
integration between MOO and MCDM—either a priori or a posteriori—was identified. For
review question 3, the type of MCDM methods utilized was documented, differentiating
between weighting and ranking methods. Weighting methods (i.e., entropy, AHP, BWM)
can be objective, subjective, or a combination of both. Subjective weighting methods are
used to include the subjective preferences of DMs and stakeholders. Ranking methods
(i.e., TOPSIS, PROMETHEE, VIKOR) are used to rank the alternatives based on their
weighted/non-weighted criteria. Reasons for choosing specific methods were identified
for further discussion. Finally, for review question 4, information regarding uncertainty
considerations either with MOO and/or MCDM methods was collected to determine
current practices. Information regarding sensitivity analyses was also collected as it is
mostly related to uncertainty.
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2.4. Development of a Decision Tree

As outlined in Section 1.5, one of the main objectives of this review paper was to
be able to develop a decision tree with methodological choices for integrating MOO and
MCDM methods, thereby identifying the most sustainable and optimized solution in
diverse decision contexts. Such a decision tree has not been realized in earlier studies.
This was accomplished here based on the findings of review questions 1–4, along with a
discussion of the different methodological pathways that can be followed to integrate MOO
and MCDM. Additionally, to illustrate the decision tree with an example, a case study on
pulse processing pathways in Canada has been elaborated.

3. Results

In this section, the extracted information from the reviewed articles for review ques-
tions 1–4 is analyzed and discussed—which MOO methods were used and why; what the
commonly used weighting and ranking methods of MCDM are; how MOO and MCDM
were integrated; and the current practices of uncertainty considerations in these studies.

3.1. Multi-Objective Optimization (MOO) Methods

Out of the 41 reviewed articles, 29 (70.7%) articles utilized metaheuristic optimization
methods and 13 of them developed mathematical models (12 linear and 1 non-linear [75])
to find Pareto-optimal solution sets based on multiple-objective functions and constraints
(Table S3). Among the metaheuristic methods, evolutionary optimization methods like genetic
algorithms [76–78] and NSGA (17 articles) were the most commonly used methods (Table S3).
Seventeen articles (41.5%) used the NSGA-II version (Table S3). Xu et al. [79] and Sharma and
Mukherjee [80] proposed improved NSGA-II methods. Wan et al. [81] integrated NSGA-II with
differential evolution and named the method Non-dominated Sorting Differential Evolution
(NSDE). NSGA-II was selected by the researchers mainly due to its computational speed and
better performance in terms of maintaining the diversity/versatility among Pareto-optimal
solutions, and better convergence efficiency [2,79,82–84]. Mirghaderi and Modiri [84] applied
the Strength Pareto Evolutionary Algorithm (SPEA) to identify an optimized and sustainable
supply chain for construction materials and reported that the method outperformed NSGA-II
and Pareto Envelope-Based Selection Algorithms for addressing real cases. The application
of another evolutionary algorithm—Adaptive Reference Point-Based Optimization—was
applied by Liu et al. [50].

The evolutionary method, which is synonymous with GA [11], follows the principles
of natural evolution to identify optimal solutions [10]. There are four key features of this
evolution-based principle: (i) it starts with a population consisting of individuals with the
ability to reproduce; (ii) they have a finite lifespan; (iii) variation across the population
is considered; and (iv) reproduction and survival ability are positively correlated [11].
The most commonly used NSGA was originally developed by Srinivas and Deb [85]
and currently, there are two updated iterations: NSGA-II and NSGA-III [18,86]. NSGA-II
became popular among researchers because of two key features. First, it employs the elitism
concept for all generations to ensure the maintenance of the best-performing solutions
throughout succeeding generations [11,18]. Otherwise, there can be the possibility of losing
the best-performing solutions in any generation as it chooses the solutions probabilistically.
The second important feature of NSGA-II is the consideration of the non-dominated sorting
concept, which allows it to find solutions that are not dominated by other solutions under
any objective functions [18,87]. Evolution-based MOO methods were widely used as they
allow for the simultaneous exploration of different regions of the solution space, enhance
the diversity of the solutions, and increase the chance of finding global optima. They are
suited for non-linear and complex problems with non-differentiable and discontinuous
objective functions [88].

