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Abstract: In order to achieve the goal of low-carbon, efficient delivery using unmanned vehicles, a
multi-objective optimization model considering carbon emissions in the problem of optimizing multi-
route delivery for unmanned vehicles is proposed. An improved genetic algorithm (IGA) is designed
for solving this problem. This study takes into account constraints such as the maximum service
duration for delivery, the number of vehicles, and the approved loading capacity of the vehicles,
with the objective of minimizing the startup cost, transportation cost, fuel cost, and environmental
cost in terms of the carbon dioxide emissions of unmanned vehicles. A combination encoding
method based on the integer of the number of trips, the number of vehicles, and the number of
customers is used. The inclusion of a simulated annealing algorithm and an elite selection strategy
in the design of the IGA enhances the quality and efficiency of the algorithm. The international
dataset Solomon RC 208 is used to verify the effectiveness of the model and the algorithm in small-,
medium-, and large-scale cases by comparing them with the genetic algorithm (GA) and simulated
annealing algorithm (SA). The research results show that the proposed model is applicable to the
problem of optimizing the multi-route delivery of unmanned vehicles while considering carbon
emissions. Compared with the GA and SA, the IGA demonstrates faster convergence speed and
higher optimization efficiency. Additionally, as the problem’s scale increases, the average total cost
deviation rate changes significantly, and better delivery solutions for unmanned vehicles are obtained
with the IGA. Furthermore, the selection of delivery routes for unmanned vehicles primarily depends
on their startup costs and transportation distance, and the choice of different vehicle types has an
impact on delivery duration, total distance, and the average number of trips. The delivery strategy
that considers carbon emissions shows a 22.6% difference in its total cost compared to the strategy
that does not consider carbon emissions. The model and algorithms proposed in this study provide
optimization solutions for achieving low-carbon and efficient delivery using unmanned vehicles,
aiming to reduce their environmental impact and costs. They also contribute to the development and
application of unmanned vehicle technology in the delivery field.

Keywords: carbon emissions; unmanned vehicles; multi-trip; path optimization; genetic algorithm;
sustainable development

1. Introduction
1.1. Background

Our study is based on the project “Path Planning Algorithm for unmanned vehicles in
Multi-Objective Scenarios” from the 8th China International “Internet Plus” Innovation
and Entrepreneurship Competition for College Students in 2022.

The logistics industry plays a crucial role as the “lifeblood” of the national economy.

Sustainability 2024, 16, 2357. https://doi.org/10.3390/su16062357 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16062357
https://doi.org/10.3390/su16062357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0006-8402-1088
https://doi.org/10.3390/su16062357
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16062357?type=check_update&version=3


Sustainability 2024, 16, 2357 2 of 25

Its rapid growth underscores the importance of identifying ways to conserve man-
power and resources while enhancing the efficiency of logistics’ distribution—a key focus
for future development. The integration of future intelligent, automated, and unmanned
logistics deliveries with a low-carbon, green, and environmentally friendly development
approach has emerged as a prominent topic in the logistics industry [1]. With the swift
evolution of modern society, unmanned delivery vehicles have garnered increasing public
attention. The current applications of unmanned vehicles span diverse areas, encompassing
public transportation in cities, airports, parks, and other service locations [2]. They are also
employed in logistics [3] and play a role in handling and production lines within industrial
manufacturing workshops [4]. Equipped with intelligent control and navigation systems,
these vehicles have the potential to offer efficient travel, decrease fuel consumption and ex-
haust emissions, and feature intelligent path planning and traffic coordination capabilities.
Additionally, they can provide services like taxis and ride-hailing vehicles for passengers,
contributing to the reduction of traffic congestion [5]. In the future, the incorporation
of new technologies such as sensors, radar, cameras, and 5G in unmanned vehicles will
enable their real-time perception of their surroundings, lowering the likelihood of traffic
accidents. However, challenges persist during the autonomous driving process, particularly
in handling complex traffic scenarios and emergency situations [6]. Therefore, establishing
a robust legal system to ensure the safety of unmanned vehicles has become a pivotal
focus for future research [7]. This study underscores the importance of the optimization
of unmanned vehicle paths, framing it as the vehicle routing problem (VRP). Particularly
during the pandemic, this approach proved beneficial in minimizing the contact between
community residents while also generating optimized delivery routes for unmanned vehi-
cles. Consequently, this approach effectively reduces the actual number of miles traveled,
optimizes traffic congestion, and promotes sustainable modes of transportation. These
outcomes underscore the significant importance of applying this research method [8].

1.2. Literature Review

The unmanned vehicle delivery routing problem is fundamentally a VRP, which has
found a growing range of applications that require its solving in daily life, such as material
distributions [9], drone path optimization [10,11], home healthcare system applications [12],
public transit services’ mode and route optimization [13], electric vehicle path problems
considering battery charging status [14–16], dynamic VRPs [17,18], emergency material
dispatch optimization [19–21], service-oriented collaborative VRPs [22], and green delivery
path problems [23,24]. In contrast to the traditional vehicle routing problem (VRP), the
incorporation of unmanned vehicles facilitates continuous 24 h back-and-forth deliveries
without the requirement of human drivers. Consequently, this challenge has evolved
into a distinct variant known as the vehicle routing problem with multiple trips (MT-
VRP), introduced by Fleischmann in 1990 [25]. In this scenario, vehicles repeatedly travel
between a distribution center and customer locations, necessitating the organization of trips
within a restricted working period. This implies that each vehicle can undertake multiple
trips, and these routes must be scheduled based on a specific timetable. When faced with
limitations to fleet size, employing multiple trips becomes essential for effectively managing
vehicle utilization. This approach offers the advantage of potentially reducing the number
of required drivers and vehicles, leading to an overall improvement in efficiency and
cost-effectiveness. Owing to its broad applicability, scholars have consistently directed
their attention to this problem since its inception. In practical terms, logistics companies
often find it challenging to deploy enough vehicles to meet all customer demands. As a
result, they tend to maximize their utilization of a limited fleet by organizing vehicles over
multiple trips.

In the domain of exact algorithmic solutions, Hernandez et al. [26] addressed the
multi-trip vehicle routing problem with time windows by introducing a two-stage exact
algorithm. They validated the model’s effectiveness through the computational results
obtained from benchmark cases. Recognizing the perishable nature of goods, Azi et al. [27]
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presented an exact algorithm rooted in resource-constrained shortest paths. This involved
generating all non-dominated feasible routes and subsequently selecting and ranking
the routes in two distinct stages. Scholars tackling multi-trip vehicle routing problems
with time windows have introduced a “branch-and-cut-and-price” algorithm [28–31]. In
a similar vein, Karimi et al. [32] devised a mathematical programming formulation for
a VRP with time windows and variable vehicle capacities. They went on to develop a
branch-and-price algorithm to address and solve the identified problem effectively.

