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Abstract: Electric vehicle charging stations (EVCSs) and renewable energy sources (RESs) have been
widely integrated into distribution systems. Electric vehicles (EVs) offer advantages for distribution
systems, such as increasing reliability and efficiency, reducing pollutant emissions, and decreasing
dependence on non-endogenous resources. In addition, vehicle-to-grid (V2G) technology has made
EVs a potential form of portable energy storage, alleviating the random fluctuation of renewable
energy power. This paper simulates the optimal design of a photovoltaic/wind/battery hybrid
energy system as a power system combined with an electric vehicle charging station (EVCS) using
V2G technology in a grid-connected system. The rule-based energy management strategy (RB-
EMS) is used to control and observe the proposed system power flow. A multi-objective improved
arithmetic optimization algorithm (MOIAOA) concept is proposed to analyze the optimal sizing of
the proposed system components by calculating the optimal values of the three conflicting objectives:
grid contribution factor (GCF), levelled cost of electricity (LCOE), and energy sold to the grid (ESOLD).
This research uses a collection of meteorological data such as solar radiation, temperature, and wind
speed captured every ten minutes for one year for a government building in Al-Najaf Governorate,
Iraq. The results indicated that the optimal configuration of the proposed system using the MOIAOA
method consists of eight photovoltaic modules, two wind turbines, and thirty-three storage batteries,
while the fitness value is equal to 0.1522, the LCOE is equal to 2.66 × 10−2 USD/kWh, the GCF is
equal to 7.34 × 10−5 kWh, and the ESOLD is equal to 0.8409 kWh. The integration of RESs with an
EV-based grid-connected system is considered the best choice for real applications, owing to their
remarkable performance and techno-economic development.

Keywords: renewable energy sources; grid-connected; V2G; multi-objective optimization; arithmetic
optimization algorithm

1. Introduction

The energy crisis resulting from the rapid depletion of fossil resources has raised public
awareness of the need for environmental conservation. Thanks to the united efforts of
scientists, significant progress has been accomplished during the past ten years. Distributed
renewable energy sources (RESs) are integrated into the electrical grid to meet the energy
demand [1], and these distributed generation (DG) systems have made considerable use
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of RESs and electric vehicle charging stations (EVCSs) [2]. The idea of multi-objective
techno-economic optimization was put forward in [3] as a way to plan when to charge
and discharge electric vehicles. For the first time, frequency regulation was provided
while simultaneously modeling and optimizing end-user energy costs, battery degradation,
grid interactions, and CO2 emissions in the context of home microgrids. However, to
increase reliability, optimize renewable energy sources, and lower overall costs, appropriate
energy management and operation are necessary, along with an appropriate optimization
technique based on techno-economic viewpoints.

In [4], the authors suggested a versatile multi-objective optimization method that
considers the technological, financial, and environmental aspects while assessing and
implementing V2G and grid-to-vehicle technologies. In addition, plug-in electric vehicle
(PEV) users’ driving habits, charging and discharging habits, and battery life cycles are
considered. The firefly algorithm is applied inside a stochastic optimization framework
to run simulations on a modified IEEE 69-bus radial distribution test system. The goal
is to minimize two objective functions: CO2 emissions and operational costs. The frame-
work considers renewable generation, load usage, and the charging/discharging time of
PEVs as ambiguous variables. The work in [5] offered hybrid renewable energy systems
combined with mobile hydrogen vehicle storage and stationary batteries for a zero-energy
community comprising office, residential, and academic buildings based on real-world
energy consumption data and simulations. A time-of-use grid penalty cost model was
presented to achieve electricity grid economy and flexibility, which evaluates grid export
and import during on-peak and off-peak times. In the coupled platform of TRNSYS and
jEplus + EA, multi-objective optimizations are carried out to size zero-energy buildings
and the community while considering the self-consumption of renewable energy, on-site
load coverage, and grid penalty cost. Methods for incorporating hydrogen energy technol-
ogy into hybrid energy systems, focusing on hydrogen fuel cell power generation, were
examined in [6]. Energy storage integration, sizing techniques, energy flow control, and
the software implementation and optimization methods that go along with them were
covered. Published case studies seldom address issues beyond technical ones. The authors
talked about this fact in the context of accessible software packages. To meet the design
objectives for the energy system, a four-dimensional multi-objective metaheuristic function
was suggested, with weights assigned to environmental, economic, socio-political, and
technical aspects.

Researchers in [7] looked into how responsive loads and the stochastic behavior of EVs
(including their departure/arrival times and charge levels) could be used as demand-side
management tools to improve the efficiency of a grid-connected microgrid that combines
power, heating, and cooling systems. They suggested a multi-objective model considering
responsive loads and electric cars for feeder reconfiguration, capacitor switching, and
economical dispatching. The suggested model considers operating expenses, greenhouse
gas emissions, the voltage stability index, and active power losses as objective functions.
In addition to thermal and electrical energy storage devices, the microgrid based on a
combined cooling, heating, and power system was outfitted with non-dispatchable dis-
tributed generators (photovoltaic (PV) cells and wind turbines (WTs)). Electric cars, thermal
and electrical needs, and the stochastic behavior of non-dispatchable generators were con-
sidered for appropriate modeling. The max-geometric mean operator and fuzzy scaling
were used in conjunction with a multi-objective hybrid big bang–big crunch algorithm to
obtain the best answers. In [8], the multi-objective sand cat swarm optimization (MSCSO)
algorithm was utilized to find a solution for the suggested model. Based on this, the
daily stochastic economic scheduling of an electric thermal hydrogen integrated energy
system (ETH-IES) was conducted to reduce operational expenses. The main concern of the
authors of [9] was the economic and environmental aspects of microgrid (MG) functioning
under different conditions. An analysis is conducted on an AC/DC hybrid MG with
solar, diesel generator, lithium battery, and electric car charging stations. A constrained
multi-objective optimization problem (CMOP) was constructed considering the operating
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restrictions of MG. The fuel cost, depreciation expenditure, and emission cost of distributed
generators are the optimization goals of the proposed CMOP. A method for converting a
multi-objective issue into a single-objective issue was introduced: the fuzzy comprehen-
sive evaluation. Then, the solutions of distributed generator outputs are solved using the
comprehensive learning particle swarm optimization (CLPSO). The optimization outcomes
in grid-connected and islanded modes demonstrate the efficacy of the suggested models,
techniques, and algorithm.

A multi-objective optimization approach utilizing the Normalized Normal Constraint
(NNC) was utilized to evaluate two competing objectives: minimizing the operating costs
of the Active Distribution System (ADS) and minimizing the power losses in the ADS [10].
In the interim, variable wind patterns, solar systems, and electric car arrival and depar-
ture timings are considered. The suggested model is a multi-objective problem with two
stochastic phases run on a modified IEEE 18-bus test system in a General Algebraic Model-
ing System (GAMS) environment. In [11], to optimize the environmental and economic
performance of an intelligent parking lot (IPL) with electric vehicles (EVs) while utilizing
time-of-use (TOU) rates for demand response programs (DRPs), a bi-objective optimization
model has been presented. ε-constraint and fuzzy decision-making strategies are applied to
tackle this kind of problem, and the outcomes, which show the efficacy and efficiency of the
methods used, are displayed for comparison. The IPL linked to the upstream net, renew-
able and non-renewable resources, and a hydrogen storage system make up the examined
example model in that research. The bi-objective issue in question has been modelled using
a MIP model, which is then simulated using GAMS. To facilitate the electrification of green
transport, the authors in [12] suggested a multi-objective planning framework for electric
vehicle (EV) charging stations in developing power networks. The effects of EV integration
on financial and environmental criteria are examined in four examples. The suggested
model was designed to integrate the planning models of transmission lines, energy storage
systems (ESSs), renewable energy systems, and thyristor-controlled series compensators
into the EV-based planning problem to make the construction of EVCSs easier. The second
objective, on the other hand, was focused on decreasing the carbon dioxide emissions
from fossil fuel-based power units to help the environment. The first objective function
seeks to maximize the penetration of EVs by increasing the networks’ capacity to provide
charging stations continuously throughout the day. Reducing the initial outlay and ongoing
expenses for the installed equipment is the third goal, which aims to satisfy the financial
needs. The multi-objective variant of the Gazelle optimization algorithm (MGOA) was
used to find a solution for the suggested model, which was expressed as a multi-objective
optimization problem. The suggested issue and a set of four benchmark test functions were
solved to gauge the MGOA’s effectiveness.

A multi-objective optimization model was developed in [13] to reduce the gearbox
losses, operational expenses, and carbon emissions of many microgrid systems. First,
a brand-new technique based on a back propagation neural network enhanced by long
short-term memory deep learning was put forth to anticipate the charging loads of EVs. A
double-layer solution algorithm was proposed based on the forecast data. At the multiple-
microgrid layer, it comprises an adaptive multi-objective evolutionary algorithm based
on decomposition and differential evolution. At the single-microgrid layer, it consists
of a modified consistency algorithm for rapid economic scheduling. In the end, a case
study consisting of four interconnected IEEE microgrids was used to simulate the model
system, and the suggested algorithm’s performance was contrasted with that of traditional
multi-objective evolutionary algorithms based on decomposition. A methodology for
optimization bound by dependability was introduced in [14] to determine the quantity and
dimensions of microgrid (MG) system components. To accomplish this, issue reliability
indicators for lost load anticipation and anticipated energy not delivered are introduced.
The Monte Carlo sampling technique was used to represent the uncertainties related to
load forecasting, modeling of all MG units, and random outage of all units. The suggested
paper’s major objective was to determine the ideal MG size that would minimize operating,
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emission, and MG investment costs. Additionally, under the usage of time-of-use (TOU)
rates of demand response programs (DRPs), a bi-objective optimization model has been
presented for the best possible environmental performance and economic operation of
MGs, including EVs. Fuzzy decision-making techniques and the ε-constraint are applied
to alleviate this issue. Long-term planning was tackled as an optimization issue using the
Tabu search method.

