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Abstract: Early forecasting of vehicle flow speeds is crucial for sustainable traffic development and
establishing Traffic Speed Forecasting (TSF) systems for each country. While online mapping services
offer significant benefits, dependence on them hampers the development of domestic alternative
platforms, impeding sustainable traffic management and posing security risks. There is an urgent
need for research to explore sustainable solutions, such as leveraging Global Positioning System
(GPS) probe data, to support transportation management in urban areas effectively. Despite their vast
potential, GPS probe data often present challenges, particularly in urban areas, including interference
signals and missing data. This paper addresses these challenges by proposing a process for handling
anomalous and missing GPS signals from probe vehicles on parallel multilane roads in Vietnam.
Additionally, the paper investigates the effectiveness of techniques such as Particle Swarm Opti-
mization Long Short-Term Memory (PSO-LSTM) and Genetic Algorithm Long Short-Term Memory
(GA-LSTM) in enhancing LSTM networks for TSF using GPS data. Through empirical analysis, this
paper demonstrates the efficacy of PSO-LSTM and GA-LSTM compared to existing methods and
the state-of-the-art LSTM approach. Performance metrics such as Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Median Absolute Error (MDAE) validate the proposed models,
providing insights into their forecasting accuracy. The paper also offers a comprehensive process for
handling GPS outlier data and applying GA and PSO algorithms to enhance LSTM network quality
in TSF, enabling researchers to streamline calculations and improve supposed model efficiency in
similar contexts.

Keywords: deep learning approach; PSO-LSTM; GA-LSTM; short-term traffic speed forecasting;
urban traffic management; sustainability

1. Introduction

Early forecasting of vehicle flow speeds, from vehicle mobility data, plays a vital
role in sustainable traffic development and supports countries in establishing their Traffic
Speed Forecasting systems or applications [1]. Currently, countries worldwide mainly
use online map services such as Google Maps, Apple Maps, Bing Maps, TomTom Maps,
etc., to check travel routes and traffic status on roads [2,3]. This reliance unintentionally
limits the development of alternative forecasting platforms, fails to promote sustainable
development of domestic traffic management, and poses potential risks to information
security. Therefore, researching more sustainable solutions to generate traffic self-warning
systems in urban areas is urgent. Probe data, such as Global Positioning System (GPS) data,
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can be used to forecast average vehicle speed in early warning systems for sustainable
development in transportation management, which requires more in-depth research to
analyze these data to support forecasting vehicle speeds and traffic status in urban areas.

Currently, traffic congestion frequently occurs, creating obstacles and difficulties for
traffic participants in large urban areas [4,5]. Although there are many city government
efforts to determine solutions to limit congestion, few synchronous methods meet the
current reality. The optimal solution is to optimize the current traffic signal timings of
traffic networks and provide a predicted road map for commuters [6–8]. Therefore, Traffic
Speed Forecasting (TSF) plays a vital role in improving efficiency and reducing traffic
congestion, and there is more and more quality scientific research on this issue. Taking
advantage of GPS satellite data from vehicle tracking devices reveals new perspectives in
reducing traffic congestion and managing traffic in urban areas [9,10].

There are many challenges when using GPS data in forecasting traffic speed regarding
sustainable traffic management, such as data quality and accessibility. Data collected from
GPS devices mounted on vehicles moving on the road are not always highly accurate due
to the influence of environmental factors and signal noise [11]. Data collection capabilities
may be limited in areas with underdeveloped telecommunications infrastructure and data
management laws in each country. The second concern regards the transparency and
information security of users [12]. Third, the cost of training, deploying, and maintaining
the deep learning system requires large investment costs, from model development to
data updates and staff training, putting financial pressure on the government [13]. The
fourth is the ability to adapt to realistic conditions. The deep learning models are not
always flexible and accurate to variations in traffic, especially in special situations, or
not suitable for different weather conditions [14]. Fifth is consensus and cooperation;
achieving consensus and cooperation from stakeholders is very important to ensure the
effectiveness and sustainability of the system in traffic management [15]. Nevertheless,
GPS data of vehicles participating in traffic hold value, enabling each country to establish
its forecasting system and develop domestic information technology platforms, thereby
ensuring sustainable development for the country.

The valuable data source from journey monitoring data collected by GPS signals
mounted on vehicles only serves the purpose of managing or handling penalty situations
due to commuter violations of traffic laws. Additionally, it can be exploited by a third party,
such as Google Maps and other mobile applications, for different purposes [16]. This limits
the development of new domestic application platforms to serve traffic optimization in each
country and further concerns information security issues [17]. Therefore, processing and
using this type of data source to assess traffic conditions for traffic networks is necessary.
However, the data source received from the trip monitoring device mounted on vehicles
participating in traffic requires a pre-processing step to remove abnormal or missing data.
This is necessary before it can be used as input parameters for the Traffic Speed Forecasting
(TSF) models and assessing traffic conditions, especially for roads with parallel multiple
lanes in urban areas [18].

Recently, many promising methods have been used to forecast traffic conditions.
Specifically, several traffic flow forecasting methods were applied, including linear regres-
sion models, artificial neural networks, and deep learning solutions [19]. However, these
methods still have some limitations. These include inaccurate forecasting ability, failure to
exploit complex relationships in big data, and difficulty in optimizing model parameters.

Furthermore, the LSTM (Long Short-Term Memory) method in TSF has advantages,
such as the ability to process data series and solve the phenomenon of long-term dependent
chain prediction. However, this method also has some disadvantages, such as difficulty
in handling nonlinear data and the ability to optimize model parameters to achieve high
performance. Hence, applying two deep learning neural networks, Long Short-Term
Memory Optimized by Particle Swarm Optimization (PSO-LSTM) and Long Short-Term
Memory Optimized by Genetic Algorithms (GA-LSTM), solved the current limitations of
the LSTM method [20]. Using PSO and GA optimized hyperparameters such as window
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size, epochs, neurons, and learning rate of the LSTM network more efficiently. This paper
provides a solution for processing GPS data of journey monitoring devices mounted on
commercial vehicles in Vietnam. By the combination of deep learning neural networks and
optimization algorithms, the paper proposes a potential solution to significantly improve
the ability to forecast future traffic speed, making a potential contribution to the application
of artificial intelligence to solve traffic problems.

