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Abstract: In traditional traffic simulation studies, vehicle behavior has typically been modeled
using complex analytical frameworks, which often struggle to encompass the full range of variables
affecting vehicle operations. Addressing this gap, our research introduces an innovative data-driven
framework for traffic simulation that incorporates human driving data into its decision-making
processes. This enables the modeling of diverse vehicle behaviors by taking into account both vehicle-
specific characteristics and environmental factors. At the core of this framework are two advanced
deep neural networks, convolutional long short-term memory and convolutional gated recurrent unit,
which underpin our vehicle traffic simulation model. Utilizing datasets from the Next Generation
Simulation project, specifically the I-80 and US-101 road sections, our study further evaluates the
framework’s performance through single-step continuous prediction, as well as transferability tests,
employing the TransMSEloss function to optimize prediction accuracy. Our findings reveal that the
proposed data-driven model significantly outperforms traditional models, achieving an exceptional
accuracy of 97.22% in training and 95.76% in testing. Notably, in continuous prediction, our model
maintains an 89.57% accuracy up to the fifth step, exceeding the traditional framework’s 82.82% by 5%
to 10% at each step. Time cost analysis indicates that while the data-driven framework’s advantages
are more pronounced in large-scale simulations, it also demonstrates strong transferability, with a
93.48% accuracy on diverse datasets, showcasing its applicability across different traffic scenarios.
This study not only highlights the potential of deep learning in traffic simulation, but also sets a new
benchmark for accuracy and scalability in the field.

Keywords: data driven; deep learning; behavior modeling; transfer analysis; multi-step prediction

1. Introduction

In the realm of transportation systems, marked by their increasing complexity and the
growing prevalence of shared mobility options, the escalating issues of traffic congestion,
accidents, and environmental pollution are becoming more pronounced [1–3]. Within the
United States, congestion costs surged from USD 166 billion in 2014 to USD 190 billion in
2019 [4–6]. Traffic simulation has emerged as a pivotal tool to address these multifaceted
challenges, encompassing concerns such as traffic congestion, safety, pollution, and energy
consumption [7–9]. In pursuit of enhancing safety, a calibrated microscopic traffic simu-
lation model forms the foundation for a safety assessment model [10,11]. Furthermore,
Hishikawa et al. [7] conducted an evaluation of the safety of mixed traffic, which includes
pedestrians and personal motor vehicles, by analyzing the impact of geometric and traffic
conditions using a traffic simulation model.

The research and development of software pertaining to traffic simulation constitute a
vital component of the broader field of traffic simulation research [12–14]. Among the no-
table simulation models, CORridor SIMulation (CORSIM) stands out as a microscopic traffic
simulation model tailored for the analysis of both highways and urban roads. It utilizes the
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safety distance model as its car-following (CF) model [8,15]. In contrast, Simulation of Ur-
ban Mobility (SUMO) (Version 1.19.0), an open-source and multimodal microscopic traffic
simulation software, adopts the Gipps extension model as its CF model [9]. Park et al. [16]
conducted a comprehensive study on the calibration and validation of a microscopic traffic
simulation model, using the Verkehr In Städten—SIMulationsmodell (VISSIM) simulation
model to analyze a coordinated actuated signal system. It is noteworthy that traffic simula-
tion software fundamentally relies on specific and intricate analytical mathematical models
to facilitate vehicle traffic simulation [17]. However, these analytical models have inherent
limitations, as they can only account for a limited number of factors influencing driving
behavior [18,19]. Furthermore, these models simulate different traffic behaviors in isolation,
leading to significant disparities between simulation outcomes based on analytical models
and real-world observations [20–22]. Wastavino et al. pointed out the inherent limitations
of analytical models in fully capturing the intricacies of driving behavior [23]. Subsequently,
Toledo et al. developed and tested a driving behavior framework that integrates both the
CF model and the lane-changing (LC) model. However, this data-driven framework’s
complexity and inflexibility posed challenges [24].

Conversely, some scholars have proposed an alternative approach, contending that
various driving behavior models are inherently embedded within vehicle trajectories. They
suggest that the challenging task of concurrently modeling the CF and LC models can be
supplanted by directly modeling vehicle trajectories [25–27]. For instance, Tomar employed
a multilayer perceptron to predict the future trajectories of discrete vehicles [28]. Cui et al.
developed a deep convolutional neural network designed for predicting future vehicle
trajectories [29]. Additionally, Zhang et al. introduced the hybrid retraining constrained
(HRC)–long short-term memory (LSTM) method for the simultaneous prediction of ve-
hicle trajectories [30]. While extensive research on trajectory prediction has validated its
effectiveness in simultaneously modeling CF and LC behaviors, its simulation efficiency in
large-scale networks remains questionable. This is primarily because such models often
focus on predicting the trajectory of individual vehicles without adequately considering
the future movements of surrounding vehicles. Consequently, in large-scale networks,
particularly within high-density traffic flows, simulating the entire traffic scenario requires
iterating over all vehicles in the scene, significantly reducing computational efficiency.
Given these challenges, the development of a simulation framework that can efficiently sim-
ulate all vehicles in a large-scale network scenario while maintaining high computational
efficiency is essential.