In [15], the authors compared the output of vehicle-to-home (V2H) and stationary
battery (SB). They devised a multi-objective optimization approach for the household of EV
owners utilizing energy expenses, comprising investment and CO2 emissions, as indices.
As a case study, the authors used an imagined average Japanese detached house to assess
the environmental and economic effects of solar electricity self-consumption utilizing SB
or V2H. The findings indicated that, by 2030, non-commuting EV owners should consider
investing in V2H if the cost of a bidirectional charger is one-third that of an affordable SB.
In [16], for regional integrated energy systems (RIESs), a multi-objective optimization that
takes electric cars (EVs) and renewable energy uncertainty into account was suggested.
The RIES can balance the system’s environmental friendliness and economy. First, an
orderly model for charging and discharging EVs with the following driving rules is built.
It considers the impact of elements like disorderly access and EV charging/discharging
on system functioning. Then, to address the uncertainty of renewable energy generation,
a robust optimization model with a polyhedral uncertainty set was built. Additionally,
a multi-objective function is constructed to minimize both operation costs and carbon
emissions. A carbon emission penalty component is implemented to reduce the multi-
objective solution to a single-objective solution. Ultimately, an actual RISE performs
the validation.

The authors of [17] examined how a commercial PV charging station with ten electric
car chargers should be commissioned. The charging station may purchase and sell power
to the grid as it is linked to the main distribution network. A multi-objective optimization
technique has been devised that minimizes the expenses associated with power losses
in the distribution grid and the operational costs of the charging station. The owner of
the charging station and the distribution system operator have their interests taken into
account in the suggested solution. The minimal charge when the car exits the charging
station, user comfort restrictions, and grid technical limits were also considered. A single
day with a fifteen-minute resolution is the analysis period. In [18], the authors employed
multi-objective optimization to find the best combination of energy and transportation
technologies while maximizing the positive effects on the economy and environment.

In contrast to continuous multi-objective linear programming with average cost in-
tervals, the authors showed the extra benefit of using multi-objective mixed integer lin-
ear programming (MOMILP) while considering economies of scale. The authors solved
MOMILPs precisely using an enhanced version. The effect of policies on the Pareto frontier
is evaluated to distinguish between optimum solutions with and without subsidies. The
writers distinguished between the need for investments (bounded rationality) and mini-
mizing economic life cycle costs (full rationality). An electrical and transportation-related
Belgian corporation serves as an example of the methodology. Transportation technologies
include internal combustion engine cars, grid-powered battery electric vehicles (BEVs), and
solar-powered BEVs; electricity technologies include solar photovoltaics and the grid. Grid-
powered BEVs have a limited ability to reduce greenhouse gas emissions, but they are less
expensive to use than solar panels. It was discovered that current policy initiatives appro-
priately target rational investors who take life cycle costs into account, but private (possibly
constrained rational) investors frequently concentrate primarily on needed investments.

To account for uncertainties arising from wind speed, solar irradiance, the conventional
load, and PEV load demand, the authors in [19] proposed a multi-objective optimization
methodology for the siting and sizing of solar distributed generations (SDGs), wind dis-
tributed generations (WDGs), and capacitor banks (CBs) inside the system of power. The
primary goals are the overall cost, greenhouse gas emissions, and the voltage stability index.
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The associated uncertainties are handled using an unconventional point estimate method
(PEM), while a chance-constrained programming technique handles the smooth constraints.
Using the greatest entropy approach, the associated probability distribution functions
of the output variables are computed. Moreover, Monte Carlo simulation was used for
robustness analysis (MCS). The suggested approach was implemented on a standard radial
distribution network. The fuzzy satisfactory technique chooses the Pareto front’s optimal
trade-off solution.

An interval optimization strategy was suggested by [20] to represent the unpredictabil-
ity of upstream grid prices. By changing the uncertainty-based profit function to a deter-
ministic multi-objective problem and treating average and deviation profits as competing
objective functions—average profit should reach the maximum, while deviation profit
should reach the minimum—the authors presented a novel solution to the problem of
electric vehicle aggregator uncertainty. The two-dimensional problem was also solved
using the ε-constraint approach to obtain optimum Pareto solutions. Finally, the fuzzy
satisfactory strategy was used to select a trade-off solution among Pareto solutions as
a target to show the examined technique’s capabilities; it was also contrasted with the
deterministic strategy and the proposed interval optimization approach.

Reference [21] describes the design of an islanded hybrid system (IHS) that includes
a diesel generator, solar system, wind turbine (WT), and energy storage systems (ESSs)
that are both mobile (electric cars) and stationary (battery). The suggested approach
uses two distinct goal functions in a multi-objective optimization to reduce the overall
cost of building, maintaining, and operating the sources and ESSs within the IHS and
the system’s emission level. A single-objective optimization problem is created for the
suggested design using the Pareto optimization methodology based on the ε-constraint
method. In [22], the authors used a multi-objective framework to consider two objectives.
A multi-objective mixed binary linear programming was provided to minimize the overall
cost of energy consumption and peak load in communal residential structures. This
programming considers the scheduling of electric car charging and discharging and battery
energy storage systems. Then, the Pareto front solutions of the provided multi-objective
model are obtained using the Pascoletti–Serafini scalarization technique. In the end, the
suggested model’s performance was examined and documented using model simulations
in two distinct scenarios.

Plug-in Electric Vehicles (PEVs) are used as storage units in a multi-objective power
dispatching issue that the authors in [23] defined. The authors minimized three objectives,
analyzed three criteria, and framed the energy storage planning as a Mixed-Integer Linear
Programming (MILP) problem while adhering to PEV constraints. Two cost-to-variability
measures based on the Sharpe Ratio are presented to analyze the energy storage schedules'
volatility. Energy storage planning was optimized by adding these extra parameters to
minimize the difference between two Sharpe Ratio indices, maximum peak load, PEV
battery utilization, total Microgrid (MG) expenses, and maximum peak load. Pareto
fronts are examined and discussed about various scenarios for energy storage. The most
significant outcome of the study would be that schedules that lower the system's total
cost could potentially be less dependable since they increase the maximum peak load and
its unpredictability under different circumstances. In [24], a multi-objective framework
was suggested for the day-to-day management of a smart grid (SG) with a high level of
sensitive load penetration. To provide highly dependable power for sensitive loads, the
Virtual Power Player (VPP) oversees the day-ahead scheduling of energy resources in the
smart grid, considering the extensive usage of Distributed Generation (DG) and V2G. The
collection of non-dominated solutions is identified by applying a Pareto front technique.
To account for the dependability needs of sensitive and vulnerable loads, the mathematical
formulation incorporates the maximization of the minimum available reserve in addition
to the cost reduction.

By calculating the available capacity of EV aggregators, a preliminary investigation of
the multi-objective optimum dispatch of the smart grid was suggested in [25]. A statistical
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model was used to determine the maximum possible capacity of EVs by describing their
behavior. Subsequently, the multi-objective optimum dispatch was defined together with
its constraints. The high-dimensional multi-objective enhancement issue was solved using
the multi-objective genetic particle swarm optimizer to find the Pareto front. In [26], a
mixed-integer linear programming (MILP) framework is created to measure flexibility in
a sizable business park with limited access to historical time series data. The suggested
mathematical model considers renewable energy sources, including solar energy, electric
vehicle (EV) charging stations, heat pumps, and centralized energy storage systems. The
quantification of flexibility was formulated as a bi-objective optimization problem, which
was solved by utilizing the epsilon-constraint approach to approximate the set of Pareto-
efficient solutions. The authors’ goal [27] was to optimize power loss, voltage deviation, and
voltage imbalance factor—three significant objective functions—by concurrently allocating
EVCSs and smart photovoltaic inverters in distribution networks. A unique hybrid fuzzy
Pareto dominance idea with a differential evolution technique was suggested to address
such a multi-objective optimization issue. A scenario-based approach was also employed
to incorporate the uncertainties of the model that includes loads, PV generation, and EVCS
demand. Next, under various case scenarios, the efficacy of the stochastic multi-objective
strategy was investigated and confirmed on an imbalanced 37-bus network.

In [28], a residential microgrid with plug-in hybrid electric cars, PV units, battery
energy storage systems, combined cooling, heating and power, and other components
was modeled to determine the best scheduling state for each unit while accounting for
the uncertainty of distributed energy resources. This was accomplished by modeling the
uncertainties of solar irradiance, electrical and heat demand, and electrical market pricing
using a scenario-based approach that uses the Normal, Weibull, and Beta probability
distribution functions, respectively. Scenario reduction strategies are employed to choose
representative situations generated using the scenario tree. The suggested issue was a
mixed-integer nonlinear programming problem to minimize emissions and operation costs.
The optimal solution on the Pareto front set is identified using a fuzzy approach, and
the augmented ε-constraint method was utilized to solve this multi-objective problem.
In [29], considering the time-of-use rates of a demand response program, a multi-objective
optimization approach was proposed for the cost-effective operation and environmental
performance of intelligent parking lots (IPLs). It was advised to address this problem using
the multi-objective grasshopper optimization technique, since such a model is related to
several practical bounds. The results show how well the compared methods using fuzzy
decision-making strategies worked. To improve this approach and advance searching
operators, chaos theory was utilized. Furthermore, the suggested multi-objective approach
is a model developed utilizing non-dominated sorting theory, variable detection, fuzzy
theory, and strategy selection-based memory to choose the best Pareto among a range of
reliable options for handling the abovementioned difficulties.

Optimal nature-inspired metaheuristics algorithms tend to experience premature
convergence and, in general, swiftly obtain both the local and almost global optimal
states. The No Free Lunch (NFL) theorem [30] for finding the best algorithm to tackle all
optimization problems states that not all algorithms are suited to address all problems. This
is because no method is optimal for solving all optimization problems. On the other hand,
each of the previously discussed approaches has its unique way of delivering the optimal
solution in terms of performance when it comes to resolving and optimizing power issues.