In the realm of heuristic algorithms for problem-solving, Karoonsoontawong et al. [33]
designed a heuristic algorithm to solve the multi-trip inventory routing problem with the
objective of minimizing distribution costs and maximizing the total quantity of deliveries.
Petch et al. [34] introduced a multi-stage constructive heuristic method. In the initial
stage, they employed a savings method to generate solutions for the multi-trip vehicle
routing problem (MT-VRP). Subsequently, the second stage involved constructing and
refining the MT-VRP, utilizing box loading to minimize overtime. The third stage utilized
route filling to resolve the MT-VRP and generate final vehicle route solutions. Brandao
et al. [35] formulated models that considered multiple constraints, including multiple trips,
customer delivery time windows, and customer visitation restrictions. They proposed a
taboo search algorithm with a variable neighborhood. Olivera et al. [36] recommended
an adaptive memory method to minimize total route costs. Babaee Tirkolaee et al. [37]
investigated the multi-trip vehicle routing problem (VRP) with time windows, focusing
on urban waste collection. They put forth an efficient simulated annealing (SA) method to
address this challenge, demonstrating its superior performance within shorter computation
times compared to the CPLEX solver. Furthermore, Tirkolaee et al. [38,39] presented a
method for solving the Green Capacitated Arc Routing Problem (G-CARP) and introduced
an approach to solve the robust multi-vehicle routing problem with an intermediate vehicle
depot and time windows. Cattaruzza et al. [20] designed an Iterated Local Search algorithm
with the objective of minimizing the vehicles’ total travel time. Zhang et al. [40] tackled
a multi-trip fuzzy demand VRP with time window preferences, aiming to minimize total
costs. They established a model and effectively verified it through a Population Evolution
Algorithm and a random simulation algorithm. Zhen et al. [41] introduced a hybrid
optimization-intelligent algorithm for the vehicle routing problem with multiple vehicle
segments, trips, time windows, and release dates. In the context of a VRP with time
windows and release dates, encompassing multiple vehicle stages and trips, Chen et al. [42]
responded to the challenges posed by the COVID-19 pandemic. They introduced a non-
contact joint distribution service for a multi-vehicle, multi-trip routing problem, aiming
to enhance resident satisfaction with food delivery services. Their proposed solution
involved an enhanced artificial bee colony algorithm (ABC). In addressing a multi-trip
VRP with time windows and release time constraints, Song et al. [43] integrated the Beam
Search algorithm with the Particle Swarm Optimization algorithm (Beam-PSO) to solve
a MT-VRP problem. Simultaneously incorporating the location problems of distribution
centers into the multi-trip routing problem, they constructed a mathematical model with the
goal of minimizing total system costs. The simulated annealing algorithm was employed
to effectively solve the problem [44]. Wassan et al. [45] developed a two-stage Variable
Neighborhood Search (VNS) algorithm for solving the Multi-Trip Vehicle Routing Problem
with Backhaul (MT-VRPB). Regarding a multi-trip vehicle dispatch problem featuring
time windows, service-related loading times, and restricted trip durations, Neira et al. [46]
introduced two double-indicator integer planning models. Anggodo et al. [47] proposed an
optimization algorithm designed to address a vehicle routing problem (VRP) with multiple
trips and time windows. To enhance package delivery efficiency, Janinhoff et al. [48]
introduced a data-driven framework for evaluating alternative delivery strategies. They
established corresponding models and employed an adaptive large neighborhood search
heuristic to address related issues. Table 1 provides a more comprehensive overview of the
literature, including the problems’ attributes, the objective functions, the objects of study,
and the algorithms used for resolution.
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Table 1. A representative comparison of the relevant literature.

Papers

Optimization Models Solution Method

Research Topics Research
Object Objective Function Precision

Algorithms
Heuristics

Algorithms Others

Zhang et al. [9]
A vehicle routing

problem with time
windows (VRPTW)

Family medical services Minimize travel costs Particle Swarm
Optimization (PSO)

Chen et al. [10] VRP Task assignment Minimize the maximum
observation time

CPLEX and Gurobi
solvers

Guan et al. [13] VRP Customized bus Maximizing profits GA

Zhao et al. [16] Electric Vehicle Routing
Problem (EVRP) Electric vehicle services Minimize

operating costs

Adaptive large
neighborhood
search (ALNS)

Hachiya et al. [19] VRP Unmanned aerial
vehicle (UAV) Minimizing total costs Q-learning (QL)

Zheng et al. [23]

Green Vehicle Routing
Problem Involving

Simultaneous Pickup
and Delivery with

Time Windows
(GVRPSPDTWs)

The green automated
guided vehicle (AGV)’s

energy consumption

Minimizing total
energy costs

Hybrid differential
evolution algorithm

based on large
neighborhood

search (DE-LNS)

Yang et al. [24] The Green VRP Commercial concrete
distribution

Minimizing total
fuel consumption GA

Hernandez et al. [26] MTVRP Vehicle delivery Minimize time spent
visiting customers

Branching and
pricing algorithms

Marques et al. [29,31]

A multi-trip vehicle
routing problem with

time windows
(MTVRPTW)

Delivery of goods to
customers

Minimization of
transport costs

Branch-Cut-and-Price
approach

Brandao et al. [35]
A multi-trip vehicle

routing and scheduling
problem (MTVRSP)

Real distribution
problems

Access to all customers
and minimal time spent Tabu search heuristic
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Table 1. Cont.

Papers

Optimization Models Solution Method

Research Topics Research
Object Objective Function Precision

Algorithms
Heuristics

Algorithms Others

Babaee et al. [37] MTVRP Municipal
waste recycling

Minimize total cost
of ownership SA

Tirkolaee et al. [38]
The multi-trip Green

Capacitated Arc Routing
Problem (G-CARP)

Environmentally
friendly emissions of

greenhouse gases

Minimizing the cost
of greenhouse
gas emissions

Hybrid Genetic
Algorithm (HGA)

Tirkolaee et al. [39] MTVRP Perishable products
Minimizing total

distance traveled and
total cost

CPLEX solver

Chen et al. [42] Multi-vehicle multi-trip
routing problem

Community courier
delivery service

Residents’ satisfaction
with food

delivery services

Artificial bee colony
algorithm (ABC)

Wassan et al. [45]
A Multiple Trip Vehicle
Routing Problem with
Backhauls (MT-VRPB)

Arranging shipments
from distribution centers CPLEX solver The Two-Level

VNS algorithm

Neira et al. [46]

A multi-trip vehicle
routing problem with

time windows,
service-dependent
loading times, and

limited trip durations
(MTVRPTW-SDLT)

Vehicle deliveries Reduce costs
Two integer

programming
(IP) models

Anggodo et al. [47]