The Particle Swarm Optimization (PSO) method was used in five articles
(12.2%) [28,77,80,89,90]. The reasons for selecting the PSO method were its key features,
like its requirement for fewer parameters, easy operation, fast convergence, better global
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optimization capability, and high search speed even for a complex model [28,90]. Yang
et al. [27] applied the Shuffled Frog-Leaping Algorithm (SFLA), which is a population-
based metaheuristic algorithm combining memetics and Particle Swarm Optimization [91].
They chose SFLA as it can combine deterministic and stochastic methods to obtain more
precise, high-quality trade-off solutions which are diverse and uniformly distributed and
can handle complex and high-dimension problems [27]. The Crow Search Algorithm (CSA)
was utilized by Panah et al. [92] as it offers a compromise between elapsed time and calcu-
lation burden along with a simple structure. Several researchers described selecting their
optimization methods based on the relevant literature [20,78,93,94].

Among mathematical modelling examples, ε-constraint-based optimization methods
(i.e., ε-constraint, Augmented ε-constraint) were used in six articles (Table S3). Mirghaderi
and Modiri [84] mentioned that the ε-constraint method is well suited for small-scale cases.
The ε-constraint method transforms all of the objective functions into constraints, except
the objective with the highest priority. An epsilon is defined as the threshold of acceptable
limit for each of the objective functions, and considering varying epsilon, the Pareto
set is identified [95]. An improved ε-constraint method named Augmented ε-constraint
(AUGMECON) was also used by Hasani [96] and Zhong et al. [97]. AUGMECON is more
effective than the traditional ε-constraint method. It requires less computational time as it
provides a weak Pareto-optimal solution [97]. It also allows the simultaneous minimization
of two functions that have conflicting objectives [96]. Other mathematical programming
methods used in the reviewed articles were Weighted Goal Programming [93,98], LP
metrics [97,99,100], and Mixed Integer Linear Programming [101–103]. Weighted Goal
Programming allows the incorporation of DMs’ preferences for each objective function
more than standard goal programming and converts all of the conflicting variables into a
normalized weighted single-objective function [98,104].

3.2. Multi-Criteria Decision-Making (MCDM) Methods

For detailing the methodological choices made in the reviewed articles that reported the use
of MCDM methods, information was gathered for weighting and ranking methods separately.

3.2.1. Weighting Methods

Weighting in MCDM methods can be assigned to three main types: objective (derived
from input data), subjective (based on DMs’ preferences), and a combination of subjective
and objective weights (Table S3). Half of the reviewed articles (20 articles, 48.8%) only
used subjective weights to include DMs’ preferences, mostly through AHP (55%) and
BWM (20%) methods. Both BWM and AHP allow for the integration of multiple DMs’
and stakeholders’ preferences. Although they both use pairwise comparison concepts,
BWM performs mostly reference comparisons, which reduces the number of pairwise
comparison matrices substantially [84]. Sometimes, the performance of AHP was boosted
by fuzzification, which uses a complementary judgement matrix instead of the conventional
reciprocal matrix [27]. In Fuzzy AHP, the weight of one factor is not affected by other
elements, which preserves the physical significance of weight allocation [27].

Multiple studies (six articles, 14.6%) employed a combination of subjective and objective
weights, where entropy was the only objective weighting method. This type of comprehensive
weighting method is more effective and stable [97]. Only a few studies were dependent on
objective weights solely to avoid uncertainty with subjective weighting [79,89,105]. Eleven
articles (26.8%) did not use any type of weighting method (Table S3).

3.2.2. Ranking Methods

Different types of outranking and goal and reference level approaches for MCDM
were used in the reviewed articles (Table S3). TOPSIS was employed in the largest share
(18 articles, 43.9%). TOPSIS requires a minimal number of inputs and provides very under-
standable outputs, and subjective and/or objective weights can easily be incorporated [30].
It also ensures less information loss and provides a robust logical structure with strong
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computational capability [90]. TOPSIS considers both positive and negative ideal solutions,
unlike VIKOR, which only considers the distance from the positive ideal [78,90]. The
VIKOR method was used in a small number of articles to choose the best option from the
Pareto set [80,96,106]. The ELECTRE method was used by Medina-González et al. [103]
and Taravatrooy et al. [107].