A metaheuristic approach based on simulation was created [31] to identify the ideal
size of a hybrid renewable energy system for residential buildings. The development
of a dynamic multi-objective particle swarm optimization method was needed to solve
this multi-objective optimization problem. The approach should maximize the buildings’
renewable energy ratio while minimizing the overall net present cost and carbon diox-
ide emissions for any necessary system modifications. The standard of the Pareto front
generated by the proposed technique was assessed using three established performance
indicators. A multi-objective optimization model that considers a multi-energy system
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and minimizes the overall cost and the life cycle emissions of vehicles and buildings was
developed [32]. The model chooses the sorts of vehicle powertrains and the storage and
conversion technologies the community utilizes to produce heat and electricity. The Pareto
solutions that emerge depend on the shift from internal combustion engine cars to bat-
tery electric cars, and to a much lesser extent, plug-in hybrid cars. The heating energy
is decarbonized by switching from gas boilers to heat pumps. In [33], the authors devel-
oped a multi-objective hydro–thermal–wind with EV scheduling (MOHTWES) issue by
combining large-scale electric vehicles (EVs) with wind power generation. Furthermore, a
better multi-objective particle swarm optimization (IMOPSO) approach was suggested to
solve the aforementioned issue under several restrictions. The IMOPSO may provide good
and well-distributed Pareto optimum solutions in objective space by providing a novel
dual-population evolution mechanism and a hierarchical elitism-preserving method based
on crowding entropy.

In [34], the issue of stochastic dynamic pricing and energy management policy for
providers of EV charging services was examined. EV charging service providers face
numerous uncertainties when energy storage systems and renewable energy integration are
present. These include fluctuations in wholesale electricity prices, inherent intermittency in
renewable energy generation, and volatility in charging demand. The goal was to provide
guidelines to charging service providers to manage electricity and set appropriate charging
prices while balancing the competing goals of increasing customer satisfaction, boosting
profitability, and lessening their impact on the power grid despite these uncertainties.
The authors devised a new metric to assess the impact on the power system without
having to solve the full power flow equations. The approach incorporates a safeguard
of profit to insulate service providers from extreme financial losses. Two algorithms are
used to determine the price and electricity procurement policy: the greedy algorithm
(benchmark algorithm) and the stochastic dynamic programming (SDP) algorithm. The
multi-objective optimization’s Pareto front was determined. In [2], the authors suggested a
multi-objective planning approach for allocating EVCSs and RESs in the best possible way.
In particular, voltage variations, energy losses, and EV owners’ discontent are considered
three sub-objectives to be minimized in the proposed RES and EVCS planning framework.

Furthermore, considering the various operating constraints of the grid, RESs, and
EVCSs, active power curtailment of RESs is not an option. The suggested framework
takes into consideration enhanced control systems for linking RES inverters, as well as
grid-to-vehicle (G2V) and V2G schemes, to yield additional benefits. To address this holistic
framework with conflicting sub-roles and find the Pareto-optimal solutions, a two-level
method was proposed.

In this research, the proposed system comprises a PV–Wind–Battery system combined
with EVCS using the vehicle-to-grid (V2G) technique. The thrilling Arithmetic Optimization
Algorithm (AOA) has been improved to overcome its drawbacks, such as being trapped
in a local search (stagnation in local minima), premature convergence, and neither the
addition (A) nor the multiplication (M) operators being obtainable for the exploitation
or exploration phases. In addition, in the AOA, the rudimentary mathematical models
obtained in both the exploration and exploitation phases (There can never be a perfect
balance between exploration and exploitation). Furthermore, most of the methods in the
previous literature considered only a single objective during the optimization process
for the proposed system (either an economic or technical objective). In this study, a
Multi-Objective Improved Arithmetic Optimization Algorithm (MOIAOA) based on the
Non-Scale multiple-run Pareto Front concept has been proposed to analyze the optimal
sizing design of the proposed system components by calculating the optimal values of the
three conflicting objectives, Grid Contribution Factor (GCF), Levelized Cost of Electricity
(LCOE), and Energy sold to the grid (ESOLD). These three constraint objectives are used
as renewability, economic, and technical criteria. The RB-EMS is used for controlling and
monitoring the power flow of the proposed system. The results are performed to analyze
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the optimal sizing of the proposed system by using an optimal sizing method based on the
MOIAOA Non-Scale multiple-run Pareto Front concept.

The following categories apply to the remaining sections. A description of the pro-
posed system’s modeling components is given in Section 2. The criteria for the renewability,
economic, and technical assessments are given in Section 3. Section 4 outlines the suggested
methodology for sizing the PV/WT/battery system in conjunction with EVCS utilizing a
vehicle-to-grid (V2G) technique in a grid-connected system. In contrast, Section 5 presents
the findings and discussion. Section 6 wraps up the analysis and suggests next steps.

2. Mathematical Modeling of the Grid-Connected PV/WT/Battery System Combined
with EVCS Using Vehicle-to-Grid (V2G) Technique

A mathematical equation is used to model the two different RESs stated earlier, namely
the PV and WT, with additional components. That leads to determining the output power
under different climate data of a government building located in Al-Najaf Governorate
in Iraq.

The PV array, WT, EMS control, storage battery, unidirectional converter, bidirectional
converter, grid, building load, and EVCS are the main components of the proposed system,
as seen in Figure 1. These could differ greatly depending on several factors, including the
availability of meteorological data, renewability–economic–technical parameters, and the
intended power demand. The technical and economical specifications of the PV module
used in the proposed system are given in Table 1.
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Table 1. Economical and technical data of the proposed system components.

Components Parameter Value Unit

Wind Turbine (WT)

Rated Power of Wind Turbine (Pr ) 1 kW
Cut-in speed (Vcin) 3 m/s
Cut-out speed (Vco) 20 m/s

Rated wind speed (Vrat) 11 m/s
Capital cost (per kW) 2300 USD

Replacement cost (per kW) 1500 USD
O & M cost (per kW) [operation + maintenance] 2 USD/vr

Hub height 50 M
Overall efficiency 26 %

Lifetime 20 years
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Table 1. Cont.

Components Parameter Value Unit

Solar (PV)

Rated power (Ps r) 325 W
Derating factor (f loss) 88 %
Capital cost (per kW) 1200 USD

Replacement cost (per kW) 1200 USD
O & M cost (per kW) 4 USD/yr

Lifetime 20 years

Battery

kVAh or kWh capacity 6 kWh
Minimum state of charge (SOCmin) 30 %
Maximum state of charge (SOCmax) 100 %

Round trip efficiency (gbatt) 92 %
Capital cost (per unit battery) 167 USD
Replacement cost (per unit) 67 %

M & O cost (per unit) 1.67 USD/yr
Lifetime 5 years

Nominal battery capacity 41 Ah
Battery capacity 75 Ah

Rectifier (grec) and
inverter (ginv)

Efficiency 97%
Installation and capital cost (per kW) 127 USD/yr

O & M cost (per kW) 1 USD/yr
Lifetime 20 years

General Requirement

Interest rate 6%
Project life (N) 20 years

EVs Capacity in kWh 20 kWh
Utility prices:

Power export price to utility (selling) 0.015 USD/kWh
Power import price from utility (purchasing) 0.013 USD/kWh

Optimization of lower
and upper bounds

Solar 1200 1
Wind 1000 15

Battery 1000 1

2.1. Photovoltaic Panel Mathematical Modeling

PV is the most widely used RES for generating. In this research, polycrystalline solar
panels (KD325GX-LFB) are taken into consideration. The panel manufacturers’ specifica-
tions and solar parameters are reported in [35–37]. The panels are inclined with an angle of
30◦ to the direction of the south. The modeled equation for the output power produced
from the PV system is given in Equation (1) and reported in [37–39].

Ppvout(t) = P(PVrated)
×

G(t)

1000
×
[
1 + αt

(
(Tamb + (0.03125 × Gt))− TCSTC

)]
(1)

where P(PVrated)
indicates the rated power for PV (in watts), αt is the temperature coefficient

(−3.7 × 10−3) 1/C, TCSTC is the cell temperature (in ◦C) under standard test condition (STC),
and Tamb is the ambient temperature (in ◦C), respectively. G(t) refers to solar irradiance (in
W/m2), 1000 W/m2 is the reference irradiance, and Ppvout(t) is the PV output power (in
watts). Equation (2) can be used to obtain the TC(STC) [40]. NOCT is the nominal operating
cell temperature in ◦C that the manufacturer can model.

TC(STC) = Tamb + G(t) ×
(

NOCT − 20
800

)
(2)

Additionally, the value 0.03125 ◦C was obtained by subtracting the value of Nominal
Operation Cell Temperature (NOCT), which is 45 ◦C in this study, from air temperature
(20 ◦C) based on the PV module that the manufacturer has specified; the acquired result
was divided by the irradiance on the cell surface (800 W/m2) to obtain 0.03125 ◦C [35]. The
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technical and economical specifications of the PV module used in the proposed system are
given in Table 1.

2.2. Wind Turbine Mathematical Modeling

Vertical and horizontal axis wind turbines are the products of axial categorization of
wind turbines [41]. The horizontal axis wind turbine is the most widely utilized type of
wind turbine for various reasons, including its capacity to capture the most wind energy,
adaptability to low-wind conditions, and pitch angle adjustment capability to prevent
strong windstorms [40]. Therefore, a wind turbine comprises three basic components: the
generator, which has a gearbox and controls, and the rotor, which houses the blade and
the frame. Equation (3) [38] presents the model equation for the output power produced
by the WT. The economical and technical specifications of the WT used in the proposed
system are given in Table 1.

PWT =


0

Pr
v(t)−vcut−in
vr−vcut−out

Pr

v(t) ≤ vcut−in or v(t) ≥ vcut−out
vcut−in < v < vr

vr < v(t) < vcut−out

(3)

The variables vcut−in and vcut−out represent the cut-in speed and cut-out speed, respec-
tively. Pr stands for rated power, vr for rated wind speed, and PWT is the produced output
power of the WT, as indicated by the manufacturer [40]. Equation (4) illustrates how taking
hub height into account can yield output power from WT with improved precision.