As for the realm of data-driven machine learning models, Li et al. proposed a multi-
variate ensembles-based hierarchical linkage strategy, fusing the benefits of multivariate
ensembles model into the hierarchical linkage technique [31]. By employing the developed
hierarchical leveling strategy for system decomposition and the subsequent application of
the mapping engine model for synchronous mapping of subsystem outputs, this approach
facilitates the construction of a multi-level system reliability framework. Abdelaty et al.
developed and evaluated seven data-driven modeling techniques, spanning both ma-
chine learning and statistical models, providing a comprehensive analysis of each model’s
applicability [32].

Addressing the aforementioned limitations, we present a novel data-driven traffic
simulation framework that leverages deep neural networks as the core data-driven kernel
model. This framework integrates human driving experience data for decision-making,
allowing it to simultaneously model various vehicle driving behaviors while considering
both vehicle-specific factors and environmental influences. Distinct from conventional
model-driven methods and individual vehicle trajectory prediction approaches, our frame-
work concurrently simulates the entire road segment, rather than sequentially simulating
vehicles on an individual basis. To facilitate a comprehensive comparison, we also establish
model-driven and trajectory prediction frameworks and calibrate their respective param-
eters. To enhance the training efficiency and performance capabilities of the data-driven
framework, we introduce improvements to the mean-squared error (MSE) loss function
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and introduce TransMSELoss as the designated loss function during network training.
In single-step prediction, the data-driven framework demonstrates impressive accuracy,
achieving 97.22% on the training set and 95.76% on the test set. Moreover, in the context
of five consecutive prediction experiments, the data-driven framework consistently out-
performs the model-driven framework, exhibiting accuracy levels that are generally 5%
to 10% higher. Furthermore, we delve into the scalability of the simulation frameworks,
exploring promising avenues for enhancing their capabilities. Additionally, we conduct
a thorough transferability analysis, revealing that the data-driven framework exhibits
exceptional transferability. This work carries significant implications, not only in terms of
achieving more accurate simulations, but also in enabling the feasibility of large-scale road
network simulations.

The rest of this paper is organized as follows: Section 2 introduces the frameworks
of model-driven traffic simulation, trajectory prediction, and the data-driven traffic simu-
lation. Section 3 describes the parameter configuration of the model. Section 4 gives the
comparison results and verifies the performance of the frameworks. Section 5 studies the
transferability of the model. Section 6 concludes the paper.

2. Methodology

In this section, we delve into the specifics of our framework, starting with the model-
driven traffic simulation framework and its submodel, trajectory prediction, which utilizes
the LSTM architecture. Following that, we provide an in-depth exploration of the structure
of the data-driven traffic simulation framework, including a detailed breakdown of the two
neural network structures employed within it.

2.1. Model-Driven Traffic Simulation Framework

Typically, existing traffic simulation software relies on various microscopic traffic
simulation models to simulate vehicle operations. These models encompass the simulation
of vehicle driving behavior, with a primary focus on CF and LC models, as outlined
by Toledo [33].

2.1.1. CF Model

CF models, such as the intelligent driver model (IDM), elucidate how a vehicle tracks
the movements of the preceding vehicle within a single lane. These models employ
analytical formulas to characterize the vehicle’s longitudinal behavior on the roadway. CF
models find extensive applications across various domains, including microscopic traffic
simulation, analysis of driving behaviors, capacity assessment, and traffic safety [34]. For
the purpose of this paper, we designate the IDM as our benchmark model [35].

The IDM is depicted by Equations (1) and (2), offering a unified description of the
transition of vehicles from free-flow conditions to congested flow. This model assesses the
vehicle’s following motion by considering the acceleration induced by a range of social
forces, encompassing both the driving force and resistance. The driving force emanates
from the driver’s psychological inclination to attain a desired speed, while the resistance
arises from the influence of the leading vehicle on the following vehicle.

ai(t) = Ai

[
1 − (

vi(t)
v f

)δ − (
si
∗(t)

si(t)
)2

]
(1)

si
∗(t) = s0 + s1

√
vi(t)

v f
+ Tivi(t) +

vi(t)[vi(t)− vi−1(t)]
2
√

Aibi
(2)

where ai(t) is the acceleration of the vehicle i at time t; Ai denotes the maximum acceleration
of the vehicle i; vi(t) is the speed of the vehicle i at time t; v f is the free-flow speed; δ stands
for the acceleration index (δ > 0); si(t) is the spacing between the vehicle i and the vehicle
i − 1; si

∗(t) is the desired spacing; s0 is the stationary safety distance; s1 is a coefficient
usually taken as 0; Ti is the safe time headway; and bi is the comfortable deceleration.
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2.1.2. LC Model

The Minimizing Overall Braking Induced by Lane changes (MOBIL) model utilizes
vehicle acceleration to define the utilities and assesses LC decisions by comparing the
utilities of the current lane and the locally affected vehicles on the target lane, both before
and after the LC behavior [36].

The MOBIL model posits that acceleration serves as an intuitive indicator of the lane
selection’s effectiveness. Essentially, driver decision-making in LC involves selecting a
lane that offers the prospect of improved acceleration. According to the MOBIL model,
the decision-maker evaluates the benefits derived from changing lanes and the potential
ramifications for vehicles in both the original lane and the target lane during the LC process.
Lane changes are considered necessary only when they contribute to enhancing the overall
system’s utilities.