Only 6 articles out of 41 employed the PROMETHEE ranking method, and 3 used
PROMETHEE II (Table S3). PROMETHEE II is preferred as it can conduct a complete
ranking based on global net flows as opposed to the partial ranking based on global positive
and global negative flows that is supported by PROMETHEE I [20,30]. PROMETHEE
II is stable, simple, and clear and can deal with both numerical and scaled values with
uncertainty [30,108,109]. It does not require processing original data. Rather, it uses different
preference functions [20]. It can address the deviations between alternatives and compare
different criteria with various scales [109].

Stochastic Multi-Criteria Acceptability Analysis (SMAA), Grey Correlation Analysis
(GCA) and their combination were also reported in some of the reviewed articles (Table S3).
In SMAA, DMs do not need to assign any weights in advance. Instead, it explores feasible
weight space to give a rank to an alternative [27,50]. With less original data or imprecise or
missing information, SMAA and GCA can be performed by using probability distributions
and handling uncertainty [27,90]. Other ranking methods used in the reviewed articles
were either an improvement of a conventional method, a combination of two methods,
or a newly introduced method like Complex Proportional Assessment (COPRAS) [89] or
R-method [110] (Table S3).

Despite the fact that the selection of MCDM methods can be tricky, some have argued
that the choice of MCDM methods will rarely influence the results as the top few alternatives
remain the same or overlap significantly regardless of the MCDM methods used [36]. This is
because the top alternatives are superior enough to not be affected by the slight differences
between the methods [36,111,112]. Erdogan et al. [52], for example, compared five MCDM
methods and found their final results to be largely similar—the first- and second-ranked
alternatives were the same for all the methods.

3.3. Integrated MOO/MCDM Methods

MCDM methods can be integrated with MOO methods in two ways: a priori and
a posteriori. The most commonly used integration method was a posteriori (32 articles,
78.1%; Table S3). A posteriori integration means performing the MOO problem first
to obtain Pareto-optimal solutions, which then become the alternatives for the MCDM
problem. The combination of different weighting and ranking methods identifies the best
optimal solutions for the studied system. A priori integration refers to identifying the best
alternative system through MCDM methods and then optimizing that system [20]. In this
case, the weighting methods are used before performing MOO and weights are assigned to
objective functions. Sometimes, these weights can be used to convert the MOO problem
into a single-objective optimization problem [102]. Only 6 articles out of 41 followed the
a priori method. Three other articles integrated MOO and MCDM both a priori and a
posteriori. They used the weighting methods before MOO but the ranking methods after
performing MOO to rank the Pareto-optimal solutions [97,99,100]. The choice of integration
method (a priori or a posteriori, or a combination thereof) is solely dependent on the DM.
For integrating MOO and MCDM, there are several modern tools and software including
MATLAB [113], Python (i.e., libraries like SciPy, Distributed Evolutionary Algorithms,
PyDecision Tree, Scikit-Criteria, etc.) [114], machine learning [54], data mining [115], Multi-
Objective Evolutionary Algorithms (MOEA) Frameworks in R and Java [116], General
Algebraic Modeling System (GAMS) [117], etc.

3.4. Uncertainty Analysis

Considerations of uncertainty can be performed in two ways: with the MOO model
and with the MCDM model. Uncertainties with design variables, model parameters,
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objective functions, etc. are mainly considered in MOO problems. On the other hand, un-
certainties in criteria weights and/or DMs’ preferences are of concern in MCDM problems.
The following sections describe the current practices found in the reviewed articles for
integrating uncertainty concepts in MOO and MCDM problems.