V2 = V1 ∗
(

h
hre f

)α

(4)

where h is hub height, hre f is the reference height anemometer, and α is the power-law
exponential, known as wind gradient, Hellmann exponent, or friction coefficient, which
equals 1/7 [42]. The wind speed (m/s) is represented by V2 and V1. It is evident that the
cut-in wind speed vcut−in, cut-out wind speed vcut−out, and rated wind speed vr, in that
order, determine the output power generated from WT [43].

2.3. Battery Mathematical Modeling

Systems that store and release energy from renewable energy sources (RESs), such as
solar, wind, and hydropower, are known as battery energy storage systems [44]. However,
these RESs are known to have high intermittency. Energy is stored in a battery storage
system (BSS) that can be used during a grid outage to reduce intermittency and boost
system reliability and efficiency. Equation (5) [45] provides the mathematical formula to
determine the nominal battery capacity.

CB =
EL ∗ AD

DOD ∗ ηinv ∗ ηb
(5)

where CB is the battery’s nominal capacity, EL is its daily average load demand, DoD is the
suggested depth of drain (80%), and autonomy days (usually 3–5 days) are represented,
while the inverter’s efficiency, ηinv, equals 95% and the battery’s efficiency, ηb, is 85%.
The battery’s energy storage capacity is known as its state of charge (SoC) and its energy
consumption is known as its depth of discharge (DoD) [42,43,45,46]. Additionally, the mini-
mum depth of discharge and the value of DOD, which is set at 80%, may be computed using
Equation (6) [47]. SoCmin ≤ SoCbatt ≤ SoCmax represents the SoC’s border. Furthermore,
the battery’s power output has a mathematical expression, as shown in Equation (7).

SOCBT_MIN = (1 − DOD)× CB (6)
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Pb(t) =
(

Ppv(t) + PWT(t)
)
− Pl(t)

ηinv
(7)

where ηinv is the inverter efficiency (95%) and Pb(t) is the total power delivered from the
battery, PPV(t) is the total power produced from PV, PWT(t) is the total power produced
from WT, and Pl(t) is the total energy demand [38]. One crucial factor that indicates the
battery’s performance is its state of charge (SoC) [48]. Equations (8) and (9) are used to
determine the state of charge (SoC) of the battery when charging or discharging. According
to the mathematical computation provided by Equation (8), the battery is in a charging
condition when the total generated output power from PV and WT exceed the load.

SoC(t) = SoC(t − 1).(1 − σ) +

((
Ppv(t) + Pwt(t)

)
−

Pl(t) + PEVdem

ηinv

)
∗ ηb (8)

The output power produced by the PV and WT, respectively, is expressed as PPV(t) and
PWT(t). The battery’s self-discharge rate, or σ, equals 0.007%/h [49]. The overall energy
demand is represented by PPV(t) Pl(t), the state of charge of the battery at a time (t) is
indicated by SoC (t), the inverter efficiency is represented by ηinv, and the battery efficiency
is marked by ηb, which is equal to 85% [38]. The EV battery specification is also considered
to obtain the SoC, charging decision, and energy demand. If the total generated output
power from PV and WT is less than the load demand, as determined by Equation (9), the
battery’s state of charge (SoC) will be in a discharging situation.

SoC(t) = SoC(t − 1).(1 − σ) +

(
Pl(t) + PEVdem

ηinv
−(P pv(t) + Pwt(t)

))
∗ ηb (9)

Equation (10), which represents the battery power during discharging when the SoC
exceeds the RESs, may be derived from the previously mentioned facts.

PBATT(t) = [Pl(t)− Pwt(t)] ∗ ηinv − PPV(t) (10)

The technical and economical specifications of the BT used in the proposed system are
given in Table 1.

2.4. Converter Mathematical Modeling

Power converters, such as DC/AC and AC/DC, are required when a system consists
of both AC and DC components; Table describes the converter. In this analysis, batteries
that generate DC output, solar PV panels (DC), and household (AC) demands are taken
into consideration. Peak load demand (Pm

L ) at a time (t) and inverter efficiency (ηinv) are
combined to estimate the converter size and Equation (11) [50] is used to determine the
inverter rating (Pinv(t)).

Pinv(t) =
Pm

L (t)
ηinv

(11)

2.5. The Grid Mathematical Modeling

The grid can supplement the energy deficit if the RESs and battery bank are unable to
meet the load needs [51]. Equation (12) can be used to determine the money received from
energy sales to the utility grid.

Rgrid =
8760

∑
t=1

rate f eed−in × Egrid(selling) (12)

where Egrid(selling) represents the selling energy price (USD 0.015/kWh) and rate f eed−in
refers to the feed-in tariff rate, which is USD 0.02/kWh. Moreover, Equation (13) is used to
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compute the cost of power from the grid [52]. On the other hand, 8760 is the amount of
hours in a year. The following is the purchasing price of the grid-purchased power:

Cgrid = Cp ×
8760

∑
t=1

Egrid(purchased) (13)

where
8760
∑

t=1
Egrid(purchased) is the hourly total of yearly grid power purchases for a year [52],

and Cp is the cost of purchasing electricity in Iraq, which equals USD 0.013/kWh.

2.6. Mathematical Modeling of Electric Vehicle Charging Station

The battery of electric vehicles (EVs) is used to overcome several supply constraints to
improve security and financial sustainability. One of the fundamental needs for modeling
an electric vehicle charging station is knowing its rated capacity. One can compute the
rated capacity using the method shown in Equation (14).

Srated =
kload ∗ Nslot ∗ PEV

COS ∅ (14)

where Nslot is the number of charging slots for each EV, which equals 3, kload is the overload
factor for cover overloading in transients, which is 1.1, PEV is the maximum power rate of
each EV, which is 90 kW, and Srated, the station’s rated capacity, equals 850.97 VAr [53].

3. Date Collection and Renewability–Economic–Technical Assessments

In this research, real meteorological data have been used to model the proposed system.
These meteorological data are recorded every 10 min for an entire year (from 1 January to
31 December of 2018) in a government building (Engineering Technical College) located in
Al-Najaf Governorate in Iraq [54], which is located at the coordinates 31◦ north latitude
and 44◦ east longitude. These meteorological data consist of solar radiation, ambient
temperature, and wind speed. The meteorological data were collected for an entire year.

3.1. The Study Site and Load Profile

This study investigates the efficacy and potency of the recommended strategies for
the ideal sizing of the suggested system in Al-Najaf Governorate in Iraq.

3.1.1. Al-Najaf Governorate in Iraq

Al-Najaf Governorate is a city in central Iraq about 160 km (99 mi) south of Baghdad;
see Figures 2 and 3. This study uses the climatology data and load demand to implement
the mathematical equations to calculate the total amount of power generated during an
entire year. Real meteorological data have been used in the modeling of the proposed
system. These meteorological data are recorded every 10 min for an entire year (from 1
January to 31 December of 2018) of a government building (Engineering Technical College)
located in Al-Najaf Governorate in Iraq [54], which is located at coordinates 31◦ north
latitude and 44◦ east longitude. These data were gathered from a weather station installed
ten meters above the ground, as shown in Figure 4. These meteorological data consist of
solar radiation, ambient temperature, a wind speed. The energy demand profile data were
assumed for an entire year.
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3.1.2. Load Profile

The data of the load demand for the entire year of the building where the study
was conducted have a maximum value of 4.9687 kW and a minimum value of 0.6417 kW,
recorded every 10 min.

3.2. Objective Function Formulation
3.2.1. Levelized Cost of Electricity (LCOE)

The LCOE for a power system is the ratio between the total costs of the system and its
total electricity production over its economic lifetime [55]. It is regarded as the minimum
cost at which electricity must be sold to break even over the project's lifetime. LCOE is
measured in USD/kWh. The first objective can be presented as shown in Equation (15):

objective1 = min (LCOE)

= min
(

The reation betweenhe the total costs o f the system and
its total electricity production over its economic li f etime

)
(15)

3.2.2. Grid Contribution Factor (GCF)

Grid Contribution Factor (GCF) can minimize the maximized Renewable Energy
Fraction (REF). GCF is given in Equation (16) as follows:

GCF = 1 − RFE (16)

The GCF is the amount the grid contributes to meeting the necessary energy demand
by minimizing REF [52]. The GCF is measured in kWh. The second objective can be
presented as shown in Equation (17):

objective2 = min (GCF) = min (1 − REF) (17)
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3.2.3. Energy Sold to the Grid (ESOLD)

ESOLD is the annual energy sold to the grid and not self-consumed by the charging
station [56]. The ESOLD is defined as the quantity of electricity sold from any part of the
system (such as PV and/or wind and/or battery and/or EV battery) into the main grid. One
of the objective functions of this research is to maximize the value of ESOLD, which means
decreasing the dependency on the grid; this is achieved by increasing the dependency on
renewable energy and/or battery and/or EV batteries. The ESOLD is measured in kWh.
The third objective can be presented as shown in Equation (18):

objective3 = max (ESOLD) (18)

4. The Proposed Methodology for Sizing of the Grid-Connected PV/WT/Battery/
EVCS System

The proposed system comprises a grid-connected PV/WT/battery combined with
EVCS. The proposed system's energy management strategy and scenarios are provided in
phase 1 of this part, which is separated into three sections. Phase 2 clarifies the Arithmetic
Optimization Algorithm (AOA). Phase 3 presents the proposed Improved Arithmetic
Algorithm (IAOA) with benchmark algorithms such as AOA, Ant Lion Optimizer (ALO),
and particle swarm optimization (PSO). Finally, the proposed Multi-Objective Improved
Arithmetic Optimization Algorithm (MOIAOA) is explained.

4.1. Energy Management Strategy and Its Scenarios in the Proposed System

Information management included in such a system is known as an energy manage-
ment system (EMS); it provides the ability to guarantee that energy is supplied through
generation, transmission, and distribution at the lowest feasible cost. EMS is believed to
use several methods to supply the load needed, as described in [57] and [58]. Additionally,
according to the literature, it can categorized into three groups: Rule-Based (RB), Learning-
Based (LB), and Optimization-Based (OB), each of which has a subclassification [59]. In
addition, it is resource-dependent, balances BT SoC power, and lowers system running
costs [60]. There will be difficulties when integrating RESs with the grid, such as over-
loading [61]. To get around this integration limitation, EMSs can be used to monitor and
control the energy systems of RESs in situations where the data obtained from strategies
of controlling are inaccurate because the design variable is not taken into account as a
crucial feature by taking advantage of sizing algorithms [62]. The optimization algorithms
are integrated with EMS to ensure a steady power flow into the suggested system [63].
The system’s energy management is configured to meet load needs while considering the
dynamic energy flow among all system components [64].