This scientific paper is the result of expanding, clarifying, and overcoming limitations
of previously published research according to comments from readers and scientific re-
searchers around the world. Specifically, this paper provides an entire proposed model to
establish the traffic status for multilane roads. Additionally, it clearly outlines the process
of processing GPS data to obtain revised data sources for TSF, which was not clearly stated
in our previous study. Furthermore, this research proves that solutions to improve LSTM
network efficiency using GA and PSO are necessary to enhance the quality of TSF models
for transport management of urban areas.

The state-of-the-art solution (called LSTM*) is a contribution to further improving
previously published research [7]. In a previous publication, the authors optimized
three parameters of the LSTM network, including window size, the number of epochs,
and the number of neurons. These parameters were not determined simultaneously but
were instead determined in order of priority. First was window size (called bestWs), then
the number of epochs (called bestEp), and finally the number of neurons (called bestNe).
Although this approach found a set of three initialization parameters that were better than
random initialization for the LSTM network, it did not guarantee that these parameters
represented the optimal set. For example, when determining an optimal window size value
number 1 (Ws1), this value was not the most optimal, but Ws1 combined with the set of
the other two remaining parameters included the number of epochs 1 and the number of
neurons 1 (Ep1 and Ne1) to form the set (Ws1, Ep1, and Ne1), which provided better results
than the selected parameter set. In this paper, the authors proposed two enhanced LSTM
algorithms, GA-LSTM and PSO-LSTM. Compared to the method used in other research [7]
and the existing methods (parametric method, non-parametric method, and deep learning
solution), these two algorithms demonstrate a major improvement in simultaneously op-
timizing the three parameters of the LSTM network using PSO and GA algorithms. The
details of these two algorithms will be presented in the subsequent sections.

According to the published results, the provided model, along with the optimal
parameters, including optimal GA operators and PSO factors, also contribute. Then,
scientists and researchers could apply the same GPS data sources directly to shorten
calculation time. The paper is divided into the following three main parts. Section 2 outlines
the methodology to process GPS data of commercial vehicles and presents solutions to
improve machine learning efficiency using PSO and GA in TSF. Section 3 is the application
of the methodology in Section 2 to the experimental arterial road in Vietnam. Section 4
comprises conclusions, lessons learned, limitations, and future work based on this research.

2. Materials and Methods
2.1. Model Development

Determining the average speed of vehicles on each road section is detailed in the
model proposed below (Figure 1) to forecast and provide early traffic conditions to traffic
participants. This includes information on specific routes and time frames for each day of
the week, enabling participants to choose the most optimal time and journey.

Figure 1 illustrates our weekday traffic conditions forecasting framework. Initially,
GPS tracking data and traffic geometry are gathered. These inputs then undergo data
preprocessing, including road segmentation, map matching, velocity determination, and
anomaly handling. Following this, data processing involves partitioning and normalization.
Subsequently, TSF models, such as enhanced LSTM and other suggested models, are created.
Finally, integrating traffic geometry and TSF models enables the generation of accurate
traffic forecasting about future traffic conditions.
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Figure 1. Weekday traffic conditions forecasting framework model: GPS tracking data and traffic
geometry serve as primary inputs (shown in yellow), undergoing data preprocessing, data process-
ing, and TSF model creation stages (shown in green), culminating in accurate traffic forecasting
information (shown in blue).

However, this paper mainly emphasized the processing of abnormal or missing data
from probe vehicle data and evaluated the quality of enhanced LSTM algorithms (PSO-
LSTM and GA-LSMT) in generating a model to forecast the average speed of vehicles in
each segment for arterial roads in Vietnam.

2.2. Data Processing

As mentioned earlier, this paper focused on processing GPS data to have accurate GPS
data. Then, those data were used as input data for forecasting models on each road segment.
Therefore, this section details how to process GPS data from trip monitoring devices
mounted on vehicles registered for transport business in Vietnam, including handling
anomalous signals and missing data. Processed data were standardized before inputting
into the forecasting model. The remaining aspects, including the process of generating an
online traffic forecast map from GPS data, were presented in detail in different publications.

Two current issues need to be addressed with GPS signals obtained from vehicle-
mounted cruise monitoring devices. Firstly, it is necessary to determine the correct position
of the vehicle on each specific road segment of multilane roads accurately. Secondly, GPS
signals have anomalous values or missing values that appear due to reasons from the GPS
signal transceiver. These are some challenges that this research must address.

The accuracy of the vehicle’s location through GPS signals directly affects the results of
calculating the average speed of each segment of the multilane road. Therefore, in addition
to using accurate traffic geometry data from the 1/2000 scale map during the map matching
stage, it is also vital to process which lane the GPS signal is located on. We described this
incident in Figure 2 shown above. A registered vehicle moving on road segment 2 (Road
Seg.2) transmits 15 GPS signals, which are red dots numbered from 1 to 15, in 15 min to
the signal recording and processing center. However, 5 of the 15 received signals are not
on Road Seg.2. There are 2 signals in Road Seg.1 (signals 5 and 6) and 3 on Road Seg.3
(signals 10,11). Road Seg.1 and Road Seg.3 could belong to the opposite direction in mul-
tilane road. This greatly affects the results of calculating the average speed of road segments
and incorrectly determines the traffic status of each road segment and
road network.

To solve the above issue, this research provided a process in pseudocode to describe a
process for processing data from GPS signals to identify and remove outliers from vehicle
trajectories. Algorithm 1 is overview of the GPS Data Filtering and Route Optimization
Algorithm (GDF-ROA). The GDF-ROA algorithm refines GPS data by filtering points
within the current time frame and assigning road segments to vehicles based on their codes.
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It then removes outliers from each road segment by iteratively evaluating distances to
road segments. Each point is assigned to the nearest segment, and segment densities are
calculated. Outliers are identified and removed based on segment density. The algorithm
ensures the accuracy of the vehicle’s location through GPS signals while optimizing them
for further analysis or navigation purposes. A detailed explanation of the process follows
some steps below.
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Figure 2. Illustration of signal confusion among lanes: there is a vehicle running on lane 2 (road
segment 2), with 15 GPS signals received during the movement. Due to GPS signal transmission
errors and small lanes, some confusion occurred; signals 5 and 6 were mistaken for lane 1 (road
segment 1), and signals 10, 11, and 15 were mistaken for lane 3 (road segment 3).