The MOBIL model also emphasizes that the main safety concerns are centered around
the LC vehicle and the following vehicles in the target lane while executing the lane
change maneuver. If either the following vehicle or the LC vehicle experiences substantial
deceleration, it indicates an unsafe lane change. As a result, it is imperative to ensure that
the safety criteria specified in Equation (5) are met during the lane change process.

Uα,k = aα,k (3)

âα − aα + p
(

â f̂ − a f̂ + â f − a f

)
> ∆a + abias (4)

â f̂ = f
(

v f̂ , vα, ŝ f̂

)
> −bsa f e (5)

where aα,k is acceleration calculated according to the CF model when vehicle α selects lane k;
Uα,k is the utility of vehicle α selecting lane k; âα is the following acceleration of the vehicle
α after the vehicle α changes lanes, while aα is the following acceleration of the vehicle α
before changing lanes; â f̂ and a f̂ are the acceleration of the following vehicle on the target
lane after and before vehicle α changing lane; â f and a f are the acceleration of the following
vehicle on the original lane after and before vehicle α changing lane; ŝ f̂ denotes the gap
between the vehicle α and the following vehicle on the traget lane; p ∈ [0, 1] is the altruistic
factor; ∆a is the threshold for the improvement of the overall utility of changing lanes; abias
is the asymmetric lane change parameters; and −bsa f e denotes the absolute value of the
maximum deceleration to ensure driving safety.

2.2. Trajectory Prediction

LSTM, a specialized recurrent neural network, possesses the ability to effectively model
time series data with extended time intervals and autonomously ascertain the optimal
prediction time lag [37]. The utilization of LSTM networks enables us to grasp human
driving trajectory data, consequently facilitating the advancement and amalgamation of
CF and LC vehicle driving behaviors [38,39].

LSTM diverges from traditional recurrent neural networks by governing the cell
state via three inherently parameterized control gates: the forget gate, input gate, and
output gate.

In the initial stage of LSTM, the determination of which information to discard from
the cell state is orchestrated by a sigmoid layer known as the “forget gate”. This gate
takes inputs, namely h(t−1) (the previous output) and xt (the current input), and produces
an output value ranging between 0 and 1 for each element in the cell state c(t−1) (the
previous state). A value of 1 signifies complete retention of the information, while a value
of 0 signifies its complete removal.

Forget Gate:

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(6)
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The subsequent stage involves determining which information to retain in the cell
state, a process divided into two distinct steps. Firstly, a sigmoid layer referred to as the
“input gate” determines which values should be updated. Following that, a hyperbolic
tangent (tanh) layer constructs a candidate vector, denoted as ct, which will be incorporated
into the state of cells.

Input Gate:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (7)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (8)

Finally, the output of the cell unit is controlled by the output gate.

Output Gate:

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (9)

ht = ot tanh(ct) (10)

where σ is the sigmoid layer; xt is the input data at time t; ft, it, and ot are the forget gate,
input gate, and output gate at time t, respectively; ht is the hidden state; ct is the cell state
at the time t; W is the weight coefficient; and b is the bias.

2.3. Data-Driven Traffic Simulation Framework
2.3.1. ConvLSTM

Convolutional long short-term memory (ConvLSTM), a derivative of LSTM, introduces
a pivotal modification by replacing the full connection layer in LSTM with a convolutional
layer and altering the model’s input from a vector to a 3D tensor. This adjustment is
made to address the inherent limitation of LSTM in encoding spatial information during
the state transition process [40,41]. The equation expression for ConvLSTM is as follows,
where the ∗ symbol signifies the convolution operator, and the ◦ symbol denotes the
Hadamard product:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = σ
(

Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)
ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo)
ht = ot ◦ tanh(ct)

(11)

where σ is the sigmoid layer; xt is the input data at time t; ft, it, and ot are forget gate, input
gate, and output gate at time t, respectively; ht is the hidden state; ct is the cell state at the
time t; W is the weight coefficient; and b is the bias.

2.3.2. ConvGRU

Gated recurrent unit (GRU), another variation of LSTM, distinguishes itself by dispens-
ing with the memory unit present in LSTM and consolidating the input gate and forget gate
into a single component called the “update gate” [42,43]. Additionally, it introduces the
“reset gate”, amalgamating the advantages of recurrent units with convolutional layers. This
enables convolutional gated recurrent unit (ConvGRU) to effectively process sequential
data that possess spatial dimensions. By regulating the information flow through the reset
gate, ConvGRU enhances its capability to capture and model long-range dependencies,
rendering it a valuable asset across diverse domains. With each new input, the reset gate
determines whether to clear the previous state, while the update gate governs the extent to
which new information is incorporated into the state.

zt = σ(Wxz ∗ xt + Whz ∗ ht−1)
rt = σ(Wxr ∗ xt + Whr ∗ ht−1)
h′t = f (Wxh ∗ xt + rt ◦ (Whh ∗ ht−1))
ht = (1 − zt) ◦ h′t + zt ◦ ht−1

(12)
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where σ is the sigmoid layer; f is the activation; xt is the input data at time t; zt, rt, ht, and
h′t are update gate, reset gate, memory state, and new information at time t, respectively;
and W is the weight coefficient.