In this research, the system’s integrated RB-EMS considered the following four operat-
ing modes for three EVs. The proposed system's energy management is crucial to manage
the power flow during the optimization process. The operating modes of the RB-EMS are
used for controlling and observing the power flow of the proposed system. RB-EMS-based
operating modes (scenarios) and their working rules can be illustrated as follows:

1. Operating Mode 1: Renewable energy sources (photovoltaic and wind power) supply
power for running the system and charging the battery and the electric vehicle.

2. Operating Mode 2: The battery supplies power for load and electric vehicle charging
if there is no grid and insufficient RESs.

3. Operating Mode 3: The main grid supplying power for electric vehicle charging
(Buying–Charging–G2V) when batteries and RESs are not available and grid demand
is required. The power flow will be unidirectional.

4. Operating Mode 4: The electric vehicle supplying power for the grid (V2G–Sell–
Discharging) when grid demand is high and batteries and RESs are unavailable. The
flow of power will be bidirectional. The proposed operation modes of RB-EMS for the
proposed system are listed in Table 2.
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Table 2. The rule-based EMS scenarios for the proposed system.

Rule No. Modes IF THEN

1 RESs
(

Ppv(t) + PWT(t)
)
> Pl(t)

(
Ppv(t) + PWT(t)

)
to Pl(t) and EV(t)

2 BT Pb(t) > [Pl(t)− PWT(t)]− PPV(t) ∗ ηinv
Pb(t) > [Pl(t)− PWT(t)]− PPV(t) ∗

ηinv to Pl(t) and EV(t)

3 Charge (G2V) Egrid < EVdemand Egrid < EVdemand to EV (G2V)

4 Discharge (V2G) Egrid > EVdemand Egrid > EVdemand to EV (G2V)

RB-EMS is used in this study because of its advantages, which include its ability to pre-
cisely solve problems and make quick judgments to fulfill load demand while minimizing
operating costs. The flowchart in Figure 5 illustrates how the metaheuristic technique and
system configuration sizing (PV-WT-BT) are being considered to meet the study’s objective
functions. The (if, otherwise, and then) statement governs the primary mechanism of rule-
based strategy [37]. The if-then conditions for the charging and discharging function with
the previously mentioned modes are shown in Figure 6. The proposed system’s RB-EMS,
as seen in Figure 6, presents the power flow via the system’s components as a flowchart.
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4.2. Arithmetic Optimization Algorithm (AOA)

Comparable to other population-based optimization techniques, the Arithmetic Opti-
mization Algorithm (AOA) was released in 2021 by Abualigah et al. [65]. The variety and
exploitative stages in AOA were produced by the mathematical operators addition (A “+“),
division (D “÷“), multiplication (M “×“), and subtraction (S “−“).

4.2.1. Inspiration

Arithmetic is a sufficient yet necessary prerequisite for algebra, number theory, analy-
sis, geometry, and modern mathematics. Therefore, these four simple operators might be used
to find the best solutions while preserving between the exploitation and exploration periods.
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4.2.2. Initialization Phase

A list of potential solutions (X) is established in the first phase. For the most optimal
solutions thus far, the best solution from all iterations is kept. As given in Equation (19):

X = XLB + rand(XUB − XLB) (19)

XUB and XLB establish the upper and lower boundaries of the problem, where X is
a collection of initialized solutions and rand is a random variable in the range [0, 1]. The
Math Optimizer Accelerated (MOA) function is employed to discern the exploration and
exploitation stages. It is calculated in the manner described in Equation (20) below:

MOA(Citer) = Min + Citer ×
Max − Min

Miter
(20)

where Citer specifies the current iteration and ranges between 1 and the maximum number
of iterations (Miter), and MOA (Citer) defines the value at the t th iteration. Max and Min
represent the highest and lowest values of the accelerated function. The steps of exploration
and exploitation will be covered in detail in the following sections.

4.2.3. Exploration Phase

Since the the D and M operators have widely distributed values in the design space,
they are used during the exploratory stage. The MOA function limits the exploration phase;
the D and M operators are utilized if r1 > MOA is found; otherwise, the A and S operators
are kept in place. The following equations can be used to express the exploring portion:

xij(Citer + 1) =
{

best
(
Xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
r2 > 0.5

best
(
Xj
)
× MOP ×

((
UBj − LBj

)
× µ + LBj

)
otherwise

(21)

where the second integer, r2, is conditioned between the D and M operations and is
generated at random. ε is a small integer value, while a control variable called µ is
set to 0.5 to change the search process. UBj and LBj stand for the bottom and upper
limits, respectively.

MOP(Citer) = 1 − Citer
1
∝

Miter
1
∝

(22)

In this work, Math Optimizer Probability is a coefficient represented by the symbol
MOP. The sensitivity control parameter indicates the accuracy of the exploitation through-
out the iterations ∝, which is set to 5.

4.2.4. Exploitation Phase

Despite the large density of the A and S operators, their small dispersion makes them
easily accessible. The following can be used to represent the S and A operators:

xij(Citer + 1) =
{

best
(
Xj
)
− MOP ×

((
UBj − LBj

)
× µ + LBj

)
r3 > 0.5

best
(
Xj
)
× MOP ×

((
UBj − LBj

)
× µ + LBj

)
otherwise

(23)

where the third number, r3, is a randomly generated number that represents the A and
S operators.

4.3. The Proposed Improved Arithmetic Optimization Algorithm (IAOA)

There are two improvements key to overcoming the limitations of the original AOA by
employing the fitness distance balance (FDB) integrated with chaotic map strategies [66,67].
Firstly, the FDB is implemented to ensure the best new solutions are chosen to import
high-quality solutions into the new generation. The selection mechanism is determined
by computing the fitness function values of all particles and their distance from the best
solution position. Secondly, the FDB is integrated with a chaotic map tactic for local
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minima avoidance. Therefore, the newly developed IAOA can enhance the exploitation
by utilizing the selection of the FDB technique. At the same time, the new search areas
are discovered by obtaining a chaotic map tactic, where the balance between exploitation
and exploration tendencies is achieved. The proposed IAOA is proposed to handle three
conflicting objectives: GCF, ESOLD, and LCOE. The correlation between these is an inverse
relationship, where their values are varied based on the given weights for each one. PF
solutions will be executed after executing all weights’ statuses.

These objectives are transformed into a single objective after performing a normaliza-
tion operation [68]. The improvements of IAOA are described by the following:

• FDB Strategy

At first, the distance of particles from the best solution Pbest is computed using
Equation (24) below:

∀n
i=1, Pi ̸= Pbest , DPi

=
√(

x1Pi − x1Pbest

)2
+
(
x2Pi − x2Pbest

)2
+ · · ·+

(
xmPi − xmPbest

)2
(24)

The distance matrix (DP) is generated for particle candidates, as given in Equation (25)
below:

DP ≡

d1
...

dn


n×1

(25)

Secondly, the scores of the particles are determined according to the distance and
fitness values, as seen in Equation (23). These two variables, normF and normDx, are nor-
malized with a range of [0, 1] to avoid one dominating the other. Then, the scores of particles
(Sxi) are determined with normF and normDx according to the following expression:

∀n
i=1Pi, SFDB1Pi

= normF FPi + norm DPi

Finally, the score vector ( Sx) can be presented by the following equation:

Sx ≡


sx,1
·
·

sx,n


nx1

(26)

According to our new strategy, the Sx vector is implemented with a chaotic map tactic to
boost the convergence and prevent the premature convergence during the optimization process.

• Chaotic map tactic

It is described as follows:

Xnew = X − Xnew(Sx) ∗ (mc − 1) (27)

where mc is a vector and it is computed as follows:

m = rand;

mc = 4 · m · (1 − m) (28)

The main benefit of chaos is to explore new search areas and information about the
candidate particles in the FDB strategy, which can concurrently and perfectly enrich the
population with high-quality solutions (exploitation) while exploring new promising zones
in the search space.

• Handling upper and lower boundaries
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Because several random techniques were used throughout the optimization process,
some newly created particles exceeded the upper and lower bounds of the optimization
problem. Most of the optimization methods produce simple upper and lower boundaries,
which may delay the convergence speed to optimal solutions. To address this issue, we
suggested a new method that makes use of the following mathematical framework to
transform particles from predetermined upper and lower boundaries to places that are
close to optimal areas:

xi,j = best
(
xj
)
+ ϵ ×

(
rand ×

(
UBj − LBj

))
× rand × LBj (29)

The aforementioned equations improve the diversity of the best optimal solutions
discovered thus far. This means that particles are not just moved from locality to optimal
regions, but also the quality of the solution is increased by obtaining information from the
best particle’s neighborhood. The operation process of the proposed IAOA is demonstrated
in Figure 7.
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4.4. The Proposed MOIAOA Method

In developing a set of PF solutions, the multi-objective optimization (MOO) methods
present several difficulties regarding efficiency, convergence, and diversity. In the case
of large goal optimization problems, most MOO methods produce unsatisfactory opti-
mal PF solutions by simultaneously attempting to enhance diversity and convergence.
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Furthermore, most of the methods in the previous literature considered only a single ob-
jective during the optimization process for the proposed system (either an economic or
technical objective).

The proposed system in this work is to define the scope of REMS in terms of system
size by calculating the minimum (optimal) number of PV modules, wind turbines, and ESU
batteries. This will be achieved by calculating the LCOE, GCF, and ESOLD for the proposed
system. It will ensure that the REMS operates the charging station without economic
losses for a specific number of EVs per day (three EVs). The proposed system, displayed
in Figure 1, can be considered a typical grid-connected system for supplying electricity
with the assistance of V2G technology and is presented as a test-case system to verify the
effectiveness of the devised optimal design method. In this research, an AOA has been
proposed and improved to become IAOA. In addition, the optimal design for the proposed
system's components has been determined using a multi-objective improved arithmetic
optimization algorithm (MOIAOA).