Algorithm 1 GPS Data Filtering and Route Optimization Algorithm (GDF-ROA) for enhancing
route accuracy and removing outliers from GPS data

1. Input:
2. TmF: Current time frame
3. SegmentList: List of segments (including 16 experimental segments)
4. PointList: List of points (GPS signals)
5. Output:
6. RouteList (containing routes of each vehicle after removing outliers)
7. //Step 1: Filter points within the current time frame
8. NewPointList← FilterByTime(PointList, TmF);
9. //Step 2: Determine routes (set of points) for each vehicle based on vehicle code
10. RouteList← FilterByVehicleCode(NewPointList);
11. //Step 3: Remove outliers for each route
12. For Each Route in RouteList
13. ListSegmentDensity = new ArrayList<Integer>()
14. RouteWithoutOutliers = new Route()
15. For Each Point in Route
16. MinDistance = +∞
17. MinSegmentIndex = 0
18. For Each Segment in SegmentList
19. CurrDistance← CalculateDistance(Point, Segment);
20. If (CurrDistance < MinDistance) Then
21. MinDistance = CurrDistance
22. MinSegmentIndex = Segment.Id
23. End If
24. End For
25. Point.SegmentID = MinSegmentIndex
26. //Increase statistics for this road segment by 1.
27. ListSegmentDensity[MinSegmentIndex] += 1
28. //Check if the Point is not an outlier, add it to RouteWithoutOutliers
29. If (Point.SegmentID = GetMaxDensityFrom(ListSegmentDensity)) Then
30. RouteWithoutOutliers.Add(Point)
31. End If
32. End For
33. Set Route to RouteWithoutOutliers
34. End For
35. //Final result: RouteList after removing outliers
36. Return RouteList;
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Step 1 is to filter the points in the considered time frame. First, the GPS points in the
current time frame (TmF) were filtered out of the PointList and saved to NewPointList. The
original GPS big data source was reduced to filter out the data that needed to be processed
within the corresponding time frame.

Step 2 is to determine the route of each vehicle through the vehicle code. Next, the
GPS points in NewPointList were divided into separate routes based on their vehicle code.
These routes were saved to RouteList.

Step 3 is to remove outliers for each road in RouteList. The algorithm determined
the road segment for each point on the vehicle’s motion trajectory. For each point in the
road, this code compared the distance between that point and the road segments in the
SegmentList. The lane closest to the GPS point was identified and assigned.

Specifically, this code uses the CalculateDistance (Point, Segment) function to calculate
the distance between the point and the line segment (lane) and select the line segment with
the smallest distance (MinDistance) for that point according to the formula below [21]:

D =
|(y2 − y1)x− (x2 − x1)y + x2y1 − x1y2|√

(y2 − y1)
2 + (x2 − x1)

2
(1)

where (x, y) are the vehicle’s GPS coordinates obtained from the vehicle’s onboard trip
monitoring device, (x1, y1) and (x2, y2) are the coordinates of the two corresponding road
segment ending points.

At the same time, this code tracked the density (number of occurrences) of each
line segment in ListSegmentDensity. The algorithm then found the road segment with
maximum density and removed outliers. After determining the density of each road
segment, this code found the road segment with the maximum density (maxIndex). Next,
points on the route that did not belong to the road segment with maximum density were
removed from the route. This eliminated outliers and retained only the points located on
the most dense line segment. Finally, after completing step 3 for all routes in RouteList, the
list of RouteList after outlier removal was returned as the final result of this data processing.

The second problem is described by partial data extraction in the table below. Specifi-
cally, after filtering the trip signal according to the specific time frame of each vehicle for
each road segment as the algorithm model proposed above, the probe vehicle data still
contained erroneous and missing GPS data. GPS signals were received by on-board unit
(OBU) devices of commercial cars. Particularly, when the signal is lost or there is a signal
error (NaN), the speed values return the value “0 km/h” in our system. Using the value
0 (km/h) to calculate the average speed of a road segment in a multilane road led to calcula-
tion errors on the experimental urban road because the Le Hong Phong experimental road
has a maximum cycle length of 120 (s) for traffic light systems and stopping prohibition.
Therefore, the speed returning “0 km/h” every 180 s can only be due to signal reception
error or missing data. As shown in Table 1, the GPS data are still recorded (signals and
density), but the speed is returned to 0 km/h.

Table 1. Anomalous or missing values by the GPS signal transceiver.

ID Speed (Km/h) Total Signals Density Status

2020-02-06T04:45:00.000Z 38.00 2 1 Normal

2020-02-06T05:48:00.000Z 43.50 4 1 Normal

2020-02-06T05:51:00.000Z 0.00 1 1 Missing
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Table 1. Cont.

ID Speed (Km/h) Total Signals Density Status

2020-02-06T05:54:00.000Z 52.00 1 1 Normal

2020-02-06T05:57:00.000Z 0.00 2 1 Missing

2020-02-06T06:00:00.000Z 0.00 1 1 Missing

2020-02-06T06:03:00.000Z 0.00 1 1 Missing

2020-02-06T06:06:00.000Z 22.00 3 2 Normal

2020-02-06T06:09:00.000Z 0.00 1 1 Missing

2020-02-06T06:12:00.000Z 27.00 2 2 Normal

2020-02-06T06:15:00.000Z 44.08 8 4 Normal

2020-02-06T06:18:00.000Z 0.00 1 1 Missing

2020-02-06T06:21:00.000Z 35.00 4 2 Normal

As shown in the Table 1, column 1 describes the ID for vehicles with different identi-
fication codes, column 2 is the recorded vehicle’s speed, column 3 is the number of GPS
signals received, column 4 describes the density, and column 5 describes the current status
of the received test signal. The red highlight colors are anomalous or missing values that
need to be handled.

To handle the second problem, this paper proposed an algorithm called Interpolated
Time Series Generator (ITST) as detailed in the pseudocode section below.

Algorithm 2 is the Interpolated Time Series Generator (ITSG). The ITSG algorithm
aims to generate interpolated time series data from average velocities of segments within a
specified time period. It begins by calculating the average velocity across all time frames for
the segment under consideration. Then, the process identifies and interpolates outlier data
points by checking for neighboring signals and computing averages. Finally, it generates
time series data containing pairs of values {TimeFrame, Velocity} for further analysis or
visualization. This method ensures the completeness and accuracy of time series data by
addressing missing or outlier values through interpolation. The ITSG solved the problem
of missing values in the road segment velocity data by the following steps.