2.3.3. Data-Driven Traffic Simulation Framework Structure

The structure of the data-driven traffic simulation framework is depicted in Figure 1.
In this framework, training data comprise vehicle traffic data from a particular scenario,
with the central component consisting of various deep neural networks. Once these neural
networks are trained, they are utilized to make predictions on the test set.

Figure 1. Structure of the data-driven traffic simulation framework.

3. Case Study
3.1. Data Preparation

Considering that the core of the data-driven traffic simulation framework relies on
deep neural networks, a significant volume of training data is essential. Since the dataset
utilized is the Next Generation Simulation (NGSIM) dataset, which contains trajectory data
and employs ConvLSTM and ConvGRU, the training input comprises high-dimensional
tensor data.

Our approach involved segmenting and organizing the trajectory data from NGSIM,
subsequently converting them into temporally sequenced, road section-based vehicle data,
following the methodology outlined by Montanino and Punzo [44]. Each individual cell
in this dataset is defined with a length of 2 m, matching the width of a typical lane. It is
important to note that the concept of an individual cell inherently incorporates a tolerance
within the accuracy rate calculation, given that achieving ‘perfect alignment’ in predictions
is challenging. Specifically, a tolerance margin is established around the predicted vehicle
cell, accommodating slight deviations from the precise position and yet still recognizing
the prediction as accurate. This built-in tolerance acknowledges the practical limitations of
prediction models and accommodates the variability encountered in real-world driving
conditions. As a result, we obtained an extensive dataset composed of serialized cells, with
75% allocated for training and 25% for testing.

It is important to emphasize that the NGSIM dataset is extracted from traffic videos
and may contain noise, particularly in the speed and acceleration data segments. However,
we exclusively leveraged the location data within the NGSIM dataset, ensuring that our
experiments remained largely unaffected by such noise.
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3.2. Model Parameters’ Setting
3.2.1. Model-Driven Traffic Simulation Parameters’ Configuration

As highlighted earlier, the CF model employed in our model-driven traffic simulation
is the IDM. To align IDM’s performance with real-world traffic behaviors, it is imperative
to calibrate its parameters accurately. Our calibration methodology leverages the Particle
Swarm Optimization (PSO) method, renowned for its efficacy in optimizing non-linear
and complex functions. This approach involves initializing a swarm of particles, each
representing a potential solution—in this case, a set of IDM parameters. These particles
explore the solution space, guided by their own best-known positions and the swarm’s
overall best-known position. Furthermore, the PSO method introduces a stochastic element,
enhancing the algorithm’s exploration capabilities across the solution space. By dynamically
adjusting trajectories based on both personal and global bests, complemented by this
random factor, our approach mitigates the risk of premature convergence on suboptimal
solutions. We utilized detailed trajectory data from the I-80 road section within the NGSIM
dataset as the basis for calibration, allowing us to refine the IDM parameters for enhanced
fidelity to observed vehicle behaviors. The calibration process iteratively adjusts the IDM
parameters to minimize the deviation between the model’s predictions and the actual
vehicle trajectories observed in the dataset. The outcomes of this meticulous calibration
procedure are detailed in Table 1. For the sake of clarity and simplicity in presentation, we
have chosen to omit the subscripts of parameters in our discussion and analysis.

Table 1. Calibrated parameters in IDM and MOBIL.

Parameters Value

a 0.73 m/s2

v0 33.3 m/s
s0 2.5 m
T 1.6 s
b 1.67 m/s2

p 0.1
∆a 0.1 m/s2

bsa f e 4 m/s2

abias 0.3 m/s2

3.2.2. Trajectory Prediction Model Parameters’ Configuration

We conducted orthogonal experiments on various LSTM parameters, including batch
size, the number of neurons in the hidden layer, dropout rate, and training epochs. The
specific parameter settings are outlined in Table 2.

Table 2. Calibrated parameters in the LSTM.

Parameter Description Values

Input dimension Dimensions of the input layer 2
Output dimension Dimensions of the output layer 2
Historical length Number of past frames (0.1 s) 40
Hidden layer number Number of LSTM layer 1
Neuron in the hidden layer Number of neurons in the hidden layer 80
Dropout rate The rate of neurons applied at dropout 0.2
Training epochs Number of training update 1000
Batch size Number of training samples sent into the network each time 16
Loss function The function to calculate loss MSELoss
Activation function The function to map input and output Sigmoid
Optimizer The function to find the optimal solution Adam

3.2.3. Data-Driven Traffic Simulation Parameters’ Configuration

As ConvLSTM and ConvGRU are pivotal to the architecture of our data-driven frame-
work, fine-tuning their parameters is crucial for maximizing model efficacy. To navigate the
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intricate process of determining the optimal configuration for these deep neural networks,
we embarked on a series of orthogonal experiments, which were specifically designed
for systematic parameter tuning. During this phase, we divided our dataset into distinct
training and validation sets. This division was crucial for evaluating various parameter
combinations and their impact on model performance within the validation set, thereby
optimizing the selection of parameters while avoiding the risk of overfitting. Following the
identification of the optimal parameter set from the calibration phase, we further validated
the models’ efficacy and generalization ability using a completely separate testing set.