Multi-objective IAOA (MOIAOA) based on the Non-Scale multiple-run Pareto Front
concept has been used to calculate the optimal values of the three conflicting objectives,
which are Grid Contribution Factor (GCF), Levelized Cost of Electricity (LCOE), and Energy
sold to the grid (ESOLD). This method is classified as a Non-Scale (NS) multiple-run Pareto
Front method and deals with multi-objective optimization problems. In this paper, for
the LCOE, GCF, and ESOLD, the aggregation function transforms objectives into a mono-
objective problem, where the aggregation function treats the multi-objective optimization
problems as a mono-objective problem, as described below:

fi (t) =
k

∑
i=1

wi × fi (t) (30)

where k is an aggregated function that belongs to the individual objective function number
and x is the decision variable vector related to the search space. The range of weight
coefficients is 0 > wi < 1, denoting the relative importance of the k objective function of the
problem, and it is assumed as follows:

k

∑
i=1

wi = 1 (31)

On the other hand, the three objective functions are not scalable. Normalizing and
implementing the goal function described below is essential [50,51].

fi (t) =
fi (t)− f min

i (t)
f max
i (t)− f min

i (t)
(32)

where the upper and lower bounds of the ith individual objective function are denoted as
f max
i (t) and f min

i (t), respectively.

5. Results and Discussion

In previous sections, the concept and operation of RB-EMS and optimal design have
been established for the proposed system. The modeling of the components and power flow
control strategy of the proposed system has been presented. This section will present the
results obtained from the data collection. The results of the optimal design of the proposed
system will be presented.

The proposed system consists of a grid-connected PV-WT battery including EVCS.
The EVCS is combined within the proposed system by using V2G technology. In summary,
the RB-EMS aims to operate the charging station while keeping the charging cost lower
than the average grid electricity price (without economic losses) and reducing the grid
burden and system economic losses. In addition, the RB-EMS is embedded in the central
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controller of the proposed system for real-time decision making without the physical
presence of a human operator, so the results of EV charging are derived using the proposed
system operated under the control of RB-EMS. The optimal design of the proposed system
is provided in this study to show how to meet the load requirement for a government
building in the most efficient manner.

The meteorological data of solar insolation (G), temperature (Ta), and wind speed (v)
have been used in this research in Al-Najaf Governorate, Iraq. The data obtained are used
throughout the simulation process in MATLAB simulations. Data from 1 January 2018 to 31
December 2018 were recorded for one year and collected every ten minutes in a government
building. The topographical location of the study region is identified as 31◦ north latitude
and 44◦ east longitude. Figures 8–10 depict the G, Ta, and v plots, respectively.
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Data analysis significantly improves our understanding of consumer energy needs
from the available Renewable Energy Sources (RESs). This is crucial for handling difficult
situations like days without sunlight or wind. The area under study is fortunate to have
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abundant solar energy and wind throughout the year, with the highest levels observed in
July. Most solar radiation, which holds immense potential for generating electricity using
photovoltaic (PV) systems, is experienced during summer, followed by spring, autumn
and winter. The wind speed is at its maximum in spring, followed by summer, winter,
and autumn, offering substantial potential for harnessing wind turbines for electricity
generation. Air conditioning units are primarily used during the summer, while consumers
predominantly use heaters in winter.

The data of the load demand for the entire year of the building that the study was
conducted in show a maximum value of 4.9687 kW and a minimum value of 0.6417 kW
every 10 min. A critical stage in optimizing the energy system is accurately estimating
the energy demand to be fulfilled to avoid oversizing or under-sizing the system. In this
research, the load demand profile for the chosen building is considered for one year with
a minimum value of 0.6417 kW and a maximum value of 4.9687 kW. These load data are
considered for every ten minutes for the entire year. The load data are graphically presented
in Figure 11. Energy demand can be categorized into domestic loads, including appliances
in the selected building. Given the case study area’s two distinct seasonal variations (cold
and hot), the energy demand profile data reveal that energy consumption is high during
the hot season, in contrast to the cold season.
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The plots of the annual PV output power (PPV) and wind turbine output power
(PWT) for the optimal configuration achieved by the proposed system are displayed in
Figures 12 and 13, respectively. The proposed system is primarily designed to take advan-
tage of the RESs in the location and interchange power via V2G technology between the
EVCS and the utility grid. One of the RESs taken into account in the proposed system is
PV. The solar irradiance (G) and ambient temperature (Tam) are the primary climatological
factors that affect the output power produced by the PV. Figure 12 shows the output power
produced by PV in the proposed system. The wind turbine is the second RES regarded
in the proposed system and the output power generated from the wind turbine in the
proposed system is illustrated in Figure 13.
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5.1. Performance Comparison between the Proposed IAOA and AOA, PSO, ALO

This study used four standard benchmark cases to confirm and verify the original
AOA’s stability [69] and performance. These benchmarks can reasonably approximate
the capability of exploitation and exploration, respectively, for the pending algorithm.
Numerous experiments were conducted to evaluate the IAOA’s properties, for instance,
the differences between IAOA and the original AOA were examined by utilizing several
benchmarks, as indicated in Table 3.

Table 3. Details of benchmark functions.

Benchmark Function Dim Range Optimal Value

f1(x) = ∑d
i=1 x2

i 10 [−100, 100] 0

f2(x) = ∑d
i=1|xi|+

d
∏
i=1

|xi| 10 [−100, 100] 0

f3(x) = maxi{|xi|, 1 ≤ i ≤ t} 10 [−10, 10] 0

f4(x) =
∑d

i=1
(
x2

i − 10 ∗ cos(2πxi) + 10d
) 10 [−5.12, 5.12] 0

The detailed experimental findings produced by AOA, ALO, PSO, and IAOA on these
benchmarks are displayed in Table 4 concerning best value, worst value, average value
and STD (standard deviation) value. This table shows that the IAOA can retrieve the best
values by obtaining the minimum values of best value, worst value, average value and
STD value. Hence, IAOA outperforms AOA, ALO, and PSO, indicating that algorithm
stability can be guaranteed. Furthermore, to further illustrate descript convergence, the
evolution curves of each approach on most of the benchmarks in this work are shown in
Figures 14–17. These figures show that, on these benchmarks, the proposed IAOA has
satisfied quicker convergence than the AOA, PSO, and ALO methods.
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Table 4. Results of IAOA compared to several peers on benchmark functions.

Function Algorithm Best Value Worst Value Average Value STD

f1(x)

ALO 1.6291 × 10−9 8.8636 × 10−9 4.0018 × 10−9 1.9334 × 10−9

PSO 8.2671 × 10−121 2.5752 × 10−48 1.2876 × 10−49 5.7582 × 10−49

AOA 0 0 0 0
IAOA 0 0 0 0

f2(x)

ALO 1.1730 × 10−5 0.4850 0.0254 0.1082
PSO 1.2952 × 10−14 9.0712 × 10−6 1.0976 × 10−6 2.5864 × 10−6

AOA 0 0 0 0
IAOA 0 0 0 0

f3(x)

ALO 1.1878 × 10−6 0.0025 1.8484 × 10−4 5.4351 × 10−4

PSO 1.4774 × 10−25 4.0204 × 10−13 2.0227 × 10−14 8.9870 × 10−14

AOA 0 0 0 0
IAOA 0 0 0 0

f4(x)

ALO 5.1427 × 10−5 0.0027 4.3189 × 10−4 5.8547 × 10−4

PSO 2.0618 × 10−19 2.5902 × 10−13 2.3924 × 10−14 6.2083 × 10−14

AOA 0 1.1591 × 10−186 5.7954 × 10−188 0
IAOA 0 1.7994 × 10−250 8.9970 × 10−252 0

Sustainability 2024, 16, x FOR PEER REVIEW 27 of 38 
 

 

 

Figure 14. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the first 

test function. 

 

Figure 15. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the second 

test function. 

 

Figure 16. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the third 

test function. 

Figure 14. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the first
test function.

Sustainability 2024, 16, x FOR PEER REVIEW 27 of 38 
 

 

 

Figure 14. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the first 

test function. 

 

Figure 15. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the second 

test function. 

 

Figure 16. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the third 

test function. 

Figure 15. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the second
test function.



Sustainability 2024, 16, 2491 26 of 35

Sustainability 2024, 16, x FOR PEER REVIEW 27 of 38 
 

 

 

Figure 14. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the first 

test function. 

 

Figure 15. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the second 

test function. 

 

Figure 16. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the third 

test function. 
Figure 16. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the third
test function.

Sustainability 2024, 16, x FOR PEER REVIEW 28 of 38 
 

 

 

Figure 17. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the fourth 

test function. 

Table 4. Results of IAOA compared to several peers on benchmark functions. 

Function Algorithm Best Value Worst Value Average Value STD 

f1(x) 

ALO 1.6291× 10−9 8.8636× 10−9 4.0018× 10−9 1.9334× 10−9 

PSO 8.2671× 10−121 2.5752× 10−48 1.2876× 10−49 5.7582× 10−49 

AOA 0 0 0 0 

IAOA 0 0 0 0 

f2(x) 

ALO 1.1730× 10−5 0.4850 0.0254 0.1082 

PSO 1.2952× 10−14 9.0712× 10−6 1.0976× 10−6 2.5864× 10−6 

AOA 0 0 0 0 

IAOA 0 0 0 0 

f3(x) 

ALO 1.1878× 10−6 0.0025 1.8484× 10−4 5.4351 × 10−4 

PSO 1.4774× 10−25 4.0204× 10−13 2.0227× 10−14 8.9870 × 10−14 

AOA 0 0 0 0 

IAOA 0 0 0 0 

f4(x) 

ALO 5.1427× 10−5 0.0027 4.3189× 10−4 5.8547 × 10−4 

PSO 2.0618× 10−19 2.5902× 10−13 2.3924× 10−14 6.2083 × 10−14 

AOA 0 1.1591 × 10−186 5.7954 × 10−188 0 

IAOA 0 1.7994 × 10−250 8.9970 × 10−252 0 

Exploiting and exploring individual algorithms are very common in gauging the in-

dividual algorithm search capacity for all metaheuristic optimization strategies. The first 

step in each algorithm is thoroughly exploring the promising areas of the given solution 

search space. Depending on the optimization technique, optimizers can support this 

phase by using some stochastic operators to search the given space globally and ran-

domly. The exploitation step, however, is a local search in which the optimizers look near 

the most promising regions identified thus far in the exploration phase. There is always a 

challenge in the optimization period to effectively balance these two stages, which can be 

performed using the controlling parameter. These parameters were carefully selected and 

tested on the employed standard benchmark test functions in this research. 