Step 1: The model calculated the average velocity of each segment during the time
frame by inputting the array V containing the average velocities and specifying the period
under investigation.

Step 2: This process handled anomalous vehicle speed (zero velocity values) by
interpolating them from neighboring values that are not abnormal. Specifically, for each
time frame within the specified period, the process checks the velocity value (Vi) equals
0. If so, the process determines if all four neighboring signals are also outliers. If they are,
replace the Vi = 0 with the calculated average velocity; otherwise, interpolate the velocity
using the velocities of the neighboring non-outlier data points.



Sustainability 2024, 16, 2453 8 of 21

Algorithm 2 Interpolated Time Series Generator (ITSG): a process for generating interpolated time
series data from average velocities of segments, enhancing accuracy and completeness

1. Input:
2. V: An array containing the average velocities of the segment under consideration for all
time frames.
3. TimePeriod: The time period under investigation.
4. Output:
5. TimeSeries (containing pairs of values {TimeFrame, Velocity})
6. //Step 1: Calculate the average velocity of the current segment across all time frames.
7. AverageVelocity = CalculateAverage(V)
8. //Step 2: Compute interpolated values for outlier data points.
9. For i = 2 To timeFrameLength Do
10. //Check for cases where there is no signal in this time frame (i.e., V = 0).
11. If (Vi = 0) Then
12. //Check if all 4 neighboring signals are also outliers.
13. If (Vi-2 = 0 & Vi-1 = 0 & Vi+1 = 0 & Vi+2 = 0) Then
14. Vi = AverageVelocity.
15. Else
16. Vi = CalculateAverage (Vi-2, Vi-1, Vi+1, Vi+2)
17. End If
18. End If
19. //Step 3: Generate time series data.
20. For Each TimeFrame In TimePeriod
21. TimeSeriesTimeFrame ← {TimeFrame, VTimeFrame }
22. End For
23. Return TimeSeries;

Step 3: The provided method generates time series data by iterating over each time
frame within the specified period and creating pairs of values {TimeFrame, Velocity},
returning the resulting time series containing these pairs of values.

The result of this algorithm is an improved time series, containing pairs of time
and velocity values, ready to be used in speed analysis and Traffic Speed Forecasting
applications on the corresponding road segment. These processing steps help us to remove
anomalous GPS data and produce accurate and reliable data for decision support and
analysis in the field of traffic monitoring and forecasting. Verification of the accuracy of the
suggested model will be presented in the experimental data processing section below.

After the data preprocessing step, the revised data include three pieces of information:
time frame (or time period), average travel velocity (km/h), and segment index, as shown
in Algorithm 2.

To validate the accuracy of the ITSG model, we compared this model with the follow-
ing popular data processing methods:

Method 1 (Me1) involved eliminating all abnormal or missing signals. This paper
uses dropna function to eliminate all abnormal or missing data. Subsequently, the groupby
function was employed to calculate the average speed for each road segment based on
the filtered data. This approach mitigates the impact of incomplete data on empirical
analysis [22,23].

Method 2 (Me2) utilized the average of all vehicles. The fillna function was used to fill
in missing values using the average speed value of all registered cars. Then, the groupby
function calculated the average speed for each road segment. This method stabilizes data
and maintains accuracy during calculations [24].

Method 3 (Me3) involved averaging over time. The fillna function filled the missing
value with the average speed value from all vehicles over the same period. Then, the
groupby function averaged the speeds for 16 main road segments to reduce the impact of
missing values and increase data uniformity [25].

Data normalization: after processing to determine the exact location of vehicles in
specific segments and processing anomalous data, processed data were divided from the
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data of all time frames into three parts: training set, validation set, and testing set. Then,
the enhanced LSTMs (PSO-LSTM and GA-LSTM) are used to generate the TSF model.

2.3. TSF Models

As mentioned above, many studies demonstrated that the efficiency of the LSTM
model increases significantly after applying GA-LSTM and PSO-LSTM [20,26]. However,
the experiments on the GPS data to forecast the average velocity of segments of the arterial
roads having parallel multiple lanes are limited. The PSO or GA enhanced the LSTM
network to improve the efficiency of this machine learning model.

Normally, PSO-LSTM and GA-LSTM optimized the following effect parameters to
make the model more efficient, such as the window size, the number of epochs, the number
of neurons, and the learning rate. In the introduction section, in the previously published
research [7], we only optimized three effective parameters: the window size, the number of
epochs, and the number of neurons, respectively, similar to applying the LSMT network to
optimize forecasting models in several studies [27–29]. This causes a disadvantage for the
forecasting model because the effective parameters are not optimized simultaneously and
the calculation time is often longer. Hence, we proposed the LSTM network optimization
model by GA and PSO algorithms according to the information shown in Figure 3.
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to enhance the performance and accuracy of LSTM models by enhancing effect parameters.

PSO-enhanced LSTM employs binary encoding, weighting vectors, velocity limits,
and MSE as fitness functions to efficiently optimize parameters. The GA-enhanced LSTM
utilizes binary encoding, a population size of 20, tournament selection, ordered crossover,
and shuffle mutation to enhance model evolution and diversity within the population.
These innovative approaches collectively improve forecasting capabilities by optimizing
parameters and ensuring robustness in handling complex data. Details of the two models
are described as follows.

Model 1: The PSO-enhanced LSTM model utilized several techniques to improve
its performance. Firstly, binary encoding was employed to represent the LSTM model’s
parameters, enhancing the size of the parameter vector and reducing the search space of
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feasible solutions. This encoding scheme facilitated more efficient optimization. Secondly,
weighting vectors C1 and C2 were introduced to provide different weights to each gene,
promoting population diversification and enhancing individuals’ search capabilities in
the solution space. Thirdly, specific limits and velocity update formulas were designed to
maintain stability and prevent velocity values from exceeding predefined limits during
optimization. Fourthly, the Mean Squared Error (MSE) on the validation set served as the
fitness function to evaluate the performance of each individual, guiding the optimization
process effectively. Lastly, speed and position control mechanisms were integrated to
prevent excessive or slow convergence, ensuring efficient optimization.