The calibration process for ConvLSTM, in particular, required a nuanced approach due
to its unique architecture, which combines convolutional layers with LSTM units to capture
spatial–temporal patterns in traffic data. By varying the aforementioned parameters, we
sought to identify a configuration that balances the model’s ability to learn complex depen-
dencies with computational efficiency. The optimal parameters identified through these
experiments, which strike a delicate balance between learning capacity and generalization
ability, are meticulously cataloged in Table 3.

During the calibration phase, it became apparent that standard loss functions such
as MSELoss and Structural Similarity Index Measure (SSIM) were inadequate for our
model training objectives. Neither could fully capture the complexity of spatial–temporal
relationships in traffic flow data, as required by our ConvLSTM model. This realization
led us to develop the TransMSELoss function, a novel approach to loss calculation that
evaluates not only the discrepancy between the 3D tensor output by the network and
the actual labels, but also considers the relationship between the softmax-transformed
predictions and the labels. This innovative modification to the loss function facilitates
a more rapid convergence of the network by providing a more detailed gradient signal
during backpropagation, thereby improving model accuracy while safeguarding against
overfitting. This tailored approach to calibrating ConvLSTM underscores our commitment
to developing a robust, data-driven traffic simulation framework that accurately reflects
real-world traffic dynamics.

MSELoss =
1
m

m

∑
i=1

(yi − ŷi)
2 (13)

TransMSELoss = MSELoss(x, y) + MSELoss(softmax(x), y) (14)

Table 3. Calibrated parameters in ConvLSTM and ConvGRU models.

Parameter Description Values

Input dimension Dimensions of the input layer (6, 31)
Output dimension Dimensions of the output layer (6, 31)
Historical length Number of past frames (0.1 s) 40
Hidden layer number Number of ConvLSTM layer 1
Neuron in the hidden layer Number of neurons in the hidden layer 80
Dropout rate The rate of neurons applied at dropout 0.2
Training epochs Number of a training update 5000
Batch size Number of training samples sent into the network each time 16
Loss function The function to calculate loss TransMSELoss
Activation function The function to map input and output Sigmoid
Optimizer The function to find the optimal solution Adam

3.2.4. Evaluation Indicators

To assess and compare the prediction accuracy of different frameworks, we utilize the
evaluation metrics in Equations (15) and (16). The “Position accuracy rate” characterizes
the accuracy of vehicle position predictions within the road section map. The specific calcu-
lation method entails determining the number of positive instances where the predicted
position coincides with the actual position, divided by the total number of real vehicles.
In essence, the prediction is deemed accurate only when the predicted vehicle cell aligns
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perfectly with the real vehicle cell. The error patterns are illustrated in Figure 2, where the
black vehicle represents the ground truth, and the red vehicle signifies the prediction result.

pacc =
Np

Nall
(15)

lcacc =
Nlc
Nall

(16)

where pacc stands for the accuracy rate of position; lcacc represents the metric to evaluate
the models’ ability to replicate LC behaviors; and Np, Nlc, and Nall denote the number of
right predictions, right lane changing predictions, and total case, respectively.

Figure 2. Diagram of error examples.

4. Result Analysis

To examine the prediction accuracy of various frameworks, we conducted experi-
ments for both single-step prediction and continuous prediction. Additionally, this section
includes schematic diagrams illustrating the predictions made by different frameworks.

4.1. Performance Analysis

To evaluate the performance of the framework, ConvLSTM and ConvGRU are em-
ployed as the data-driven models within the framework, with the parameters specified
in Table 3. Simultaneously, the calibrated IDM model and the trained LSTM model are
applied to the same dataset to compare one-step prediction performance. The results are
presented in Table 4.

Table 4. Model performance comparison.

Category Model Position Accuracy Rate Lane Change Accuracy Rate

Model-driven traffic simulation IDM + MOBIL 79.30% 86.36%

Trajectory prediction LSTM
Training Set 72.93% 78.54%

Test Set 58.26% 77.16%

Data-driven traffic simulation framework

ConvLSTM
Training Set 97.22% 99.33%

Test Set 95.76% 99.23%

ConvGRU
Training Set 96.97% 98.00%

Test Set 93.94% 97.69%

As indicated in Table 4, in the model-driven traffic simulation, IDM and MOBIL
achieve a position accuracy rate of 79.30% after parameter calibration. This is attributed
to the inherent intertwining of the CF and LC processes of vehicles. Furthermore, as it is
not a neural network model, there is no distinction between the training and test sets. The
model-driven traffic simulation utilizes IDM to capture longitudinal behavior and employs
the MOBIL model for lateral behavior. The allocation of tasks between IDM and MOBIL
during real vehicle driving introduces variations in the prediction accuracy rate.

The position accuracy rate of the trajectory prediction model mirrors that of the model-
driven traffic simulation in the training set but drops to less than 60% in the test set. This is
due to LSTM’s distinctive recurrent neural network structure, which excels at integrating
historical driving information, making it well-suited for trajectory prediction. However,
the training and test set errors in the model training results are very similar, indicating
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that the LSTM we trained has not been overfitted. One significant reason for the notable
difference in LSTM’s performance between the training and test sets is that the LSTM
model for trajectory prediction predominantly focuses on individual vehicle trajectories
and overlooks the surrounding vehicle information. Additionally, the model complexity of
LSTM may not be sufficient due to its inability to fully capture the intricate dynamics and
dependencies inherent in the trajectory prediction task.