Fitness–distance balance (FDB) and chaotic map mechanisms have been applied to 

improve the AOA. The AOA, PSO, and ALO benchmark algorithms are selected to per-

form the comparative analysis. A comparative analysis between IAOA, AOA, PSO, and 

ALO has been performed to test the efficiency and reliability of the algorithms, as shown 

in Figures 14–17. Four popular standard mathematical benchmark functions comprising 

Figure 17. Parameter space and convergence curve of the IAOA, ALO, AOA, and PSO on the fourth
test function.

Exploiting and exploring individual algorithms are very common in gauging the
individual algorithm search capacity for all metaheuristic optimization strategies. The first
step in each algorithm is thoroughly exploring the promising areas of the given solution
search space. Depending on the optimization technique, optimizers can support this phase
by using some stochastic operators to search the given space globally and randomly. The
exploitation step, however, is a local search in which the optimizers look near the most
promising regions identified thus far in the exploration phase. There is always a challenge
in the optimization period to effectively balance these two stages, which can be performed
using the controlling parameter. These parameters were carefully selected and tested on
the employed standard benchmark test functions in this research.

Fitness–distance balance (FDB) and chaotic map mechanisms have been applied to
improve the AOA. The AOA, PSO, and ALO benchmark algorithms are selected to perform
the comparative analysis. A comparative analysis between IAOA, AOA, PSO, and ALO
has been performed to test the efficiency and reliability of the algorithms, as shown in
Figures 14–17. Four popular standard mathematical benchmark functions comprising of
the Unimodal and Multimodal functions have been used for comparison implementation.

Figures 14–17 display the convergence curve for the IAOA, AOA, PSO, and ALO
methods. The convergence curve shows how the algorithm converges to the best solution.
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So, the convergence curve indicates how fast the fitness value converges towards an optimal
solution through iterations. The final value of the fitness value shows the best solution,
while the nature/slope of this curve shows how fast the algorithm converges to the final
solution. AOA has been improved by enhancing the exploration and exploitation phases.
Fitness–distance balance (FDB) mechanisms have enhanced the exploitation phase. At the
same time, a chaotic map mechanism has been used to enhance the exploration phase.

IAOA has been compared with the AOA, ALO, and PSO on four benchmark cases, as
shown in Section 5.1. The experimental results, which are average values and evolution
curves, are vividly recorded in Table 4 and Figures 14–17, respectively. These records
demonstrate that the efficiency of IAOA was observed according to the enhanced evolu-
tionary convergence in competition with other counterparts. The curves in Figures 14–17
demonstrate an accelerated drift for the proposed IAOA.

5.2. Results of the MIAOA

In this section, an optimization of the proposed system using a Multi-Objective Im-
proved Arithmetic Optimization Algorithm has been implemented. The outcomes of the
optimal design method based on RB-EMS-MOIAOA based on the Non-Scale multiple-run
Pareto Front concept are shown in this section. The suggested optimization method aims to
identify the best layout for the proposed system that would supply building demand at a
desired value of LCOE, GCF, and ESOLD to guarantee that the proposed RB-EMS-MOAOA
is reliable and valid when calculating the optimal system size required to meet the required
demand of the chosen building.

In this research, the proposed system comprises a grid-connected PV–Wind–Battery
system combined with EVCS via using the V2G technique. Multi-Objective Improved Arith-
metic Optimization Algorithm (MOIAOA) based on the Non-Scale multiple-run Pareto
Front concept has been used to improve the optimal design of the proposed system com-
ponents. Multi-objective IAOA (MOIAOA) Non-Scale multiple-run Pareto Front concept
has been used to calculate the optimal values of the three conflicting objectives, which are
Grid Contribution Factor (GCF), Levelized Cost of Electricity (LCOE), and Energy sold
to the grid (ESOLD). This method is classified as a Non-Scale (NS) multiple-run Pareto
Front method, which deals with multi-objective optimization problems. Rule-Based Energy
Management Strategy (RB-EMS) controls and monitors the proposed system's power flow.
Three constraint objectives are used; the technical, economic, and renewability criteria are
all weighted, normalized, and combined using a mono-objective function.

Table 5 shows the optimal configurations of the proposed system with sets of weights
using the proposed MOIAOA based on the Non-Scale multiple-run Pareto Front concept.
For the proposed system, Table 5 indicates the initializing weights (W1, W2, W3), number
of wind turbines, number of PV modules, number of batteries, fitness value, LCOE, GCF,
ESOLD, and CPU execution time. The range of weight sets is [1, 36] with a step size of
0.1. In Table 5, the optimal weight set and configurations of the proposed system using
the MOIAOA Non-Scale multiple-run Pareto Front concept have been tabulated. The
maximum fitness function (f) value recorded is 0.1649 at the set of weights [0.5, 0.3, 0.2]. In
contrast, the minimum fitness function (f) value recorded is 0.0611 at the set of weights [0.1,
0.1, 0.8]. The given weight value changes the value of the individual objective. An accurate
selection of the effective W1, W2, and W3 weights from the design space is required to
find the best trade-off between the technical, economic, and renewability objectives. The
trade-off between the defined level of renewability, economic, and technical criteria is
required to choose an optimal configuration of the proposed system.
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Table 5. Optimal weight sets and configurations of the proposed system using MOIAOA based on
Non-Scale multiple-run Pareto Front concept.

W1 W2 W3 WT PV Bat f LCOE GCF ESOLD Elapsed Time (Seconds)

0.1 0.8 0.1 1 31 138 0.0762 2.37 × 10−2 0.0171 0.8596 4956.680489
0.1 0.7 0.2 1 32 108 0.1149 2.37 × 10−2 0.0171 0.8596 5536.762598
0.1 0.6 0.3 4 18 100 0.1344 2.33 × 10−2 0.0274 0.8337 4827.420494
0.1 0.5 0.4 1 18 93 0.145 0.022 0.8377 0 3438.61148
0.1 0.4 0.5 1 14 73 0.1343 0.0261 0.8376 0 2909.015921
0.1 0.3 0.6 1 13 63 0.1144 0.0304 0.8375 0 2731.221521
0.1 0.2 0.7 1 11 49 0.0942 0.0531 0.8371 0 2678.625856
0.1 0.1 0.8 1 12 106 0.0611 0.022 0.8377 0 5521.751529
0.2 0.7 0.1 6 27 70 0.0943 0.022 0.8377 0 2740.512867
0.2 0.6 0.2 4 22 147 0.1306 0.0237 0.0171 0.8596 4810.072815
0.2 0.5 0.3 1 20 91 0.1522 0.0237 0.0171 0.8596 3293.332732
0.2 0.4 0.4 2 15 63 0.1487 0.0253 0.0012 0.8475 3465.500523
0.2 0.3 0.5 1 15 83 0.1359 0.0531 0.8371 0 2780.494461
0.2 0.2 0.6 1 14 63 0.1095 0.022 0.8377 0 2766.968238
0.2 0.1 0.7 1 12 56 0.0779 0.0261 0.8376 0 3786.031941
0.3 0.6 0.1 5 31 59 0.1154 0.0216 0.1136 0.7579 3414.903356
0.3 0.5 0.2 3 24 68 0.1419 0.0233 0.0274 0.8337 2633.810036
0.3 0.4 0.3 1 19 103 0.1646 0.0237 0.0171 0.8596 5378.376291
0.3 0.3 0.4 1 15 56 0.1481 0.0246 0.0035 0.8554 2637.907928
0.3 0.2 0.5 1 12 63 0.13 0.0304 0.8375 0 2654.862484
0.3 0.1 0.6 1 12 56 0.0975 0.0261 0.8376 0 5068.761916
0.4 0.5 0.1 5 31 59 0.132 0.0243 0.0069 0.8475 3235.824878
0.4 0.4 0.2 4 12 56 0.1573 0.0239 0.0738 0.7026 4983.926465
0.4 0.3 0.3 1 16 63 0.161 0.0253 0.0012 0.8475 2682.447224
0.4 0.2 0.4 2 8 33 0.1522 2.66 × 10−2 7.34 × 10−5 0.8409 3272.623188
0.4 0.1 0.5 3 1 2 0.1156 0.0261 0.8376 0 2731.882521
0.5 0.4 0.1 3 24 68 0.1425 0.0262 0.0119 0.7838 2762.613745
0.5 0.3 0.2 1 19 68 0.1649 0.0239 0.0738 0.7026 5103.018621
0.5 0.2 0.3 1 15 52 0.1595 0.0246 0.0035 0.8554 5587.216803
0.5 0.1 0.4 3 1 1 0.1284 0.0246 0.0035 0.8554 2951.953591
0.6 0.3 0.1 5 17 42 0.1534 0.0262 0.0119 0.7838 2522.240268
0.6 0.2 0.2 5 7 25 0.1668 0.0266 7.34 × 10−5 0.8409 2629.085911
0.6 0.1 0.3 3 1 2 0.1418 2.46 × 10−2 3.50 × 10−3 0.8554 2904.915789
0.7 0.2 0.1 8 6 17 0.1542 0.0262 0.0119 0.7838 2771.440828
0.7 0.1 0.2 4 3 11 0.1518 0.0266 7.34 × 10−5 0.8409 5176.083577
0.8 0.1 0.1 5 10 4 0.1387 0.0246 3.50 × 10−3 0.8554 5424.871393

In Table 5, the first range of weights used in the MATLAB simulation of this work
are W1 = 0.1, W2 = 0.8, and W3 = 0.1, and that leads to the results of the number of PV
modules being equal to 31, the number of wind turbines equal to 1, number of batteries
equal to 138, fitness value equal to 0.0762, LCOE equal to 2.37 × 10−2 USD/kWh, GCF
equal to 0.0171 kWh, and ESOLD equal to 0.8596 kWh. Figure 18 presents the distribution of
the solutions using the NS multiple-run Pareto Front method, where the aggregation of the
three objectives is based on a predetermined set of weights.