3.4.1. Uncertainty in MOO

In MOO problems, sources of uncertainty are design variables, environmental con-
ditions (for example, flood flow for reservoir-related problems [118]), model parameters,
etc. Integrating uncertainty in MOO problems is quite common. In total, 33 articles out
of 41 (80.5%) had uncertainty considerations in their MOO models (Table S3). A wide
range of different uncertainty propagation methods was reported, including Monte Carlo
Simulation, the interval uncertainty method [119,120], triangular fuzzy numbers [121,122],
the fuzzy transformation method/fuzzy set theory, generalized likelihood uncertainty esti-
mation [123], etc. Among these, the Monte Carlo Simulation and triangular fuzzy numbers
methods were most common (Table S3). Monte Carlo Simulation can handle complex sys-
tems with multiple sources of uncertainty. It provides multiple possible outcomes and their
associated probabilities based on a large set of random data samples [124]. Triangular fuzzy
number-based uncertainty analysis is widely used due to its simplicity and interpretability,
and it is very easy to handle mathematically [125]. Based on the reviewed articles, it would
appear that there are currently no specific guidelines prioritizing the use of any particular
method for uncertainty analysis.

3.4.2. Uncertainty in MCDM

The main sources of uncertainty in MCDM problems are criteria weights. As with
MOO problems, however, integrating uncertainty analysis with MCDM methods is not
commonplace. Only 12 articles out of 41 (29.3%) have considered uncertainty in MCDM
methods—mostly to deal with uncertainty in subjective weights (Table S3). Among them,
six articles mentioned using triangular fuzzy numbers/fuzzy set theory and the other
four articles mentioned using probabilistic distributions to deal with uncertainty in criteria
weights (Table S3).

3.5. Sensitivity Analysis

Sensitivity analysis is directly related to uncertainty analysis. Based on the uncertainty
in model parameters, sometimes different studies have generated different scenarios and
carried out sensitivity analyses for those scenarios to check the robustness of the model.
Uncertainty in criteria weights leads to sensitivity analysis for MCDM methods with different
weights. Sensitivity analyses with different model parameters/scenarios and different weights
in MCDM methods were equally utilized in the reviewed articles. In total, 16 out of 41
(39%) articles carried out sensitivity analyses and, among them, 8 articles conducted the
sensitivity check with different criteria weights and 7 of them conducted it with different
model parameters/scenarios in MOO problems. A few used both methods (Table S3).

4. Discussion: Development of Decision Tree and Its Application

Based on the findings from the reviewed articles and information regarding how MOO
and MCDM methods can be integrated with uncertainty considerations, a decision tree was
developed (Figure 2). This decision tree is intended to support choosing the most suitable
methodological pathway for identifying the best-optimized solution/product system with the
aid of MOO and MCDM methods. In the decision tree, START indicates the starting point,
and the ovals represent the questions that need to be answered for the specific study. The
rectangles are the methodological choices based on the answers provided. The hexagons
are the interim outcomes/solutions from either MOO or MCDM and the diamond shapes
indicate the final outcome from the integrated methodological framework (Figure 2).
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From the starting point, researchers need to determine the context of the study/problem.
If they have multiple alternatives for the same function (i.e., identifying the best protein
source from multiple protein alternatives), they need to follow the a priori integration
pathway, which involves integrating MCDM before conducting MOO. On the other hand,
if the study is focused on any specific product system and wants to optimize that system
(i.e., finding an optimized pathway for plant-protein extraction), it will have two options
to integrate MOO and MCDM. The first option is to integrate MCDM both before and
after conducting MOO. The second option allows a posteriori integration, which involves
performing MCDM after MOO. The following sections detail these options and other
methodological choices from the decision tree.

4.1. A Priori Integration of MOO and MCDM

When the study has multiple discrete alternatives and there are multiple conflicting
criteria associated with those alternatives, MCDM methods should be employed first to
identify the best alternative and then MOO methods can be applied to optimize the supply
chain of that best alternative to obtain the best alternative with an optimized system. For
applying MCDM under the compensatory type of methods, researchers often need to
answer two more questions about their preferences on criteria weights and uncertainty.
If they decide to incorporate DMs’ and stakeholders’ preferences for the criteria and
sometimes for alternatives (i.e., in AHP), they need to decide about uncertainty as well.
Without including DMs’ preferences, they can either use the objective weighting method
(i.e., entropy) or skip weighting (equal weight). But for including DMs’ preferences, ideally,
they need to deal with uncertainty. Subjective weights based on expert opinion and/or DMs’
preferences and/or group decisions, and a combination of objective and subjective weights
are the options for the weighting method in MCDM with uncertainty. After deciding on
the weighting method and uncertainty consideration, the next step in MCDM is to apply a
suitable ranking method to rank the alternatives based on weighted criteria to find the best
alternative (interim outcome). From the reviewed articles, it is clear that there is a wide
range of MCDM methods and numerous examples of applying them in different fields of
research. Moreover, minor differences among these methods do not have any significant
effect on the results [36,52,111,112]. TOPSIS or PROMETHEE II may be the most suitable to
use as a ranking method based on the review findings (Table S3).