Model 2: For GA techniques, binary encoding was initially utilized to reduce the size
of the search space, making the search process more efficient and alleviating computa-
tional pressure. Subsequently, each individual was encoded using 12 bits, facilitating the
definition of the gene structure and providing sufficient information for the LSTM model.
Additionally, a population size of 20 was chosen to ensure diversity within the population,
allowing ample time for the GA algorithm to evolve and enhance the population effec-
tively. Tournament selection was employed to impartially select the best individuals in the
population, increasing the likelihood of retaining genetic diversity. Furthermore, ordered
crossover was implemented to ensure that the newly formed model maintained similarity
to the parent model, preserving beneficial characteristics. Lastly, shuffle mutation was
introduced to enhance randomness in the genetic mutation process, preventing premature
convergence and enabling exploration of a wider search space.

By providing these additional implementation details, this process aims to enhance
the reproducibility of the LSTM model enhancements using PSO and GA optimization.

Through a long-term experimental process, we propose parameters that can be used
to optimize the LSTM network for probe vehicle data on parallel multilane roads as the
following Table 2. Scientists could verify and use directly provided optimal factors with the
same GPS data type, thereby reducing processing time as well as improving the accuracy
of the providing model.

Table 2. Optimal parameters for LSTM network.

No.

GA PSO

Parameters
(Operators) Techniques Used Parameters

(Factors) Techniques Used

1 Pre-initialization of
the population Binary encoding Pre-initialization of

the population Binary encoding

2 Gene length 12 Gene length 12

3 Population size 20 PSO swarm size 20

4 Number of generation 20 Number of PSO
Iterations 20

5 Selection Operator Tournament selection C1, C2 (Cognitive and
social coefficients)

Use two vectors C1 and C2 with lengths
equal to the number of individuals, with

random values in the range [0, 1]

6 Crossover Operator Ordered W (Inertia weight)

Apply the weighting process by
multiplying these two vectors (C1 and C2)

together, giving different weights to
each gene.

7 Mutation Operator Shuffle mutation Velocity and position
control

Limiting velocity and position values to
the range [0, 1] keeps the algorithm stable
and avoids bursting or over-demanding

8
Evaluate the

effectiveness of the
fitness value

Mean Squared Error
(MSE)

Evaluate the
effectiveness of the

fitness value
Mean Squared Error (MSE)
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2.4. Performance Validation

The three indicators Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Median Absolute Error (MDAE) are common measurements to assess the accuracy of
a predictive model. Each indicator offers its unique advantages [30,31].

RMSE (Root Mean Square Error) calculates the average of the square of the error
between the prediction and the actual value. It evaluates the larger difference between false
predictions and actual values, thereby identifying outliers or false predictions.

RMSE =

√
1
n∑n

i=1

(
xreal −

^
xPredicted

)2
(2)

where n represents the count of observations, xreal denotes the actual value, and
^
xPredicted

stands for the predicted forecast value.
MAE (Mean Absolute Error) averages the absolute value of the error between pre-

diction and reality. Since it does not square the error, MAE helps model formulation to
determine the mean deviation without being affected by large errors.

MAE =
1
n∑n

i=1

∣∣∣∣xreal −
^
xPredicted

∣∣∣∣ (3)

MDAE (Median Absolute Error) calculates the median of the absolute value of the
error between prediction and reality. The median eliminates the effect of outliers and
represents a degree of stability and ability to deal with asymmetric data.

MDAE = median|xreal −
^
xPredicted| (4)

By combining all three indicators, the suggested models have a more comprehensive
view of the accuracy of the forecasting issues. RMSE focuses on measuring large errors.
MAE helps to determine the mean error. MDAE represents the median error [32]. This
combination helps proposed models to evaluate the predictive model as a whole and
consider all the important aspects.

3. Experimental Analysis
3.1. Data Type

This paper focuses on forecasting traffic speed on Le Hong Phong road, an arterial
road in Hai Phong City, connecting the Hai Phong City center with Cat Bi International
Airport. The starting point is located in Ngo Quyen district, Hai Phong City, with latitude
20◦50′38.80′′ N and longitude 106◦42′34.36′′ E (Figure 4). The ending point is in Hai
An district, Hai Phong City, with latitude 20◦49′27.00′′ N and longitude 106◦43′37.58′′ E.
This experimental road section has a total length of 2.33 km and is divided into four parts,
starting at Ngo Quyen intersection (Intersection No. 1) and ending at Thanh To intersection.
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The photograph captures Le Hong Phong experimental road, illustrating the urban
road leading from Cat Bi airport towards the city center. This road serves as a critical artery
facilitating transportation, bridging the gap between the airport and urban hub.

This figure showcases the distribution of commercial cars’ GPS signals along the
roadway. This research analyzes 16 road sections along Le Hong Phong road, along with
traffic light systems, offering valuable insights into traffic patterns and vehicle movement
dynamics on this crucial road. Each part of the road is divided into many lanes, including
two central lanes 10 m wide, divided into three lanes for cars (four-wheel vehicles), and
two side lanes 7.5 m wide, divided into two lanes for both cars and motorbikes. In total,
this research examines 16 road sections on the Le Hong Phong road (Figure 5).
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Particularly, traffic data were collected by using the GPS transceiver installed in
business vehicles. Collection occurred from 6:00 a.m. to 10:00 p.m. between 1 February and
26 February 2020. Data were sampled daily. They included traffic information from other
vehicles. It is worth noting that the variability in traffic flows and mixed traffic over time
make Traffic Speed Forecasting complex and require the use of effective methods in data
processing. After processing to determine the exact location of vehicles in specific segments
and processing anomalous and missing data, the processed data from the 26-day period
(1 February to 26) were divided into three parts: training set, validation set, and testing set.
The data from the first eighteen days were used as the training dataset. The next four days
were used for validation, and the remaining four days were used as the test dataset. The
proposed model was developed based on the training dataset and validation set.

Subsequently, aiming to improve the traffic conditions and optimize Traffic Speed
Forecasting on the Le Hong Phong route, this study used two advanced forecasting al-
gorithms: GA-LSTM and PSO-LSTM. These algorithms have the potential to contribute
improvements in TSF and support traffic flow management efficiently on this important
road of Hai Phong City.
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3.2. Data Processing and Analysis

Anomaly data from the experimental road, as presented in Section 2.2, were processed
to produce improved datasets for TSF on each road segment. There are many solutions to
handle this problem. As outlined in the ITSG algorithm, the proposed model identified
anomalous values by averaging two GPS signals before and two GPS signals after the
anomaly value and then changing in accordance with abnormal or missing data. In case
all four GPS signals are abnormal, the average value of all vehicles on the road segment is
calculated to change the anomalous GPS data. To ensure the effectiveness of this proposed
method, the model was compared with three other processing methods mentioned above
(Me1, Me2, and Me3).