A multi-trip vehicle
routing problem with

time windows
(MTVRPTW)

Travel route issues Minimal
commuting time GA

Janinhoff et al. [48]

A multi-trip vehicle
routing problem with

delivery options
(MT-VRPDO)

Express delivery Minimizing
delivery costs

Adaptive large
neighborhood
search (ALNS)

Data-driven framework
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In conclusion, although these variants of the VRP have substantial practical implica-
tions, there remains a dearth of comprehensive research and discourse within the classic
VRP field. Some scholars have employed exact algorithms for solving small-scale problems,
leveraging their efficacy in addressing specific characteristics. However, these exact algo-
rithms encounter challenges in delivering optimal solutions within a limited timeframe
when applied to larger-scale problems. Moreover, numerous scholars have devised specific
heuristic algorithms to tackle the problem, yielding commendable optimization results
across simulations of various scales. Consequently, this paper incorporates heuristic rules
and designs corresponding algorithms to address the identified problem. Ultimately, the
in-depth research and exploration into the characteristics of this problem conducted by
various scholars underscore the significant practical value of the MT-VRP. Consequently,
fewer authors are directing their focus toward the MT-CVRP. This variant not only consid-
ers distance and fuel factors but also emphasizes the importance of low carbon emissions
in unmanned vehicle routing. Building on this foundation, we have made the following
key contributions:

1. Given the common issue in the logistics industry of not being able to provide a
sufficient number of unmanned vehicles to meet all customer demands, this paper
addresses the multi-trip vehicle routing problem (MT-CVRP) with a consideration of
carbon emissions. A mathematical optimization model has been developed, incorpo-
rating constraints such as maximum service time, the number of vehicles, and their
rated load capacities, along with the minimization of the unmanned vehicle startup
costs, transportation costs, fuel costs, and environmental costs associated with carbon
emissions, as its objectives.

2. Given the inherent NP-hard nature of the model, this paper employs heuristic algo-
rithms for its resolution. A solution mapping process is designed based on the integer
combination encoding of the trip, vehicle, and customer numbers. Extending beyond
the traditional GA, this paper incorporates an SA to bolster its global search capability.
An IGA is also devised to address and solve the MT-CVRP.

3. The simulation was divided into small-scale, medium-scale, and large-scale cases
using the Solomon RC 208 series international standard dataset. A sensitivity analysis
was also conducted using the E-n51-k5 standard dataset. The experimental results
demonstrated that the IGA is more advantageous in solving the MT-CVRP problem
compared to the GA and SA. This experimental validation confirms the effectiveness
of this model and algorithm and provides theoretical guidance and experimental
methods for logistics companies to achieve low-carbon transportation and reduce
their energy consumption and environmental pollution.

2. Optimization Modeling
2.1. State the Research Question and Hypothesis
2.1.1. Describe the Problem to Be Solved

As depicted in Figure 1, distribution center 0 plans to deploy multiple unmanned
vehicles to deliver goods to customers efficiently. The known details include each cus-
tomer’s location coordinates, delivery orders, and the vehicles’ load capacities. The primary
objective is to fulfill customer needs within a specified service planning period and metic-
ulously plan routes for unmanned vehicles. The goal is to minimize total transportation
costs and carbon emissions, thereby mitigating environmental pollution while completing
tasks. Ultimately, the unmanned vehicles will return to the distribution center after ser-
vicing each customer. For instance, unmanned vehicle 1 is assigned two trips to service
customers: 0-5-17-10-23-9-0 and 0-18-1-13-24-0. Similarly, unmanned vehicle 2 undertakes
two trips: 0-11-3-22-0 and 0-7-19-8-28-2-0. Meanwhile, unmanned vehicle 3 handles three
trips: 0-12-21-16-0, 0-17-14-25-4-20-0, and 0-15-26-29-6-0.
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2.1.2. Model Assumptions

1. Each unmanned vehicle trip starts from the distribution center; the vehicle serves the
customer and then returns to the distribution center.

2. The vehicles are of the same type and their total transportation quantity cannot exceed
their carrying capacity.

3. The location coordinates and demands of each customer are known.
4. Each customer must and can only be visited once.
5. The speed of the unmanned vehicle is known and fixed, without considering traf-

fic congestion.
6. The total delivery time for all trips of each unmanned vehicle does not exceed their

maximum service duration.
7. The start time for each trip of the unmanned vehicle is the end time of the previous

trip of the delivery vehicle.
8. Assuming that the unmanned vehicle is a fuel vehicle, its fuel consumption per km is

proportional to its carbon dioxide emissions, regardless of the effects of driving speed,
road conditions, and other factors on fuel consumption.

2.2. Description of Symbols and Variables

The MT-CVRP is defined on a directed graph G = (V, A), where V represents the set
of n vertices and A is the set of arcs. In this context, the number 0 represents the distribution
center. The symbols used in the model are defined as outlined in Table 2 below.
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Table 2. Notations for the MT-CVRP.

Parameter Symbols Specific Meaning Units

Set:
N The set of customers, denoted as N = {1, 2, · · · , n} -
Z The set of vehicles, denoted as Z = {1, 2, · · · , z} -
V The set of all points, denoted as V = {0} ∪ N -
A The set of all edges, denoted as A = {i, j|i, j ∈ V} -

Parameters:
Q The carrying capacity of the unmanned vehicle kg
Di The demand of customer i kg
dij The distance between customer i and customer j km

tij
The time at which the unmanned vehicle has passed through

customer i and customer j h

γ The cost per unit distance traveled by the unmanned vehicle USD/km
θ1 The startup cost for each unmanned vehicle USD
θ2 Cost per liter of fuel USD
θ3 The environmental cost of emitting 1 kg of CO2 USD/kg CO2
ε The vehicle’s fuel consumption per kilometer L/km
ρ The fuel conversion coefficient Kg CO2/L

λ
The penalty cost for the unmanned vehicle’s total delivery time

exceeding its maximum driving time USD/h

η
The penalty cost per unit for exceeding the vehicle’s rated

load capacity USD/kg

γ A large positive number -

MT The maximum delivery time for each trip during unmanned
vehicle delivery H

MV The maximum number of vehicles that can be used for
unmanned vehicle delivery vehicles

Intermediate variables:

τz
w

The sequence in which customers are to be serviced by
unmanned vehicle z on trip w -

nz All trips of unmanned vehicle z -
βz

w The departure time of unmanned vehicle z on trip w H
δz

w The travel time of unmanned vehicle z on trip w H
Ψ(τz

w) The load capacity of unmanned vehicle z on trip w Kg
dz

ij The distance traveled by unmanned vehicle z Km
ξz The set of all trips of unmanned vehicle z -

Decision variables
Yz Is 1 if unmanned vehicle z is activated, otherwise 0 -

Xzw
ij

Is 1 if unmanned vehicle z serves customer i and j on trip w,
otherwise 0 -

2.3. Formatting of Mathematical Components

The objective function is to minimize the total costs, represented as follows:

F = Min(C1 + C2 + C3 + C4 + C5 + C6) (1)

The cost of transporting unmanned vehicles is related to the distance they have
traveled, expressed as follows:

C1 = γ
N

∑
i=0

N

∑
j=0

Z

∑
z=1

dz
ijXij (2)

There will be penalty costs for unmanned vehicles that carry more than their load
capacity during delivery, expressed as follows:

C2 = η
Z

∑
z=1

nz

∑
w=1

max{0, Ψ(τz
w)−Q} (3)
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Due to the limitations of the attributes of the unmanned vehicle itself, there is a time
limit in the delivery process, and there will be a penalty cost for exceeding its maximum
service time, expressed as follows:

C3 = λ
Z

∑
z=1

nZ

∑
w=1

(δz
w −MT) (4)

Once the unmanned vehicle is started, there will be a vehicle startup cost, indicated below:

C4 = θ1

Z

∑
z

Vz (5)

Since the unmanned vehicle is assumed to be a fuel vehicle, fuel costs will be incurred
once it is started, expressed as follows:

C5 = θ2

N

∑
i=0

N

∑
j=0

Z

∑
z=1

dz
ijε (6)

The cost generated by the CO2 released by unmanned vehicles during distribution is
expressed as follows:

C6 = θ3ρ
N

∑
i=0

N

∑
j=0

Z

∑
z=1

dz
ijXijε (7)

s.t.
N

∑
i=0

Z

∑
z=1

nz

∑
w=1

Xzw
ij = 1, ∀j ∈ N, i 6= j (8)

N

∑
j=1

Z

∑
z=1

nz

∑
w=1

Xzw
ij = 1, ∀i ∈ N, i 6= j (9)

N

∑
i=0

N

∑
j=0

nz

∑
w

Xzw
ij ≤ Y×Vz, ∀z ∈ Z,i 6= j (10)

nz

∑
z

Yz ≤ MV (11)

N

∑
i=1

Xzw
0i =

N

∑
j=1

Xzw
j0 , ∀w ∈ nz, ∀z ∈ Z (12)

Ψ (τz
w) =

N

∑
i=0

N

∑
j=0

DiXzw
ij , ∀z ∈ Z, ∀w ∈ nz, i 6= j (13)

Ψ (τz
w) ≤ Q, ∀z ∈ Z, ∀w ∈ nz (14)

nz

∑
w=1

δz
w ≤ MT,∀z ∈ Z (15)

N

∑
i=0

Xzw
ih −

N

∑
j=0

Xzw
hj

= 0, ∀z ∈ Z, ∀w ∈ nz, i 6= j 6= h (16)

N

∑
i=0

N

∑
j=0

Xzw
ij ≤ n− 1, ∀z ∈ Z, ∀w ∈ nz, i 6= j (17)

ζz = {nz|z = 1, 2, · · · , Z} (18)
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βz
w =

{
0, w = 1, z = 1, 2, · · · , Z
βz

w−1 + δz
w−1, w = 2, z = 1, 2, · · · , Z (19)

Xzw
ij ∈ {0, 1}, ∀z ∈ Z, i, j ∈ {0, 1, 2, · · · , n}, ∀w ∈ nz (20)

Yz ∈ {0, 1}, ∀z ∈ Z (21)

Equations (8) and (9) signify that each customer is exclusively served by a single
unmanned vehicle along a designated route. Equation (10) stipulates that only activated
unmanned vehicles are operational. Equation (11) ensures that the number of vehicles
departing from the distribution center does not exceed the total number of available
vehicles. Equation (12) dictates that the number of entries and exits of unmanned vehicles
from the distribution center during any trip should be equal. Equation (13) addresses
the load capacity of unmanned vehicles for individual trips, while Equation (14) imposes
constraints on the overall load capacity of unmanned vehicles. Equation (15) asserts that
the total delivery time for all trips conducted by an unmanned vehicle must not surpass
its maximum service duration. Equation (16) maintains consistency between unmanned
vehicles’ numbers of entrances and exits to any customer’s demand point. Equation
(17) ensures the absence of subroute constraints, eliminating the possibility of subtrips.
Equation (18) encompasses the aggregation of the trips of all unmanned vehicles, while
Equation (19) establishes that the departure time of an unmanned vehicle on trip w is the
sum of the departure time from its preceding trip and the travel time. Lastly, Equations (20)
and (21) represent binary decision variables.

3. IGA

As outlined in the literature review in Section 1.2, scholars commonly resort to heuristic
algorithms to address various combinatorial optimization problems. Researchers tend to
turn to heuristic algorithms when dealing with discrete or continuous problems, such as
function optimizations, queuing problems, and traveling salesman problems. Among these,
GAs stand out due to their advantages, including their global search function, parallel
search function, and broad applicability. Consequently, many scholars across diverse fields
extensively use genetic algorithms [1,13,18,24,38,47]. In alignment with this trend, this
paper adopts a heuristic algorithm for optimization and refines its approach based on a
genetic algorithm to solve this optimization model.

3.1. Decoding and Coding

In the MT-CVRP, the coding rules are as follows: assuming that the total number of
customer points to be served is n, the total number of transportation vehicles is z, and
that each vehicle has, at most, w trips for delivery, this paper plans to use these integers
for chromosome coding, while the coding length of the whole chromosome is n + w× z.
First of all, we generate the w× z matrix K, the customer’s 1 ∼ n integer and matrix K are
integrated into a row vector, and then we randomly generate the length of the n + w× z
chromosome sequence, representing a chromosome. At the same time, expressed as a
solution to the problem, the entire chromosome encoding sequence corresponds to the
actual problem; assuming that all vehicles z in the K matrix virtualize one distribution
center for each distribution trip they make, all trips should virtualize w distribution centers.
The corresponding decoding rules are as follows: firstly, based on the coding rules, the
n + w× z alleles are randomly arranged to locate the position of gene sequences within
the integer n ∼ (n + w× z) range; secondly, the current coding of n ∼ (n + w× z) alleles
is used to divide the trips into a number of gene segments, which in turn determine the
sequences of all the customers distributed to by each vehicle.

Figure 2 shows the coding and decoding schematic of the IGA to solve the MT-CVRP.
Assuming that there are 3 vehicles to serve 10 customers and that each vehicle has at most
2 trips, K = [11, 12, 13; 11, 12, 13]; this is followed by integrating the integers from 1 to 10
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with the matrix K to form a vector, and finally generating the chromosome sequence
randomly. In Figure 2, 1 ∼ 10 indicates the customer code, the division symbol 11 ∼ 13
is used to divide the trip, the customer sequence between 2 adjacent separator symbols
constitutes a trip, the same divider is used to specify the unmanned vehicle transportation
task of the trip task set, the unmanned vehicle number and the K value are not needed to
distinguish between the randomly specified sequences, and, in terms of the customers to
serve, the order of the actual decoding permutation shall prevail.
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3.2. Calculation of Adaptation

While the above encoding method cannot ensure that every decoded delivery route
satisfies the vehicles’ loading capacity and maximum delivery time constraints, this paper
employs the method’s objective function as its fitness function.