After identifying the best alternative, researchers need to answer another question
regarding uncertainty considerations for MOO problems. For MCDM problems, only the
alternatives and their respective values for each criterion are required, whereas MOO
problems require more information. MCDM problems can be integrated with MOO if all
the required input–output functions are available for the identified best process. If the
practitioners want to deal with uncertainty in model parameters, they need to conduct
robust optimization, which can be via either metaheuristic or mathematical programming.
Without considering uncertainty, they can simply conduct any metaheuristic or mathemati-
cal programming model. Choosing between metaheuristic and mathematical programming
methods can be guided by the decision tree developed by Turner et al. [126]. Deciding
between mathematical and metaheuristic methods really depends on the preferences of the
researchers with respect to computational intensity, complete vs. approximate searches,
and flexibility in model development [126]. From the review findings, it can be said that
metaheuristic MOO methods are the most used, especially NSGA-II and PSO methods
(Table S3).

4.2. A Posteriori Integration of MOO and MCDM

When the study aims to optimize a specific product system or supply chain, MOO
and MCDM can be integrated in two ways: a posteriori and both a priori and a posteriori.
In a posteriori integration, researchers first need to use MOO methods based on multiple
conflicting objective functions to find the Pareto-optimal solution set, given that they have
all the required input–output functions. Here again, they need to choose between robust
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and normal optimization methods. After obtaining the Pareto-optimal solutions, they can
use any MCDM method to find the best of these solutions. In the MCDM problem, different
solutions from the Pareto set will become different alternatives, and the values of objective
functions will be criteria values. They can decide the path for conducting MCDM based on
their choice for weighting and uncertainty considerations, just like performing MCDM in
the a priori system (Section 4.1). After choosing suitable weighting methods with/without
uncertainty considerations, a suitable ranking method will give them the best solution from
the Pareto-optimal solution set.

4.3. Both a Priori and a Posteriori Integration of MOO and MCDM

Another way to integrate MOO with MCDM is both a priori and a posteriori. Here,
researchers can include weights for the objective functions of the MOO model using a
suitable weighting method for MCDM. Like before, they need to decide about the preference
for uncertainty considerations in the weights, and depending on that, they can either use
subjective weights based on DMs’ preferences, objective weights based on the entropy
method, or a combination of subjective and objective weights. Incorporating these weights
will produce weighted objective functions, which will be fed into the MOO model. For
MOO model development, researchers need to decide on uncertainty considerations, and
based on their choice, either robust, simple metaheuristic, or mathematical MOO methods
will be employed. MOO methods based on weighted objective functions will give the
Pareto-optimal solution set. As the weights based on DMs’ preferences are already included
in this stage, they just need to use a suitable ranking method to find the best solution from
the Pareto set.

4.4. Uncertainty and Sensitivity Analyses

If the pathways with uncertainty considerations either for MOO or MCDM or both
have been selected, uncertainty analysis of model parameters of MOO and weights of
MCDM should be included in the study. Monte Carlo Simulation and triangular fuzzy
numbers can be suitable ways to deal with uncertainty (Table S3). Along with uncertainty
analysis, sensitivity analysis is a recommended step in this integrated framework. Sensitiv-
ity analyses with different model parameters based on their uncertainty, different criteria
weights calculated through different methods, and different ranking methods should be
performed to check the robustness of the methodological choices. Sensitivity analysis
will identify the most important factor(s) which has/have significant impacts on the final
outcome. This optional but recommended step is shown in the decision tree with dashed
lines (Figure 2).