Additionally, the position accuracy rates of the simulation framework utilizing Con-
vLSTM and ConvGRU surpass 95% on the training set, and on the test set, they remain
above 90%, regardless of which deep neural networks are employed. These results indicate
the framework’s outstanding prediction performance and remarkable fitting ability. The
two deep neural networks within the framework can achieve high prediction accuracy
in both the training and test sets because their training input and output consist of 3D
tensor data comprising time-series road sections. This implies that the model can capture
not only historical data characteristics of vehicle driving behavior, but also surrounding
information characteristics. Moreover, the framework does not predict the driving behavior
of an individual vehicle but rather an entire road section, which may positively impact
prediction accuracy.

4.2. Prediction Display

Figure 3 shows the real road section and the road sections predicted by IDM, Con-
vLSTM, and ConvGRU. It can be seen that there is still a significant difference between
the case predicted by IDM and the real one. As for the cases predicted by ConvLSTM and
ConvGRU, they are basically the same as the real one.

Figure 3. Prediction figures of road section with different models.

4.3. Continuous Prediction Comparison

To assess the framework’s performance in traffic simulation, continuous prediction
capability was also tested on the test set, as depicted in Figure 4. The three curves, compris-
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ing continuous prediction results for ConvLSTM, ConvGRU, and IDM, clearly show that
ConvLSTM and ConvGRU significantly outperform the IDM model in terms of prediction
accuracy. It deserves recognition that continuous prediction using LSTM was omitted due
to its relatively poor prediction performance. Additionally, ConvLSTM outperforms Con-
vGRU in the initial step but exhibits slightly lower performance in subsequent continuous
predictions. Detailed results can be found in Table 5.

Figure 4. Continuous prediction accuracy rate line chart.

Table 5. Continuous prediction comparison table.

Model Step = 1 Step = 2 Step = 3 Step = 4 Step = 5

IDM 87.27% 80.72% 81.21% 81.10% 82.82%
ConvLSTM 95.76% 89.76% 87.88% 90.24% 86.50%
ConvGRU 93.94% 91.57% 89.70% 92.68% 89.57%

4.4. Scalability Analysis

This section primarily focuses on comparing the scalability of large-scale simulation
among the three aforementioned frameworks. In contrast to the trajectory prediction frame-
work, where the input and output involve vehicle information, the simulation framework
deals with road section data. This implies that in large-scale traffic flow simulations, the
time complexity of the simulation framework is solely related to the overall road section
size, and not dependent on the number of vehicles [45]. In other words, the time complex-
ity for tracking vehicle trajectories is O(n), while the time complexity for the simulation
framework is a constant O(1).

To assess the scalability of various frameworks, we conducted two sets of comparative
experiments focused on computing time. One set involved controlling the simulation scale
while varying the density, while the other set involved controlling the density while altering
the simulation scale. The framework’s simulation inputs encompass scenes of varying
sizes, while the inputs for the model-driven and trajectory prediction frameworks pertain
to different vehicle quantities. The simulation results are presented in Tables 6 and 7. To
ensure the experiment’s reliability, the scene size in each column of Table 6 corresponds
precisely to the number of vehicles. It is significant to mention that the ’Large’ in the ’Scale’
column pertains to the simulation scale, a topic that is subsequently explored in greater
detail in Table 7. The platform used for the simulation experiments is an Intel I5-10400F
with 16 GB 2666 Mhz RAM and an NVIDIA GeForce GTX 1660 SUPER 6 GB.
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Table 6. Different densities with the same simulation scale.

Scale Density (pcu /(km × Lane )) Simulation Scale (Lane × Length)
Time Cost (s)

ConvLSTM ConvGRU IDM LSTM

Large

20 6 × 1550 1.6072 1.9766 0.4928 0.6621

40 6 × 1550 1.6072 1.9766 0.9814 1.1221

60 6 × 1550 1.6072 1.9766 1.4398 1.55544

Table 7. Different simulation scales with same density at 40 (pcu/(km × lane)).

Scale Simulation Scale (Lane × Length)
Time Cost (s)

ConvLSTM ConvGRU IDM LSTM

Normal-scale

Small 6 × 155 1.1957 1.3621 0.1004 0.2718

Middle 6 × 775 1.3595 1.5938 0.4928 0.6621

Large 6 × 1550 1.6072 1.9766 0.9814 1.1221

Large-scale
Extra-Large 6 × 15500 3.0077 8.6938 10.0700 9.9009

Ultra-Large 6 × 155000 45.4013 82.1890 145.9066 123.8712

From Tables 6 and 7, we can find the following phenomena:

1. The time cost of the data-driven framework remains unchanged with increasing den-
sity, in stark contrast to the other two frameworks, which show substantial variations.
It should be emphasized that the time cost of the other two frameworks increases
nearly linearly with density. Furthermore, the computational efficiency of the frame-
work does not display a significant advantage over the other two frameworks when
the scale is small or the density is low. However, in scenarios involving larger scale or
higher density, its superiority becomes markedly evident.

2. Regarding the results, as the size increases (from normal-scale to large), a noticeable
phenomenon emerges: the time cost of the data-driven framework significantly rises.
This can be attributed to the increase in DNN hidden layer parameters with the
expanding size, leading to decreased computational efficiency. In contrast, for the
other two frameworks, the results are similar, with computation time showing a
near-linear relationship with size.