Fitness = F (22)

3.3. Selection

In this paper, a binary tournament strategy will be used for the selection operation [49].
This involves randomly selecting two individuals, comparing their fitness, and choosing
the individual with the better fitness as the winner. The winner becomes the parent
individual for reproduction and is copied into the next generation of the population. This
process is repeated until a sufficient number of parent individuals are selected for the
reproduction operation.

3.4. Crossing

After completing population selection, individuals in the population need to undergo
a crossover operation. The crossover operation used in this paper differs from traditional
genetic algorithms in that it is based on a combination of generating random numbers
and crossover probabilities. It selectively completes chromosome crossover and then
performs gene inversion. The idea behind this crossover operation is to make the best use
of the information obtained from the population to guide individuals towards the optimal
direction of evolution, making the genetic operator more efficient, as shown in Figure 3.
The specific steps are as follows:
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1. Randomly select a gene spot <1 in the paternal chromosome f1, e.g., <1 = 3;
2. Generate a random decimal number p within the range of [0, 1]; if p < pc, then select a

second gene point <2 in the parent chromosome f1, such as <2 = 7. Invert the partial
chromosome sequence between gene point <1 and gene point <2 to produce a new
chromosome f , which does not include the <1 and <2 gene points, which is similar to
the principle of 2-Opt algorithm operation;

3. If p > pc is selected, then another paternal chromosome f2 is selected from the
population to determine the location of <1 = 3, and the next gene point <3 = 9. If
the gene point <3 is selected from chromosome f2, the previous gene point will be
taken if it is out of bounds; similarly, the portion of the chromosome between the gene
point <1 = 3 and the gene point <3 = 9 will be inverted to exclude the <1 and <3
gene points.
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3.5. Mutation

To ensure that the population evolves in a favorable direction and quickly finds
satisfactory solutions, a mutation operation is performed on the offspring population after
completing the crossover operation. In traditional methods, mutation only occurs when
the chromosome is greater than a random number. However, the proposed method in this
paper focuses on mutating every gene of every chromosome. Each time, a random number
is generated and the mutation of the gene position is determined by both the mutation
probability and the random number, thus accelerating the generation of optimal solutions
for the population. As shown in Figure 4, the specific operation is as follows:

1. Assuming that the length of chromosome f1 is N = 10, firstly, for the 1st gene <1,
generate a random number σ1, if σ1 < pm, generate a random number ∂1 of 1 ∼ N,
∂1 = 4, ∂1 = 4, mapped to gene <4, which forms the sequence of genes between
alleles <1 ∼ <4 of the chromosome, in accordance with their subscripts, from smallest
to largest, in order, and, after the reverse order of the sequence is embedded in f1
(including <1, <4), at this time observe the chromosome f2; if σ1 > pm, then do not
generate a random number, and do not do anything with the <1 gene;

2. For the gene<2, if the random number σ2 < pm, a random number 1 ∼ N is generated
∂2. ∂2 = 3 is mapped to the gene <3, and the chromosome allele between <2 ∼ <3 is
embedded in f2 after a reverse-ordering process, at which point the chromosome is f3;
if σ2 > pm, no random number is generated, and no processing is carried out for the
<2 gene;

3. Continue to repeat the above steps until all the alleles of the entire chromosome have
been traversed to complete the mutation operation.
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3.6. Repair Operation

There is a problem in the above encoding and decoding process. Each trip involves
the issue of the virtual distribution center. The starting point of each unmanned vehicle
must be the virtual distribution center w, so the first gene position of the chromosome
individual must be the gene representing w. However, in the evolutionary algorithm, both
the individual initialization and the gene sequence disorder caused by the evolution may
not satisfy the condition of gene w being in the first position. Therefore, before decoding
the population’s individuals, a repair operation is required. The specific approach is that
if the first gene of the individual is the customer point n gene instead of the distribution
center gene w, then the first distribution center gene found, from left to right, is swapped
with the first gene. As shown in Figure 5, if n= 30, w= z = 3, thus the first gene of the
chromosome violates the constraint by being the customer point gene n, representing the
number 2. After checking the chromosome, it is found that the virtual distribution center
gene w is 32. Therefore, the two genes are swapped to obtain a repaired individual. After
repairing all individuals, a new population is obtained.
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3.7. Simulated Annealing Algorithm

GAs have the properties of global optimality and robustness, but they tend to become
stuck in local optima. On the other hand, the SAs have the advantage of escaping local
optima. Therefore, a simulated annealing operator will be introduced into the mutation
operation [16]. The simulated annealing operator is introduced into the new population
after crossover, mutation, and repair, and gene points within the range of 1 ∼ (n + w× z)
are randomly selected with the mutation probability pm, and an inferior solution is accepted
with a probability p. If the virtual distribution center is selected, the genes in the sequence
of n ∼ (n + w× z) are selected to be swapped with the gene sites in the same range, and
the mutation operation is performed (n + w× z)/2 times for each chromosome, with the
following acceptance probabilities [50]:

p =

{
e−∆F/Fmax ∆F ≥ 0
1 ∆F < 0

(23)

where ∆F is the value of the fitness change in the chromosome before and after its mutation
and Fmax is the highest fitness value in the current chromosome.

3.8. Elite Retention Strategies

To prevent genetic algorithms from losing the best individual in their current popu-
lation during iterations, an elite preservation strategy has been introduced. This strategy
aims to improve the algorithm’s global convergence capability by storing the individuals
with the highest fitness, thereby retaining excellent individuals [51].

3.9. Algorithmic Flow

Based on the above analysis, the algorithm’s flow is shown in Figure 6, and the
algorithm framework of the IGA is displayed in Algorithm 1.