To ensure effectiveness, the datasets for all four cases were divided into a ratio of
70:15:15, corresponding to the training, validation, and testing datasets. The four methods
were compared based on the Root Mean Square Error (RMSE) measure with the experimen-
tal dataset.

Based on the detailed analysis of the methods in Table 3, the following main obser-
vations and conclusions are presented. The ITSG demonstrated the highest stability and
accuracy in evaluating the data, with the best mean value of 9.81 and low variability. This
method exhibits uniformity in the distribution of the data, illustrated by the closeness of
the 25th and 75th percentiles (8.33 and 11.52), indicating a degree of stability in the data.
On the other hand, Me1, despite having the highest mean value (10.64), has the greatest
variability, with a standard deviation of 2.44. This indicates instability in the evaluation of
the data, possibly due to abnormal values causing large fluctuations. Me2 and Me3, the
other two methods, show comparable performance with stable mean values (10.13 and
10.12, respectively) and low variability (standard deviation 2.13 and 2.09). Both methods
showed stability and accuracy in evaluating the data, being less affected by outliers. Over-
all, ITSG showed effective and stable performance in data evaluation, while Me1 showed
instability and ineffectiveness compared to other methods.

Table 3. Comparative analysis of parameters across four methods for abnormal data processing.

Factors ITSG Me1 Me2 Me3

Count 16 16 16 16

Mean 9.81 10.64 10.13 10.12

Std 1.99 2.44 2.134 2.094

Min 6.81 7.00 6.91 6.91

25% 8.33 8.86 8.64 8.64

50% 9.04 10.213 9.813 9.90

75% 11.52 12.81 11.74 11.87

Max 13.25 14.22 13.89 13.46

Figure 6 illustrates the data post-processing of abnormal GPS tracking, segmented
into time frames, velocity (km/h), and segment numbers. This structured representation
allows for detailed analysis, providing insights into vehicle speed variations and segment-
specific information after processing abnormal GPS data. The speed forecasting results are
displayed more clearly in the figure below.

Furthermore, Figure 7 depicts speed values plotted against time. This visualization
provides insights into how vehicle speeds fluctuate over time, aiding in the analysis of
traffic patterns and dynamics. After processing the data, no unusual velocity values appear.
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3.3. PSO-LSTM and GA-LSTM in Traffic Speed Forecasting

As mentioned above, there are three types of existing solutions to generate a model
to forecast the average speed of parallel multilane segments of roads in urban areas: the
parametric method, non-parametric method, and machine learning solution. We proposed
the following performance comparisons to effectively validate the suggested model by
enhancing the LSTM network utilizing GA and PSO.

In the first performance comparison, the research compared proposed methods PSO-
LSTM and GA-LSTM with other machine learning methods, LSTM*, CNN, and MLP, based
on their effectiveness and applicability in forecasting the average speed of multi-parallel
road segments in urban areas.

In particular, LSTM* represented the state-of-the-art method that we previously pub-
lished by optimizing the parameters window size, number of epochs, and number of
neurons sequentially to improve the accuracy of the original LSTM network [7]. LSTM was
chosen because of its ability to process data sequences and to learn sample buffers in data
time. This is consistent with the time series nature of the GPS data that we are studying.

Convolutional Neural Network (CNN) is considered an effective forecasted method
when simultaneously processing many spatial data, such as image space, to generate TSF
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models [33,34]. CNN was chosen because of its ability to handle spatial data and to learn
special buffers from data images. Even though the road is not an actual target of the
image, CNN can still learn specific roads in the road dataset, helping to improve the traffic
forecasting model.

Multilayer Perceptron (MLP) is a classic neural network structure; it is highly appre-
ciated for its ability to learn abstract representations of input data to make predictions
through layers (input, hidden, and output) [35,36]. MLP is used as a reference model
because of its ability to learn symbolic objects of data input in time series prediction and
develop a predictive framework [37,38]. Although MLP lacks the sequence processing
capabilities of LSTM and CNN, it can still provide a reliable comparison basis for more
complex models.

Based on the statistics from Table 4 and other statistical analyses, a violin chart was
presented for a more objective comparison. The distribution of enhanced LSTM such as
GA-LSTM and PSO-LSTM on the violin graph was uniform, narrow, and lower than graphs
of other machine learning methods. Particularly, the median value of PSO-LSTM was
always the smallest at 8.15, 6.49, and 5.10, with standard deviations (std) of 1.12, 0.99, and
0.75 for the RMSE, MAE, and MDAE indices.

Table 4. Comparing PSO-LSTM and GA-LSTM with alternative machine learning approaches.

Count 16 Segments

PI RMSE Testing MAE Testing MDAE Testing

Solutions PSO-
LSTM

GA-
LSTM LSTM* CNN MLP PSO-

LSTM
GA-

LSTM LSTM* CNN MLP PSO-
LSTM

GA-
LSTM LSTM* CNN MLP

Mean 8.23 8.53 9.01 10.38 10.01 6.55 6.74 6.99 8.14 7.88 5.10 5.44 5.74 6.74 6.67

Std 1.12 1.24 1.65 3.23 2.11 0.99 1.07 1.33 2.65 1.75 0.75 0.84 1.17 2.27 1.59

Min
Value 6.14 6.18 6.29 6.40 6.63 4.86 4.99 4.80 4.87 5.23 3.55 3.69 4.11 4.16 4.30

Q1 7.31 7.92 8.05 8.16 8.58 6.10 6.14 6.32 6.44 6.72 4.74 4.88 5.12 4.98 5.36

Median 8.15 8.53 8.70 9.50 9.93 6.49 6.69 6.70 7.39 7.63 5.10 5.53 5.52 6.46 6.63

Q3 8.98 9.10 10.06 11.87 11.64 7.30 7.48 7.87 9.26 8.98 5.67 5.98 6.56 7.43 7.60

Max
Value 9.89 10.87 12.05 17.12 13.21 8.04 8.25 9.40 13.36 10.78 6.29 6.56 7.81 10.98 10.21

IQR 3.76 4.69 5.76 10.72 6.57 3.18 3.26 4.60 8.49 5.55 2.73 2.88 3.70 6.82 5.91

Additionally, Figure 8 is the violin chart comparison of the PSO-LSTM, GA-LSTM,
LSTM, CNN, and MLP methods. The violin charts illustrate the performance of different
machine learning methods for vehicle speed forecasting by RMSE, MAE, and MDAE values
for 16 road segments.