4.5. Case Study: Pulse Protein Extraction Pathways

In this section, a case study is illustrated to demonstrate how the proposed decision
tree can guide the methodological choices in a given application context, by combin-
ing MOO and MCDM methods. Plant-based proteins are attracting increased attention
for being environmentally more sustainable [127,128] and healthier than animal-based
proteins [129,130]. In recent years, there has been significant growth in innovative food
processing technologies to obtain plant-based proteins with improved quality and func-
tionality, which may make the market for meat substitutes grow to USD 140 billion by
2029 [131,132]. Pulses are one of the main sources of plant-based proteins, in part due to
their nutritional and sustainability attributes [133–135].

Canada is one of the largest pulse producers and exporters in the world and produces
dry peas, chickpeas, lentils, and beans. Pulse production in Canada is increasing annually,
and there is a similarly significant growth in pulse processing. Pulses are processed to
obtain pulse flour, pulse protein, pulse fibre, pulse starch, and various other products
and ingredients. Though there may be differences in the granular levels from facility
to facility, dry fractionation and wet fractionation are the commonly used pathways for
pulse protein extraction, and both are energy-intensive pathways [136]. Dry fractionation
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involves producing pulse protein concentrates from raw pulses through the dehulling,
milling, and air classification stages [137]. On the other hand, wet fractionation is more
energy-intensive as it requires isoelectric precipitation, centrifugation, and spray drying
to procure protein-rich pulse protein isolates [138]. Methods for making these processing
pathways more efficient in terms of energy use, economics, and environmental performance
continue to evolve. For example, several studies tried to identify more technically feasible
and efficient fractionation pathways to produce plant-based proteins [139]. However, simul-
taneously considering all important factors from a sustainability perspective (i.e., technical,
economic, and environmental) is uncommon, which hinders identifying sustainable and
optimized extraction pathways. As these objectives may conflict, an MOO model/problem
can be formulated to identify the optimized pathways (i.e., dry fractionation and wet
fractionation). For example, if we want to optimize the dry fractionation pathway based on
environmental (i.e., minimizing environmental impacts in different impact categories in
the life cycle assessment model); economic (i.e., minimizing production costs/maximizing
profit/revenue); and technical (i.e., maximizing yield and energy use efficiency) criteria,
MOO will produce a Pareto-optimal set of solutions showing different trade-offs among
the objective functions. The main advantage of performing MOO is to consider multiple
conflicting objectives, but before applying MOO methods, we need to make sure that all
of the input–output functions are available. After obtaining the solution set, an MCDM
method is required to identify the best-optimized pathway from that solution set. In this
case, all of the solutions from the Pareto-optimal set will become the alternatives and the
objectives (i.e., economic, technical, and environmental) will be the criteria.

Following the developed decision tree (Figure 2), as the case study is about studying
a specific product system (pulse protein extraction pathways), there are two options for
integrating MOO with MCDM methods. The DMs’ and stakeholders’ (pulse farmers, pulse
processing facilities, Pulse Canada, etc.) preferences can be integrated before or after solv-
ing the MOO problem. Conventionally, a posteriori integration is more common, assuming
the system input–output functions are available. A more comprehensive analysis would
test both a posteriori and the integrated a priori and a posteriori results via sensitivity anal-
ysis and compare potential changes in the final optimization outcome. In the a posteriori
pathway, the existing fractionation processes will be optimized based on given objective
functions regarding environmental, technical, and economic variables. Environmental
objective functions could include minimizing GHG emissions, land use footprints, water
use footprints, mineral/fossil fuel usage, etc. Technical functions can be formulated with
the aim of maximizing total yield from the process, minimizing energy use, maximizing
protein content, etc. Economic objective functions could include minimizing production
costs/operation costs, maximizing net present value/profit, etc. After formulating these ob-
jective functions and considering the constraints (if any), a suitable MOO method should be
utilized. Based on the findings of the literature review, an evolutionary-based metaheuristic
method like NSGA-II may be useful for finding the non-dominated Pareto-optimal solution
set. The uncertainty associated with input data/model parameters also needs to be taken
into account. Monte Carlo Simulation and/or triangular fuzzy numbers can be used to
deal with the uncertainty in the MOO model.