Algorithm 1 IGA

Input: Algorithm-related parameters and simulation base data
Output: Multi-trip solutions for unmanned vehicles
1. encoding, initializing the IGA algorithm and setting parameters
2. mapping the problem and randomly generating a certain size of the population
3. if the initialization scheme satisfies the set constraints, then
4. decoding
5. else
6. calculating the fitness value and performing elite selection, crossover, mutation, and
repair operations
7. else
8. if the maximum number of iterations is reached, then performing cooling and
elite selection
9. else
10. implementation of simulated annealing operations
11. end if
12. break
13. end if

The principle of the annealing operator is that new individuals are the first generated,
and if the new individuals are better than the old ones, they are accepted and passed on to
the next generation of the population. If the new individual is worse than the old one, the
new individual is accepted with a specific probability.
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4. Simulation Test and Result Analysis
4.1. Calculations and Parameterizations

The simulation data for the experiment and testing of the model and algorithm were
conducted using the Solomon RC 208 dataset [52], and the simulation results were com-
pared across small-scale, medium-scale, and large-scale operations of the GA. According
to reference [13], the relevant parameters are set as follows: the population size of Gmax
is 100, the crossover probability pc is 0.9, the variance probability pm is 0.01, the cooling
coefficient θ is 0.95, the initial temperature T0 is 100 ◦C, and the termination temperature Te
is 1 ◦C. The parameters for the SA are as follows: the initial temperature is 200, the final
temperature is 1, the cooling rate is 0.8, and the chain length is 200 [37]. The parameters
for the GA are as follows: the population size is 100, the crossover probability is 0.8, and
the mutation probability is 0.2 [47]. The cost γ of traveling 1 km in an unmanned vehicle
is USD 1, there is a startup cost θ1 of USD 200 per unmanned vehicle, the cost per liter
of fuel θ2 is USD 6.8, the environmental cost per 1 kg of CO2 emitted θ3 is USD 1.2, the
fuel consumption per kilometer ε is 0.3 L, the fuel conversion coefficient ρ is 2.36 kg CO2
/L, the penalty cost per unit of the unmanned vehicle’s total trip delivery time exceeding
its maximum driving time λ is USD 30/kg, and the penalty cost per unit exceeding the
vehicle’s rated load η is USD 20/kg.
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4.2. Simulation of Small-Scale Cases

Assuming that the distribution center utilizes unmanned vehicles to deliver goods
to 25 supermarkets, we use the Solomon RC 208 dataset (25) [52] for the first 25 sample
data points. It is assumed that a maximum of five vehicles are available, each able to make
a maximum of two trips. The vehicles’ capacity is 90 kg, with a speed of 50 km/h, and
the maximum delivery duration is 5 h. The maximum number of generations, for both
algorithms, is set to 300. We ran the program five times for each of the three algorithms and
selected the best result. Figure 7 shows the optimization results of the IGA, and Figure 8
displays the evolution curve of the three algorithms, including the change trend of their
maximum fitness curves and average fitness curves. The data results for both algorithms
are shown in Table 3, where the total cost deviation rate = (GA−IGA)/IGA, reflecting the
algorithms’ degree of deviation from the optimal solution. On the delivery route maps, the
legend “1-1” represents the first delivery by unmanned vehicle 1, and “1-2” represents the
second delivery by unmanned vehicle 1. The optimized delivery scheme for unmanned
vehicles using the IGA is shown in Table 4.
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Table 3. Comparison of algorithm results.

Algorithm Total Cost
(USD)

Vehicle
Startup

Cost
(USD)

Fuel
Cost

(USD)
Environmental

Cost (USD)
Total

Distance
(km)

Number of
Unmanned

Vehicles

Total
Number of

Trips

Total
Delivery
Time (h)

Deviation
Rate (%)

IGA 2698.87 600 1100.70 458.61 539.56 3 6 10.78 -
GA 2903.77 800 1103.27 459.68 540.82 4 6 10.82 7.60
SA 2725.16 600 1114.49 464.35 546.32 3 6 10.93 0.97
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Table 4. Optimized delivery scheme for unmanned vehicles using the IGA.

Unmanned
Vehicle Route Programs Route

Capacity (kg)
Route

Length (km)
Total Line

Length (km)

Route
Distribution

Time (h)

Total
Distribution

Time (h)

1 0-9-13-15-16-17-0
0-4-5-3-1-0

90
90

91.68
84.13 175.81 1.83

1.68 3.51

2 0-10-11-12-0
020-19-22-0

90
90

71.01
80.44 151.45 1.42

1.61 3.03

3 0-24-25-23-21-18-0
02-6-8-7-14-0

90
90

99.67
112.61 212.28 1.99

2.25 4.24

4.3. Simulating Medium-Scale Cases

Assuming that the distribution center employs unmanned vehicles for deliveries to
50 supermarkets, the Solomon RC 208 dataset (50) [52] is utilized, using its first 50 sample
data points. The parameter settings differ from the small-scale examples in that unmanned
vehicles can make a maximum of three trips and the vehicles’ capacity is 100 kg. The
unmanned vehicle’s speed and maximum delivery time remain constant. Three algorithms
underwent 1600 evolutions. Following five program runs, Figure 9 illustrates the delivery
routes generated using the IGA. Figure 10 presents the population evolution graph for the
three algorithms. The simulation results are detailed in Table 5, and the optimized delivery
scheme for unmanned vehicles using the IGA is shown in Table 6.
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Table 5. Comparison of algorithm results.

Algorithm Total Cost
(USD)

Vehicle
Startup

Cost
(USD)

Fuel
Cost

(USD)
Environmental

Cost (USD)
Total

Distance
(km)

Number of
Unmanned

Vehicles

Total
Number of

Trips

Total
Delivery
Time (h)

Deviation
Rate (%)

IGA 4665.83 1000 1869.57 778.95 916.46 5 10 18.31 -
GA 5494.65 1000 2292.27 955.07 1123.66 5 11 22.48 17.76
SA 4738.17 1000 1887.59 786.46 925.29 5 11 18.51 15.50

Table 6. Optimized delivery scheme for unmanned vehicles using the IGA.

Unmanned
Vehicle Route Programs

Route
Loading

Capacity (kg)

Route
Length (km)

Total Line
Length (km)

Route
Distribution

Time (h)

Total
Distribution

Time (h)

1 0-1-3-5-45-4-0 100 84.13 84.13 1.68 1.68

2 0-50-34-31-0
0-9-13-15-16-17-47-0

80
100

101.63
91.7 193.3 2.03

1.83 3.86

3 0-33-32-30-28-26-27-29-0
0-38-36-35-37-0

100
100

127.06
89.25 216.31 2.54

1.78 4.32

4
0-42-44-43-40-39-41-0

0-2-46-8-7-6-0
0-12-14-11-10-0

100
90

100

84.73
81.51
74.84

241.08
1.69
1.63
1.50

4.82

5 0-24-19-49-22-0
0-20-18-48-21-23-25-0

100
100

82.07
99.53 181.6 1.64

1.99 3.63

4.4. Simulation of Large-Scale Cases

Assuming that a distribution center employs unmanned vehicles for delivering to
100 supermarkets, using the Solomon RC 208’s [52] sample data, the large dataset prompts
adjustments to the parameter settings compared to medium-scale cases. Specifically, six
unmanned vehicles are available, each with a maximum of three trips. The vehicle capacity
is set to 150 kg, while the unmanned vehicles’ speed and maximum delivery time remain
constant. The maximum number of evolutions for all algorithms is established at 12,000.
The program undergoes five runs, and Figure 11 illustrates the unmanned vehicle delivery
route maps generated using the IGA. Figure 12 displays the population evolution curves of
the three algorithms. The algorithm run results are detailed in Table 7, and the optimized
delivery scheme for unmanned vehicles, using the IGA, is shown in Table 8.
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Table 7. Comparison of algorithm results.