3. Furthermore, in the case of large-scale scenes (extra-large and ultra-large), the com-
putational efficiency of the data-driven framework surpasses that of the other two
frameworks significantly. Notably, the linear growth observed in the normal-scale
case is disrupted, mainly due to the substantial increase in computational load for
the other two frameworks. However, the data-driven framework remains relatively
insensitive to large-scale scenarios, and thus does not yield a significant improvement
in computation time (It merits attention that for simulating the extra-large scene, we
used SUMO software, and each simulation step took 7.149835 s).

In summary, it can be concluded that the data-driven framework exhibits distinct
advantages for large-scale simulation when compared to the other two frameworks. Fur-
thermore, the data-driven framework represents a potential enabler that has the potential
to overcome existing limitations in the realm of large-scale simulation.

5. Transferability Analysis

To evaluate the generalizability and transferability of the data-driven framework, we
utilized the framework model trained on the I-80 road segment within the NGSIM dataset.
Subsequently, we applied this model to another road segment dataset, specifically US-101,
and proceeded to compare the prediction results with those obtained using the IDM model.

As shown in Tables 8 and 9, regardless of whether ConvLSTM or ConvGRU is em-
ployed as the deep neural network within the data-driven framework, the position predic-
tion accuracy achieved on the US-101 dataset surpasses that of the IDM model. Although it
may not reach the same prediction accuracy levels as observed on the I-80 dataset, it still
demonstrates strong performance on the test set. Additionally, Figure 5 illustrates that
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both ConvLSTM and ConvGRU exhibit superior continuous prediction capabilities on the
US-101 dataset compared to the IDM model.

Figure 5. Continuous transfer prediction accuracy rate line chart.

Table 8. Model transfer performance comparison.

Category Model Position Accuracy Rate

Model-driven traffic simulation IDM+MOBIL 81.88%

Data-driven traffic simulation frame
ConvLSTM 93.48%

ConvGRU 92.03%

Table 9. Continuous transfer prediction comparison table.

Model Step = 1 Step = 2 Step = 3 Step = 4 Step = 5

IDM 81.88% 77.21% 76.47% 77.78% 79.10%
ConvLSTM 93.48% 93.38% 89.71% 87.41% 90.30%
ConvGRU 92.03% 91.91% 87.50% 83.70% 87.31%

6. Conclusions and Future Work

Traditional traffic simulation has predominantly depended on complex analytical
models to mimic traffic behaviors accurately. This study, however, pivots towards a novel
data-driven traffic simulation framework anchored in deep neural networks. By capital-
izing on road section data, this framework adeptly models and forecasts the dynamics
of road sections, facilitating a more nuanced traffic simulation. Central to our methodol-
ogy are ConvLSTM and ConvGRU, serving as the primary models within this innovative
framework. Their efficacy was tested using data from the I-80 road section, with their per-
formance measured against traditional models such as IDM and LSTM trajectory prediction
models. Additionally, the framework’s adaptability was evaluated through its application
to the US-101 road section data. The salient findings from this study include the following:

1. Demonstrating superior predictive accuracy, our data-driven framework significantly
outperforms traditional models, achieving 97.22% accuracy in training and 95.76%
in testing, a stark contrast to the 79.30% by model-driven frameworks. Despite its
robust training set performance, the trajectory prediction aspect showed tendencies of
overfitting, affecting test set accuracy.
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2. In evaluating continuous prediction capabilities, our framework consistently out-
stripped traditional models, even as accuracy naturally declined over five prediction
steps. Notably, ConvLSTM showed particular prowess in single-step forecasts over
ConvGRU, although it slightly lagged in multi-step predictions.

3. An innovative loss function modification enhanced prediction accuracy by integrat-
ing tensor loss computation post-softmax operation into MSELoss, thus quickening
network convergence and bolstering accuracy without succumbing to overfitting.

4. Scalability analyses underscored the framework’s exceptional performance in large-scale
simulations, despite not showing marked advantages in smaller setups. ConvLSTM, in
particular, emerged as the superior choice for extensive simulation tasks over ConvGRU.

5. Transferability tests affirmed the framework’s utility across different datasets, with a
pre-trained model mirroring the original dataset’s accuracy at 93.48%.

Within the burgeoning field of automated and connected automated vehicles, the
applications for this innovative data-driven framework are vast, offering a new horizon for
vehicle communication and operational efficiency. At its foundation, the framework is pow-
ered by deep neural networks, highlighting the critical need for high-quality data to fully
harness the framework’s predictive capabilities. It is imperative to recognize, however, that
the reliance on the NGSIM dataset confines the scope of our study primarily to basic high-
way traffic modeling, rather than extending to more intricate traffic scenarios like signalized
intersections or highway merge areas. For a truly holistic approach to traffic simulation
that encompasses a variety of scenarios, further model development is indispensable. It is
crucial to highlight that while the proposed framework exhibits significant advantages over
traditional model-driven frameworks in terms of computational complexity and efficiency,
it still encounters challenges such as memory overflow when dealing with ultra-large-scale
simulations. In light of this, it becomes imperative to develop corresponding memory
management optimization mechanisms based on this research to further enhance computa-
tional efficiency. This research represents a pioneering step towards a novel methodology
in traffic flow simulation, suggesting substantial opportunities for future advancements.
Integrating self-learning mechanisms into the model holds the promise of transforming
it into a highly dynamic and adaptive tool for traffic management solutions, enabling
the system to autonomously refine and optimize its predictive accuracy over time. Such
advancements could significantly elevate the framework’s ability to anticipate and respond
to complex traffic scenarios, thereby enhancing safety and efficiency on the road.