In the chart above, the CNN method was the least effective method when compared
to the other methods through relatively high IQR indices of 10.72 (RMSE test), 8.49 (MAE
test), and 6.82 (MDAE test), respectively. These observations are also objectively shown
through the width of the violin plot of the CNN method. This could explain why the CNN
machine learning method is a more suitable forecasting solution for spatial data or image
data as some studies have mentioned.

On the other hand, the GA-LSTM and PSO-LSTM methods appear to be more powerful
than the LSTM* method in terms of RMSE, MAE, and MDAE indicators. The two proposed
methods also had shorter calculation times than the LSTM* method by optimizing the
LSTM network indices simultaneously. In total, PSO-LSTM exhibited superiority, with
fewer errors and stable predictability, while GA-LSTM had relative advantages, with low
median values and stable predictability. Depending on the specific requirements of the
problem, PSO-LSTM or GA-LSTM could be a suitable solution to optimize vehicle speed
forecasting performance.



Sustainability 2024, 16, 2453 16 of 21Sustainability 2024, 16, x FOR PEER REVIEW 16 of 21 
 

   

Figure 8. Violin chart comparison of PSO-LSTM, GA-LSTM, LSTM, CNN, and MLP methods based 
on statistical analyses. 

In the chart above, the CNN method was the least effective method when compared 
to the other methods through relatively high IQR indices of 10.72 (RMSE test), 8.49 (MAE 
test), and 6.82 (MDAE test), respectively. These observations are also objectively shown 
through the width of the violin plot of the CNN method. This could explain why the CNN 
machine learning method is a more suitable forecasting solution for spatial data or image 
data as some studies have mentioned. 

On the other hand, the GA-LSTM and PSO-LSTM methods appear to be more pow-
erful than the LSTM* method in terms of RMSE, MAE, and MDAE indicators. The two 
proposed methods also had shorter calculation times than the LSTM* method by optimiz-
ing the LSTM network indices simultaneously. In total, PSO-LSTM exhibited superiority, 
with fewer errors and stable predictability, while GA-LSTM had relative advantages, with 
low median values and stable predictability. Depending on the specific requirements of 
the problem, PSO-LSTM or GA-LSTM could be a suitable solution to optimize vehicle 
speed forecasting performance. 

More specifically, PSO-LSTM was the most effective machine learning method to 
handle our processed probe data type of registered vehicles on Le Hong Phong Road. 

To further confirm the effectiveness of our proposed model, this research compared 
the best mentioned machine learning method above, PSO-LSTM, with other popular 
methods, such as ARIMA (representing the parametric method [39]) and PROPHET (rep-
resenting the non-parametric method [40]). 

Based on the statistical tables (Table 5) and other analyses, the violin plot was pre-
sented according to accuracy assessment indices RMSE, MAE, and MDAE for three TSF 
methods (PSO-LSTM, ARIMA, and PROPHET) for 16 road segments of Le Hong Phong’s 
experiment road (Figure 9). 

Table 5. TSF model comparison (PSO-LSTM, ARIMA, and PROPHET). 

Count 
PI RMSE Testing MAE Testing MDAE Testing 

Solutions 
PSO-

LSTM ARIMA PROPHET 
PSO-

LSTM ARIMA PROPHET 
PSO-

LSTM ARIMA PROPHET 

16  
(Segments) 

Mean 8.23 9.57 9.59 6.55 7.45 7.47 5.10 6.17 6.23 
Std 1.12 1.72 1.75 0.99 1.50 1.50 0.75 1.41 1.42 

Min Value 6.14 7.02 6.98 4.86 5.35 5.26 3.55 4.24 4.29 
Q1 7.31 8.21 8.35 6.10 6.27 6.36 4.74 5.10 5.06 

Median 8.15 9.37 9.42 6.49 7.25 7.32 5.10 6.13 6.25 
Q3 8.98 10.66 10.68 7.30 8.53 8.38 5.67 7.09 7.00 

Max Value 9.89 12.20 12.24 8.04 9.96 10.09 6.29 9.12 9.34 
IQR  3.76 5.18 5.26 3.18 4.61 4.83 2.73 4.88 5.05 

Figure 8. Violin chart comparison of PSO-LSTM, GA-LSTM, LSTM, CNN, and MLP methods based
on statistical analyses.

More specifically, PSO-LSTM was the most effective machine learning method to
handle our processed probe data type of registered vehicles on Le Hong Phong Road.

To further confirm the effectiveness of our proposed model, this research compared the
best mentioned machine learning method above, PSO-LSTM, with other popular methods,
such as ARIMA (representing the parametric method [39]) and PROPHET (representing
the non-parametric method [40]).

Based on the statistical tables (Table 5) and other analyses, the violin plot was presented
according to accuracy assessment indices RMSE, MAE, and MDAE for three TSF methods
(PSO-LSTM, ARIMA, and PROPHET) for 16 road segments of Le Hong Phong’s experiment
road (Figure 9).

Table 5. TSF model comparison (PSO-LSTM, ARIMA, and PROPHET).

Count

PI RMSE Testing MAE Testing MDAE Testing

Solutions PSO-
LSTM ARIMA PROPHET PSO-

LSTM ARIMA PROPHET PSO-
LSTM ARIMA PROPHET

16
(Seg-

ments)

Mean 8.23 9.57 9.59 6.55 7.45 7.47 5.10 6.17 6.23

Std 1.12 1.72 1.75 0.99 1.50 1.50 0.75 1.41 1.42

Min
Value 6.14 7.02 6.98 4.86 5.35 5.26 3.55 4.24 4.29

Q1 7.31 8.21 8.35 6.10 6.27 6.36 4.74 5.10 5.06

Median 8.15 9.37 9.42 6.49 7.25 7.32 5.10 6.13 6.25

Q3 8.98 10.66 10.68 7.30 8.53 8.38 5.67 7.09 7.00

Max
Value 9.89 12.20 12.24 8.04 9.96 10.09 6.29 9.12 9.34

IQR 3.76 5.18 5.26 3.18 4.61 4.83 2.73 4.88 5.05

Figure 9 presents violin charts comparing the PSO-LSTM, ARIMA, and PROPHET
forecasting models, highlighting the RMSE, MAE, and MDAE distributions.