Algorithm Total Cost
(USD)

Vehicle
Startup

Cost (USD)

Fuel
Cost

(USD)
Environmental

Cost (USD)
Total

Distance
(km)

Number of
Unmanned

Vehicles

Total
Number
of Trips

Total
Delivery
Time (h)

Deviation
Rate (%)

IGA 6015.11 1200 2525.17 1052.11 1237.83 6 12 24.74 -
GA 7104.89 1200 2965.33 1235.50 1453.59 6 13 29.07 18.12
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Table 8. Optimized delivery scheme for unmanned vehicles using the IGA.

Unmanned
Vehicle Route Programs Route Loading

Capacity (kg)
Route

Length (km)
Total Line

Length (km)
Route

Distribution
Time (h)

Total
Distribution

Time (h)

1 0-66-20-49-18-19-22-83-0
0-90-82-87-59-86-57-65-0

150
110

91.63
103.30 194.93 1.83

2.07 3.9

2 0-91-95-33-28-26-27-29-31-93-0
0-81-38-40-43-44-42-61-68-0

122
130

132.21
88.08 220.29 2.64

1.76 4.4

3 0-64-51-76-89-63-85-84-56-0
0-55-2-6-7-79-73-60-0

137
138

108.56
98.41 206.97 2.17

1.97 4.14

4 0-96-54-72-37-35-36-39-41-0
0-88-78-47-17-16-15-13-9-0

150
146

96.94
99.91 196.85 1.94

2.00 3.94

5 0-70-1-3-5-45-8-46-4-100-0
0-80-92-62-50-32-30-34-67-94-0

126
142

93.16
107.36 200.52 1.86

2.15 4.01

6
0-24-48-21-23-25-77-75-58-74-

52-99-0
0-69-98-53-12-14-11-10-0

149
141

142.26
76.00 218.26 2.85

1.52 4.02

Based on simulation data of different scales, the deviation rate was plotted as is shown
in Figure 13.

Figure 13. Comparison chart of the deviation rates of the total cost.
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Our conclusions are as follows:

1. Based on graphs 8, 10, and 12, it can be observed that the IGA achieves convergence at
a faster rate than the GA and SA. In these graphs, the fitness value remains unchanged
at the 212th, 580th, and 3850th iterations of the IGA, respectively. Additionally, as the
problem size increases, the difference in fitness values becomes more pronounced,
indicating that the IGA not only provides better solutions but also exhibits good
convergence speed.

2. Analyzing the total cost deviation rate in Figure 13, it can be seen that, compared to
the GA, the IGA yields lower deviation rates of 7.6%, 17.76%, and 18.12% for small,
medium, and large problem sizes, respectively. Similarly, compared to the SA, the
deviation rates for the IGA are 0.97%, 15.5%, and 24.17% for those respective problem
sizes. These results demonstrate that the IGA consistently outperforms the other two
algorithms. In smaller and medium-sized problems, the SA performs better than the
GA, while in larger problems the GA outperforms the SA.

3. With the same problem size, the number of autonomous vehicles may vary, leading to
different startup costs. In the simulations of small to large problems, the startup costs
of the vehicles account for 22.23%, 21.43%, and 19.95% of the total cost, respectively.
This ratio gradually decreases with an increase in the number of customers. Addition-
ally, due to the varying number of autonomous vehicles and their routes during the
delivery process, the fuel cost, environmental cost (CO2 emissions), and total delivery
duration also vary significantly.

4. Tables 4, 6 and 8 provide the optimal delivery plans obtained, using the IGA, for
different problem sizes. These tables include the plans, lengths, and load capacities
of each route, as well as the total route length and overall delivery duration. As the
problem size increases, the number of dominated autonomous vehicles also increases.
However, whether for small, medium, or large problem sizes, all autonomous vehicle
delivery trips adhere to the constraints of the vehicles’ load capacity and maximum
delivery duration. This indicates that the algorithm effectively considers the con-
straints of the model during the optimization process, without adding penalty costs
to the total cost.

5. Sensitivity Analysis
5.1. Compared with Single-Route Delivery by Unmanned Vehicles

Using the E-n51-k5 international standard dataset as a reference, the IGA, with un-
changed parameters, was independently run 10 times to obtain its average values. The
results of this comparison for different routes are shown in Table 9, with the deviation rate
calculated as (multi-route−single-route)/multi-route × 100%.

Table 9. Comparison of the results of different trip optimization solutions.

Single-Trip Delivery
(E-n51-k5)

Multi-Trip Delivery

Literature [44] IGA Deviation Rate (%)

Number of unmanned vehicles (vehicles) 5 3 2 −150
Total distance traveled (km) 521 600 558.73 6.75

Unmanned vehicle startup costs (USD) 1500 900 600 −150
Transportation costs (USD) 2605 3000 2793.65 6.75

Fuel costs (USD) 1062.84 1224 1139.82 6.75
Environmental costs (USD) 442.83 509.98 474.90 6.75

Total cost (USD) 4110.67 4733.98 5008.41 17.92
Total duration (h) 8.68 10 9.31 6.77

Firstly, from the simulated data results it can be observed that, relative to the multi-
route delivery of unmanned vehicles, single-route delivery can reduce the total delivery
time of the solution, but it requires more unmanned vehicles to complete the task, leading
to an increase in startup costs and, consequently, an increase in total costs.
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Secondly, in terms of the number of unmanned vehicle startups, the algorithm in
this study requires three fewer vehicles compared to single-route delivery, and one fewer
vehicle compared to the approach in reference [44]. Additionally, its total distance is
significantly reduced by 41.27 km compared to the approach in reference [44]. Multi-route
delivery can greatly reduce the number of unmanned vehicles needed, which brings the
benefit of saving vehicle startup costs but also entails corresponding transportation costs.

Lastly, when considering which measure to adopt for distributions in practical logistics,
a comprehensive assessment should be made considering various factors.

5.2. Deliveries Using Different Vehicle Models

We used the medium-scale Solomon RC 208 (50) sample data as a reference and
employed three different vehicle models with unmanned vehicle carrying capacities of
100 kg, 150 kg, and 200 kg; startup costs of USD 200, USD 300, and USDE 500; and
transportation costs per unit distance of USD 1, USD 3, and USD 6, respectively. There were
five unmanned vehicles at the distribution center, and their maximum delivery time was
8 h. The simulation results, obtained by running the simulation independently 10 times
and averaging the values, are shown in Table 9, with the deviation rate calculated as (worst
value−best value)/best value × 100%. Several deep-level analysis results can be derived
from the data in Table 10.