Based on Table 5, the balance can be achieved when optimal weights W1, W2, and W3
are 0.4, 0.2, and 0.4, respectively. The weights of 0.4, 0.2, and 0.4 are optimal. Therefore, at
the optimal weights and by comparison with other optimal weights, it can be observed that
the value of LCOE is small, and the value of GCF is small, too. At the same time, the value of
ESOLD is high. The results indicated that by employing the proposed MOIAOA Non-Scale
multiple-run Pareto Front concept, the optimal configurations of the proposed system are
as follows: number of PV modules equal to 8, number of wind turbines equal to 2, number
of batteries equal to 33, fitness value equal to 0.1522, LCOE equal to 2.66−2 USD/kWh,
GCF equal to 7.34−5 kWh, and ESOLD equal to 0.8409 kWh.
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Figure 18. Development of the aggregation function based on the NS multiple-run Pareto
Front method.

Figure 19 displays the evolution of the mono-objective function (f) (fitness function)
based on optimal solutions using MOIAOA based on the Non-Scale multiple-run Pareto
Front concept. Figure 19 depicts the aggregation function’s development for the proposed
sizing algorithm at the optimal weights. Figure 19 demonstrates the development of the
evaluation of the aggregation function with the maximum iteration of the proposed method
to obtain the optimal size of the components of the proposed system.
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Figure 19. Evaluation of fitness function based on optimal solutions using MOIAOA based on
Non-Scale multiple-run Pareto Front concept.

Figure 20 exhibits the optimal weight sets based on three objectives using MOIAOA
Non-Scale multiple-run Pareto Front concept; this figure presents the optimal configuration
based on MOIAOA Non-Scale multiple-run Pareto Front concept, with the three objectives
of ESOLD, LCOE, and GCF.
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Figure 20. Evaluation of ESOLD (kWh), GCF (kWh), and LCOE (USD) values with different weight
sets using MOIAOA based on Non-Scale Pareto Front concept.

The results section shows that the control strategy can effectively schedule the gen-
erator at all times and meet the load demand. The simulation results demonstrate the
superiority and the rapid convergence performance of the proposed improved (MOIAOA)
Non-Scale multiple-run Pareto Front concept algorithm.

6. Conclusions and Future Direction

In this work, the IAOA is proposed and compared with AOA, PSO, and ALO methods
to prove that the proposed algorithm is superior (to justify the superiority of the proposed
algorithm). Then, a new MOIAOA is proposed for finding the optimal design of the
proposed system that includes a PV–WT–battery system combined with EVCS using V2G
technology in Al-Najaf Governorate in Iraq. The most desirable configurations for the
proposed system are defined based on renewability–economic–technical criteria using
ten-minute data readings of real meteorological data during the entire year. LCOE, GCF,
and ESOLD are utilized as economic, renewability, and technical criteria, respectively. The
MOIAOA based on a Non-Scale multiple-run Pareto Front concept was proposed to choose
an optimal design for the proposed system. The FDB mechanism was employed to enhance
the proposed system’s exploitation phase, and the chaotic map mechanism was employed
to enhance the exploration phase of the proposed system. By using Non-Scale multiple-run
PF, LCOE, GCF, and ESOLD are used as three constraint objective functions, which are
aggregated after normalization and weighting by the mono-objective function. LCOE, GCF,
and ESOLD are utilized as economic criteria, renewability criteria, and technical criteria,
respectively. LCOE needed to be minimized, GCF needed to be minimized, and ESOLD
needed to be minimized. The Rule-Based Energy Management Strategy (RB-EMS) was
used to control and observe the power flow in the proposed system. The Pareto Front
method was employed to obtain the optimal values of LCOE, GCF, and ESOLD; these three
constraint objectives are utilized as renewability criteria, economic criteria, and technical
criteria. MATLAB R2020b is used for simulations in this research. For performance
comparison, it is noted that the proposed IAOA is more efficient than AOA, ALO, and PSO
because IAOA converges to the optimal solution in fewer iterations. The results indicated
that by employing the proposed MOIAOA Non-Scale multiple-run Pareto Front concept,
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the optimal configurations of the proposed system are as follows: number of PV modules
equal to 8, number of wind turbines equal to 2, number of batteries equal to 33, fitness
value equal to 0.1522, LCOE equal to 2.66–2 USD/kWh, GCF equal to 7.34–2 kWh, and
ESOLD equal to 0.8409 kWh.

This paper also describes integrating EVs with photovoltaics (PV) and wind turbines
as Renewable Energy Sources (RESs) to address the problems associated with fossil fuels.
Alternative energy sources can be used to handle the situation where fossil fuels have
started to dwindle, leading to various power and environmental difficulties. This work
is fully satisfied and meets the grid-connected system’s load demand. The constraints
in electricity and environmental systems are resolved by integrating RESs with other
sources. To handle the complexity of PV–wind hybrid systems, a metaheuristic optimization
approach (MOIAOA) was combined with RB-EMS to achieve the objective functions. For
the future direction of this work, this work highly recommends using other metaheuristic
algorithms to investigate the renewability–economic–technical criteria and additional
development of energy management strategies. Additionally, more examinations may be
undertaken in the utilization of commercial load needs in the Al-Najaf Governorate in Iraq.

Author Contributions: Conceptualization, A.A.K.A.-S.; data curation, A.A.K.A.-S. and D.M.H.;
formal analysis, A.A.K.A.-S., H.M.R. and D.M.H.; investigation, S.M.A., C.W.T., H.M.R. and D.M.H.;
methodology, A.A.K.A.-S.; project administration, A.A.K.A.-S.; resources, A.A.K.A.-S.; software,
A.A.K.A.-S.; validation, A.A.K.A.-S. and H.M.R.; visualization, A.A.K.A.-S. and S.M.A.; supervision,
S.M.A. and C.W.T.; writing—original draft preparation, A.A.K.A.-S.; writing—review and editing,
A.A.K.A.-S., S.M.A. and H.M.R.; funding acquisition, A.A.K.A.-S. and S.M.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by University of Kufa (17348), Universiti Teknologi Malaysia:
UTMPGIS[UTM.J.08.02.01/13.14/1/1 JId.2 (47)].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The first author would like to thank the Iraqi government for supporting this
study with a scholarship awarded through the University of Kufa by a vote of 17,348. The authors
would like to thank Universiti Teknologi Malaysia (UTM) for the library facility and scholarship
awarded through UTMPGIS by the vote of UTM.J.08.02.01/13.14/1/1 JId.2 (47).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

ESOLD The annual energy sold to the grid
WT Wind turbine
EV Electric Vehicle
EVCS electric vehicle charging station
NS Non-Scale
PSO Particle swarm optimization
ALO Ant Lion Optimizer
EMS Energy Management Strategy
AOA Arithmetic optimization algorithm
HRES Hybrid renewable energy system
MOO Multi-objective optimization
STC Standard Test Condition
Ppvout

(t) The output power generated from PV
G(t) Solar irradiance
P(PVrated)

Rated power for PV
NOCT The nominal operating cell temperature
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vcut−in cut-in speed of the WT
vcut−out cut-out speed of the WT
Pr Rated power of the WT
vr Rated wind speed of the WT
PWT The generated output power of the WT
BSS Battery Storage System
DOD The depth of discharge
Srated The station rated capacity
cos ∅ The power factor
Nslot The amount of charging slots for each EV
kload The overload factor for cover overloading in transients
PEV The maximum power rate of each EV
Pinv(t) The inverter rating
Pm

L (t) The peak load demand
BT Battery
X a collection of initialized solutions
Rand a random variable in the range [0, 1]
XUB and XLB the upper and lower limits of the problem
MOA ( Citer) the value at the t th iteration
Miter the maximum number of iterations

r2
randomly generated number that is conditioned between
the D and M operations

UBj and LBj the upper and lower limits
εε a tiny integer value

r3
a randomly generated number that serves as a denotation
for the A and S operators

FF Fitness Function
PV photovoltaic
RESs Renewable energy sources
LCOE Levelized Cost of Energy
V2G Vehicle-to-grid
STC Standard Test Conditions
RB-EMS Rule-Based Energy Management Strategy
GCF Grid Contribution Factor
REF Renewable Energy Fraction
NPC Economic criterion of net present cost
IAOA Improved arithmetic optimization algorithm
MOIAOA Multi-objective improved arithmetic optimization algorithm
αt Temperature coefficient
TCSTC The cell temperature as reference temperature
Tamb The ambient temperature
CB Capacity of the battery
EL The daily average load demand
AD the autonomy days
v1, v2 The wind speed
h hub height
href The reference height anemometer

α
The power-law exponential known as wind gradient,
Hellmann exponent, or friction coefficient

SOC State of Charge
Pb(t) The battery’s output of electricity
Ppv(t) The total power generated by PV
PWT(t) The total power generated by WT
Pl(t) The total energy demand
ηinv The inverter efficiency
σ The self-discharge rate of the battery
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ηb Battery efficiency
ratefeed−in The feed-in tariff rate
Egrid(selling) The cost of selling energy
Cp The cost of buying electricity from the grid

∑8760
t=1 Egrid(purchaed)

The per hour summation of annually buying
electricity from the grid for one year

MOA Math Optimizer Accelerated
Citer the current iteration

Max & Min
The accelerated function’s maximum and lowest values
are denoted by Max and Min (Maximum and minimum
values of the MOA function)

µ a control variable set
MOP Math Optimizer Probability
∝ a sensitive control parameter set
FDB Fitness–distance balance
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