There will be several optimized pathway options which can indicate the trade-offs
among different objective functions. As these solutions are non-dominated, it is not easy
to select the best option without the help of MCDM methods. First, a suitable weighting
method must be used, ideally including a combination of objective and subjective weights.
After assembling all of the stakeholders’ preferences, either AHP or BWM can be used
to find the subjective weights for all criteria. Then, entropy-derived objective weights
can be combined with the subjective weights. As it includes subjective weights, fuzzy
AHP or fuzzy BWM should be used for dealing with uncertainty. In the next step, a
suitable ranking method—either TOPSIS or PROMETHEE II—can be applied to rank
the alternatives from the Pareto set. Finally, sensitivity analyses should be included to
check the robustness of the methodological choices. Sensitivity analysis with different
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model parameters, different weighting methods, and different ranking methods should
be outlined to see the changes in the final outcome. The methodological path suggested
for the case study is highlighted in the decision tree (Figure 2). Based on the review
findings, a posteriori integration between MOO and MCDM methods is prevalent. So, in
the highlighted pathway, a posteriori is selected and, for the MOO and MCDM methods,
the path leading to uncertainty consideration was selected as well. Especially, for the
weighting method, the combination of subjective and objective weights was preferred as it
ensures a comprehensive analysis.

5. Conclusions

Multi-Objective Optimization (including both MOO problems with explicit objective
functions, and MCDM with discrete decision matrices) has become an important concept in
scientific research in numerous fields. Integrating MCDM with MOO methods merits more
attention, as a hybrid approach, to elevate the effectiveness of final solutions. In addition,
although some past studies included in this review reported both MOO and MCDM, clear
guidance with respect to the choice of specific methodologies under each was missing.
Accordingly, this review paper aimed at developing a generic decision tree based on the
findings from the reviewed articles, in order to better guide practitioners in the future
towards performing MOO and MCDM in an integrated way. A key emphasis here was
uncertainty considerations, which could enable the integration of robust MOO with robust
MCDM methods.

This systematic review answered four specific questions. The first was about the
prevalent MOO methods and metaheuristic methods that have been employed in the
majority of the reviewed articles, concerning their easy and quick application. The second
question addressed the ways of integrating MOO with MCDM. MOO can be integrated
with MCDM either a priori, a posteriori, or via a combination of both, where the weights
are combined with the objective functions of MOO problems; MCDM ranking methods
are then performed to find the best solution from the Pareto-optimal solution set. In the
third question, prevalent MCDM methods were discussed and TOPSIS and PROMETHEE
II were employed in most of the reviewed articles. Regarding the fourth question, how
these articles dealt with uncertainty was explored. Monte Carlo Simulation and triangular
fuzzy number/fuzzy set theory were found to be among the most common tools used in
uncertainty propagation considerations.

The developed decision tree and associated discussions pointed towards the required
methodological choices rather than prescribing which specific MCDM method may be
integrated with which MOO method, and whether it is a posteriori or a priori. From the
review findings, it is inferred that there is no single method that is ideal for all decision types
and application contexts. Each tree path has advantages and drawbacks. Overall, however,
the review showed a preference in the literature for evolutionary-based metaheuristic
MOO methods, and TOPSIS or PROMETHEE ranking methods. Sensitivity analysis with
different methods was recommended in order to support comprehensive analyses. Finally,
the decision tree was elaborated for a case study on pulse protein extraction pathways to
show how it can guide the practitioner in choosing the suitable path. This will support
researchers in choosing the most appropriate way to combine MOO and MCDM methods
in the context of their specific sustainability assessments. As this study did not identify
the best MOO and MCDM methods for the case study, a follow-up case study may focus
on this. Moreover, as this study did not report on the results of using the decision tree
for the case study, future studies may focus on implementing the decision tree for diverse
case studies. Finally, human behavioural aspects within the sustainability practice can be
embedded in the MCDM, particularly in strategic decision-making in organizations [140].

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/su16072684/s1; Table S1: Comparison between Metaheuristic and Mathe-
matical Programming MOO methods; Table S2: Different MCDM methods and their advantages and
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disadvantages. Table S3: Summary of reviewed articles to identify the methodological choices for
integrating MOO and MCDM with uncertainty.