Table 10. Comparison of the results of optimization solutions from different models.

100 kg 150 kg 180 kg Deviation Rate (%)

Number of unmanned vehicles (vehicles) 5 4 3 66.67
Total number of trips 10 7 5 100

Average number of journeys 2 1.75 1.67 19.76
Total distribution hours (h) 18.45 15.21 10.37 77.92

Total distance (km) 917.29 769.98 518.5 76.91
Vehicle startup costs (USD) 1000 1200 1500 50

Fuel costs (USD) 1871.27 1570.77 1057.74 76.91
Environmental costs (USD) 779.66 654.46 440.70 76.91
Transportation costs (USD) 917.29 2309.94 3111 239.15

Total cost (USD) 4566.25 5735.22 6109.46 34
Running time (seconds) 20.82 20.08 21.28 5.98

Firstly, our analysis reveals that the fuel cost of the 100 kg low-capacity unmanned
vehicle constitutes the highest proportion of the total cost, approximately 41%. This indi-
cates that low-capacity vehicles tend to consume more fuel, potentially necessitating more
frequent charging or refueling, consequently elevating their share of fuel costs. To mitigate
fuel costs, logistics companies may contemplate the adoption of unmanned vehicles with
higher payload capacities.

Secondly, compared to low-load unmanned vehicles, those with higher load capacities
exhibit a notable reduction in their total trips, average trips, total delivery duration, and
total distance. This suggests that vehicles with higher load capacities can reduce their
trips and distances during delivery, leading to reduced total delivery duration and costs.
Logistics companies can prioritize using high-load-capacity vehicles to enhance their
efficiency and cost-effectiveness.

Moreover, an increase in payload capacity correlates with a gradual rise in the propor-
tion of transportation costs within the total delivery costs. This implies that transportation
costs exert a growing influence on overall costs. As their payload capacity increases, logis-
tics companies must allocate more resources to supporting transportation tasks, resulting
in larger transportation costs. Therefore, when selecting unmanned vehicles, logistics
companies need to strike a balance between transportation costs and total costs, opting for
an appropriate payload capacity to minimize their overall costs.

Lastly, the complete simulation of different vehicle types using the optimization
process lasts approximately 20 s, indicating that the algorithm in this study converges
rapidly and exhibits strong optimization efficiency. This underscores the algorithm’s
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commendable optimization performance, demonstrating its ability to identify optimal
solutions rapidly.

In summary, in practical operations, logistics companies should comprehensively
consider their total costs and carefully choose suitable vehicle types for their operations.
While high-load-capacity unmanned vehicles can reduce total delivery durations and costs,
it is essential to also account for the proportion of transportation costs within the company’s
total costs.

5.3. Consideration of the Impact of Carbon Emissions

Using the large-scale data and parameters of the example in Section 4.4, a simulation of
route optimization for customers was conducted without considering the impact of carbon
emissions. The simulation ran independently five times to obtain average values, and the
results are presented in Table 11. The route planning results are depicted in Figure 16.
In the scenario where unmanned vehicles do not use fuel, there are no carbon dioxide
emissions or fuel costs. A comparison of the data showed that when carbon emissions
are not considered, the total cost is lower than when considering carbon emissions, with a
deviation rate of 22.6%. Furthermore, a comparison of the delivery route maps in Figures 11
and 14 reveals that the delivery route map considering carbon emissions has a more clearly
organized overall task arrangement, with fewer intersections of the routes of unmanned
vehicles, resulting in a more optimized delivery route. In real traffic scenarios, especially
during significant traffic congestion, utilizing a low-carbon-emission delivery scheme can
effectively optimize carbon emissions. This is because vehicle fuel consumption and carbon
emissions are directly proportional and, consequently, reducing carbon emissions also reduces
delivery costs. Therefore, selecting a low-carbon-emission delivery scheme not only aligns
with businesses’ decision-making needs but also contributes to achieving two carbon goals.

Table 11. Comparison of the results with and without the optimized solution considering carbon emissions.

Consideration of
Carbon Emissions

Carbon Emissions Not
Taken into Account Deviation Rate (%)

Number of unmanned
vehicles (vehicles) 6 6 0

Total number of trips (pcs) 12 12 0
Average number of journeys (in) 2 2 0

Total distribution hours (h) 25.42 25.84 1.63
Total distance (km) 1271.72 1292.05 1.57

Vehicle startup costs (USD) 1200 1200 0
Fuel costs (USD) 2594.32 2635.78 1.57

Environmental costs (USD) 1080.92 - -
CO2 emissions (kg) 900.76 - -

Transportation costs (USD) 1271.722 1292.05 1.57
Total cost (USD) 6286.896 5127.82 −22.6
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6. Conclusions

To tackle the multi-trip delivery challenge using unmanned vehicles, we reformulate
it as the MT-CVRP, with the objective of minimizing total costs. An optimization model is
developed, including a consideration of carbon emissions, and an IGA is tailored to address
the problem. Simulation validations are conducted, yielding the following results:

1. Using the Solomon RC 208 international standard dataset, simulations were conducted
for small-, medium-, and large-scale scenarios, comparing the IGA with the GA and
SA. Firstly, the IGA is capable of providing high-quality results in a shorter period of
time. Secondly, varying the startup numbers of the autonomous vehicles for different
scale distributions leads to differences in their total delivery costs, as well as their fuel
expenses, environmental costs (CO2 emissions), and overall delivery durations. Lastly,
from the perspective of algorithm effectiveness, by observing the optimal delivery
plans generated by the IGA, it is evident that the algorithm satisfies its predetermined
constraints across all three scales of scenarios, while possessing strong global search
capabilities and high computational efficiency.

2. By employing the E-n51-k5 standard dataset and comparing it with the existing
literature [44], multi-trip delivery proves advantageous over single-trip delivery,
especially with respect to vehicle startup costs. The choice of delivery strategy hinges
on the costs and transportation expenses linked to unmanned vehicles. Unmanned
vehicles with a high load capacity can curtail their total number of trips and overall
delivery duration. In delivery plans that account for carbon emissions, the routes of
unmanned vehicles are optimized.

Optimizing the multi-trip delivery routes of unmanned vehicles has the potential to
reduce their mileage and carbon emissions, consequently enhancing air quality, mitigating
environmental impacts, improving delivery efficiency, and cutting logistics costs. This
research is of substantial value to future applications in sectors such as express delivery,
healthcare, manufacturing facilities, and public transportation, ultimately advancing sus-
tainable development. It is crucial to recognize that real-world delivery activities are subject
to dynamic factors like vehicle failures and traffic congestion, considerations that should
be factored into future studies.
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