Author Contributions: Conceptualization, T.R. and R.H.; methodology, T.R.; software, T.R.; val-
idation, T.R. and R.H.; formal analysis, R.H.; investigation, R.H.; resources, R.H.; data curation,
T.R.; writing—original draft preparation, T.R.; writing—review and editing, T.R.; visualization, R.H.;
supervision, R.H.; project administration, R.H.; funding acquisition, R.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was sponsored by the National Key R&D Program of China 2021YFA1000300,
2021YFA1000303, National Natural Science Foundation of China (NSFC) under Grant 52302490,
Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_0266), and
State Scholarship Fund of China (File No. 202006565013, 202206090075).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data utilized in this study originates from the NGSIM dataset,
an open-access data collection accessible at https://datahub.transportation.gov/stories/s/Next-
Generation-Simulation-NGSIM-Open-Data/i5zb-xe34.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

https://datahub.transportation.gov/stories/s/Next-Generation-Simulation-NGSIM-Open-Data/i5zb-xe34
https://datahub.transportation.gov/stories/s/Next-Generation-Simulation-NGSIM-Open-Data/i5zb-xe34


Sustainability 2024, 16, 2666 15 of 16

References
1. Ruan, T.; Wang, H.; Zhou, L.; Zhang, Y.; Dong, C.; Zuo, Z. Impacts of information flow topology on traffic dynamics of CAV-MV

heterogeneous flow. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20820–20835. [CrossRef]
2. Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
3. Darbha, S.; Rajagopal, K. Intelligent cruise control systems and traffic flow stability. Transp. Res. Part C Emerg. Technol. 1999,

7, 329–352. [CrossRef]
4. Afrin, T.; Yodo, N. A probabilistic estimation of traffic congestion using Bayesian network. Measurement 2021, 174, 109051. [CrossRef]
5. Ruan, T.; Wang, H.; Jiang, R.; Li, X.; Xie, N.; Xie, X.; Hao, R.; Dong, C. A General Hierarchical Control System to Model ACC

Systems: An Empirical Study. IEEE Trans. Intell. Transp. Syst. 2023, 25, 462–477. [CrossRef]
6. Han, G.; Han, Y.; Wang, H.; Ruan, T.; Li, C. Coordinated control of urban expressway integrating adjacent signalized intersections

using adversarial network based reinforcement learning method. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1857–1871. [CrossRef]
7. Hishikawa, T.; Iryo-Asano, M. Safety evaluation of personal mobility vehicles and pedestrians under mixed traffic flow using

traffic simulation. Asian Transp. Stud. 2022, 8, 100049. [CrossRef]
8. Lucas, D.E.; Mirchandani, P.B.; Larry Head, K. Remote simulation to evaluate real-time traffic control strategies. Transp. Res. Rec.

2000, 1727, 95–100. [CrossRef]
9. Krajzewicz, D. Traffic simulation with SUMO—Simulation of urban mobility. In Fundamentals of Traffic Simulation; Springer:

New York, NY, USA, 2010; pp. 269–293.
10. Tarko, A.P. Estimating the expected number of crashes with traffic conflicts and the Lomax Distribution—A theoretical and

numerical exploration. Accid. Anal. Prev. 2018, 113, 63–73. [CrossRef] [PubMed]
11. Han, G.; Liu, X.; Wang, H.; Dong, C.; Han, Y. An Attention Reinforcement Learning–Based Strategy for Large-Scale Adaptive

Traffic Signal Control System. J. Transp. Eng. Part A Syst. 2024, 150, 04024001. [CrossRef]
12. Ansariyar, A.; Taherpour, A. Investigating the accuracy rate of vehicle-vehicle conflicts by LIDAR technology and microsimulation

in VISSIM and AIMSUN. Adv. Transp. Stud. 2023, 61, 37–52.
13. Xu, D.; Chen, Y.; Ivanovic, B.; Pavone, M. BITS: Bi-level imitation for traffic simulation. In Proceedings of the 2023 IEEE

International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 July 2023; pp. 2929–2936.
14. Purnawan; Alfathira, R. Development of Traffic Delay and Queue Metamodel on Landslide Zone Based on Simulation Using

VISSIM. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1173, p. 012050.
15. Ruan, T.; Zhou, L.; Wang, H. Stability of heterogeneous traffic considering impacts of platoon management with multiple time

delays. Phys. A Stat. Mech. Its Appl. 2021, 583, 126294. [CrossRef]
16. Park, B.; Schneeberger, J. Microscopic simulation model calibration and validation: Case study of VISSIM simulation model for a

coordinated actuated signal system. Transp. Res. Rec. 2003, 1856, 185–192. [CrossRef]
17. Wágner, T.; Ormándi, T.; Tettamanti, T.; Varga, I. SPaT/MAP V2X communication between traffic light and vehicles and a

realization with digital twin. Comput. Electr. Eng. 2023, 106, 108560. [CrossRef]
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