Funding: This work was funded by the National Research Council of Canada (CSTIP Grant Agree-
ment #SPP121) under the Sustainable Protein Production (SPP) program.
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Abbreviations

AHP Analytic Hierarchy Process
ANP Analytic Network Process
BWM Best-Worst Method
DEA Data Envelopment Analysis
DM Decision-Maker
ELECTRE Elimination and Choice Expressing Reality
GA Genetic Algorithm
MACBETH Measuring Attractiveness by a Categorical-Based Evaluation Technique
MAUT Multi-Attribute Utility Theory
MCDM Multi-Criteria Decision-Making
MOO Multi-Objective Optimization
NSGA Non-Dominated Sorting Genetic Algorithm
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROMETHEE Preference Ranking Organization Method for Enriched Evaluation
PSO Particle Swarm Optimization
TOPSIS Technique of Order Preference Similarity to the Ideal Solution
VIKOR ‘VIekriterijumsko KOmpromisno Rangiranje’, a Serbian term for

‘Multi-Criteria Optimization and Compromise Solution’
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101. Ali, S.S.; Paksoy, T.; Torğul, B.; Kaur, R. Reverse Logistics Optimization of an Industrial Air Conditioner Manufacturing Company
for Designing Sustainable Supply Chain: A Fuzzy Hybrid Multi-Criteria Decision-Making Approach. Wirel. Netw. 2020, 26,
5759–5782. [CrossRef]

102. Jaigirdar, S.M.; Das, S.; Chowdhury, A.R.; Ahmed, S.; Chakrabortty, R.K. Multi-Objective Multi-Echelon Distribution Planning for
Perishable Goods Supply Chain: A Case Study. Int. J. Syst. Sci. Oper. Logist. 2023, 10, 2020367. [CrossRef]

103. Medina-González, S.; Espuña, A.; Puigjaner, L. An Efficient Uncertainty Representation for the Design of Sustainable Energy
Generation Systems. Chem. Eng. Res. Des. 2018, 131, 144–159. [CrossRef]

104. Jones, D.; Tamiz, M. Practical Goal Programming; International Series in Operations Research & Management Science; Springer:
New York, NY, USA, 2010; ISBN 978-1-4419-5770-2.

105. Lasemi, M.A.; Arabkoohsar, A.; Hajizadeh, A. Stochastic Multi-Objective Scheduling of a Wind Farm Integrated with High-
Temperature Heat and Power Storage in Energy Market. Int. J. Electr. Power Energy Syst. 2021, 132, 107194. [CrossRef]

106. García-Segura, T.; Penadés-Plà, V.; Yepes, V. Sustainable Bridge Design by Metamodel-Assisted Multi-Objective Optimization and
Decision-Making under Uncertainty. J. Clean. Prod. 2018, 202, 904–915. [CrossRef]

107. Taravatrooy, N.; Nikoo, M.R.; Hobbi, S.; Sadegh, M.; Izady, A. A Novel Hybrid Entropy-Clustering Approach for Optimal
Placement of Pressure Sensors for Leakage Detection in Water Distribution Systems under Uncertainty. Urban Water J. 2020, 17,
185–198. [CrossRef]

108. Naserizade, S.S.; Nikoo, M.R.; Montaseri, H. A Risk-Based Multi-Objective Model for Optimal Placement of Sensors in Water
Distribution System. J. Hydrol. 2018, 557, 147–159. [CrossRef]

109. Tayebikhorami, S.; Nikoo, M.R.; Sadegh, M. A Fuzzy Multi-Objective Optimization Approach for Treated Wastewater Allocation.
Environ. Monit. Assess. 2019, 191, 468. [CrossRef] [PubMed]

110. Bahrami, N.; Nikoo, M.R.; Al-Rawas, G.; Al-Jabri, K.; Gandomi, A.H. Optimal Treated Wastewater Allocation Among Stakeholders
Based on an Agent-Based Approach. Water Resour. Manag. 2023, 37, 135–156. [CrossRef]

111. Keisler, J.M. The Value of Assessing Weights in Multi-Criteria Portfolio Decision Analysis: The Value of Assessing Weights.
J. Multi-Criteria Decis. Anal. 2008, 15, 111–123. [CrossRef]

112. Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Applied Optimization; Kluwer: Dordrecht, The
Netherlands, 2010; ISBN 978-1-4419-4838-0.
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