The experimental distributions of RMSE, MAE, and MDAE of PSO-LSTM are narrower
than the other two representative methods that stand for non-parametric methods and
parametric methods. Specifically, the IQR values of PSO-LSTM were the smallest at 3.76,
3.18, and 2.73 regarding RMSE, MAE, and MDAE, respectively.
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The violin plot of the RMSE test for ARIMA displays a wider distribution than PSO-
LSTM and PROPHET. The graph shows that PROPHET’s MDAE test has a wider and
higher distribution than the other two methods, indicating significant bias in the forecasting
model. Based on the RMSE test, MAE test, MDAE test, and statistical analysis in Table 5
above, PSO-LSTM showed more stability and accuracy in TSF with this type of data.

Figure 10 shows the runtime of three algorithms on sixteen experimental road seg-
ments. Upon observing the chart, it becomes evident that the runtime of the optimal
algorithm LSTM using PSO and GA takes much longer than LSTM. This is understandable
because, while LSTM fits directly with randomly initialized parameters on the training
datasets, GA-LSTM and PSO-LSTM have to undergo an evolutionary process of GA and
a movement iteration process of particles in PSO to find the optimal parameter set for
LSTM. Another noticeable point is that the runtime of PSO significantly surpasses GA.
Because of the GA technique, only a few offsprings need to calculate fitness values at each
generation. Meanwhile, in PSO, at each movement iteration, all the particles need to update
their positions and velocities, thus all having to recalculate fitness values. This leads to PSO
having the longest runtime. This tradeoff can be acceptable because both PSO-LSTM and
GA-LSTM yield better results than LSTM alone, and PSO-LSTM provides the best result.
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After processing the data and running the TSF model by PSO-LSTM, the forecasting
results for both the training and testing datasets of all the road segments are presented.
The forecast results of Road Seg.1 shown in Figure 11 below are representative results for
16 experimental road sections of the Le Hong Phong road.
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Figure 11 shows the TSF results of PSO-LSTM on Seg.1 of Le Hong Phong Street,
depicting real train data and test data alongside the PSO-LSTM forecasting values. The
above image showcases real train data (blue zigzag line) and PSO-LSTM predictions (orange
zigzag line) for Seg.1 of Le Hong Phong Street. Similarly, the below image displays real
test data and PSO-LSTM forecasting values. These visualizations offer insights into the
accuracy of PSO-LSTM in forecasting vehicle speeds on this road segment.

4. Discussion

This paper focused on processing big data sources from GPS tracking devices of vehi-
cles registered for transport business in Vietnam. The paper demonstrated that abnormal
or missing values always exist in data sources obtained from GPS tracking devices and
contributed methods for handling these abnormal or missing GPS values. Furthermore, this
research developed a process to optimize TSF on parallel multilane roads in Hai Phong City
using two advanced methods, PSO-LSTM and GA-LSTM. Through objective comparisons,
the paper proposed a model for handling abnormal or missing signals of GPS tracking
devices through two suggested models by pseudocode above.

Specifically, this paper proposed an effective approach to handling anomalous data
through using the ITST (Interpolated Time Series Generator) algorithm to handle missing
and heterogeneous data values. In addition, the paper also provided optimal values as well
as usage techniques of PSO and GA that can be directly applied to further research to reduce
calculation time and improve the accuracy of the proposed forecasting model in the field
of TSF. From there, scientists in each country can directly apply or develop other research
to serve the establishment of domestic traffic forecast models or applications towards
smart, sustainable urban development. Comparisons between PSO-LSTM, GA-LSTM, and
existing forecasting models demonstrated that PSO-LSTM was superior in constructing the
TSF. Moreover, this research showed that LSTM networks were much more effective when
using optimization algorithms such as PSO and GA to optimize the crucial parameters
of the model, such as the number of hidden neurons, window size, number of iterations
(epochs), and learning rate (learning rate).

Through detailed probe data processing models and performed comparisons, this
study demonstrated the superiority, expanded, and overcame the limits of the previously
published research paper.

The proposed model needs to be further improved to adapt to real-world applications,
which hinges on its adaptability, generalizability, and capacity to provide sustainable
benefits in dynamic transportation environments. By applying the contributions of this
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paper and addressing these factors, researchers can develop a robust and versatile TSF
model that supports decisionmaking and enhances transportation systems’ resilience and
efficiency towards sustainable traffic management.

5. Limitations and Future

Although the research results are quite promising, this research is limited to the scope
of the experimental road named Le Hong Phong Road, Hai Phong City, Vietnam. Therefore,
applying the results of this paper to other proposed model formulations and in the traffic
network is necessary to verify the accuracy of the suggested model. Additionally, the data
collected are mainly from commercial cars. Hence, data collection is necessary on many
different vehicles of mixed traffic flows and different traffic conditions to suit each country
and territory better.

While the research results are feasible, several limitations require attention. Reliance
on specific GPS data may limit generalizability, and potential feedback loops necessitate
ongoing monitoring.

The results of this research apply to practical traffic management systems in Vietnam.
They also reveal prospects for integrating artificial intelligence into improving traffic
management capacity and solving the challenges regarding the transportation industry.
In the future, the proposed model will be tested on many different types of roads under
different conditions and for mixed traffic flows to improve the accuracy of the TSF model.
The research will aim to generate an entire traffic forecast model for Hai Phong City and
develop it in other cities in Vietnam, which will promote the development of domestic
application platforms that contribute to sustainable urban development in the future.

6. Conclusions

This paper once again demonstrates that PSO and GA improved the accuracy of LSTM
networks in establishing traffic forecast models. However, for each different data type, the
algorithms need to be customizable to fit and find the most optimal model. Research needs
to be continuously improved to enhance the accuracy of forecast models to handle traffic
congestion in urban areas.

Furthermore, this paper presents a comprehensive methodology for traffic forecasting.
Despite the inherent challenges associated with portability and dynamic traffic patterns,
the proposed model needs to address these concerns. This can be achieved through
adaptability, generalizability, and continuous refinement to ensure the model’s relevance
and applicability in diverse geographic and infrastructural contexts.
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