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Abstract: Predictions of crop production in the Chi basin are of major importance for decision support
tools in countries such as Thailand, which aims to increase domestic income and global food security
by implementing the appropriate policies. This research aims to establish a predictive model for
predicting crop production for an internal crop growth season prior to harvest at the province scale
for fourteen provinces in Thailand’s Chi basin between 2011 and 2019. We provide approaches for
reducing redundant variables and multicollinearity in remotely sensed (RS) and meteorological data
to avoid overfitting models using correlation analysis (CA) and the variance inflation factor (VIF).
The temperature condition index (TCI), the normalized difference vegetation index (NDVI), land
surface temperature (LSTnighttime), and mean temperature (Tmean) were the resulting variables in the
prediction model with a p-value < 0.05 and a VIF < 5. The baseline data (2011–2017: June to November)
were used to train four regression models, which revealed that eXtreme Gradient Boosting (XGBoost),
random forest (RF), and XGBoost achieved R2 values of 0.95, 0.94, and 0.93, respectively. In addition,
the testing dataset (2018–2019) displayed a minimum root-mean-square error (RMSE) of 0.18 ton/ha
for the optimal solution by integrating variables and applying the XGBoost model. Accordingly, it
is estimated that between 2020 and 2022, the total crop production in the Chi basin region will be
7.88, 7.64, and 7.72 million tons, respectively. The results demonstrated that the proposed model
is proficient at greatly improving crop yield prediction accuracy when compared to a conventional
regression method and that it may be deployed in different regions to assist farmers and policymakers
in making more informed decisions about agricultural practices and resource allocation.

Keywords: decision support tools; machine learning; remote sensing; climatic data; predictive model;
province scale

1. Introduction

Rice is a major agricultural commodity in Thailand and an important contributor to
the country’s economy. According to data from the United Nations Food and Agriculture
Organization (FAO), Thailand was the world’s second-largest exporter of rice in 2018,
with exports valued at around $7.4 billion [1]. Thailand is the world’s biggest producer
of milled rice, producing approximately 20.3 million metric tons in 2018, equivalent to
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approximately 17.6 million metric tons of paddy rice [1]. The main rice-producing regions
in Thailand are the central, northeastern, and northern regions, with the central region
accounting for the largest share of production [2]. The rice sector is a significant contributor
to Thailand’s GDP, accounting for approximately 3.3% in 2018 [3]. Rice farming is also a
vital source of business and income for many smallholder farmers in Thailand, with the
sector employing around 10 million people, or approximately 20% of the country’s total
workforce [2], and it can also account for a significant portion of the income of smallholder
farmers, with some estimates suggesting that rice can make up to 60% of their income [3].
As a result, rice yield has become an important variable for maximizing the efficiency of
rice production and fulfilling the increasing demand for rice, especially as the world’s
population grows. Yet, many factors can affect rice productivity, including environmental
factors, physical factors, and farmer quantities. Thailand has faced the previously stated
factors for many decades. Currently, land use change and climate change are the major
concern to every sector, particularly developing countries. Land use change and climate
change are major drivers of crop yield variations, with both expected to have significant
impacts on agricultural productivity [4]. Climate change, through warming temperatures,
extreme weather events, and altered precipitation patterns, can lead to yield reductions.
Land use transformation, including the conversion of agricultural to urban or industrial
use, can also influence crop yields by altering the availability of land and resources for
agriculture [5].

Moreover, natural disasters, such as droughts and floods, can significantly affect rice
yield and production by causing damage to crops, disrupting the growing season, and
reducing overall yield. These hazards may result in complete crop failures or have a
more limited impact, depending on the severity of the incident and the vulnerability of
the disturbed region. Rice production is concentrated in some parts of the world, such
as Thailand, which may be more vulnerable to natural disasters due to its position and
environment. For example, seven typhoons in 2021 caused flooding in Thailand, which
may wreak havoc on rice crop production in 0.85 million hectares of agricultural areas and
result in farmers losing around USD 220 million or 30% of productivity [6].

Additionally, drought is a common occurrence in Thailand, which has a tropical
climate and is prone to dry spells and water shortages. According to the report, Thailand
suffered from long-term drought conditions that affected approximately 3.8 million hectares
of the whole country in 2021, and it is expected to increase and become more severe every
year [7]. Nevertheless, every factor that impacts rice production can directly affect rice
growth phases, for example, reducing the leaf area index (LAI), deformation of the leaf,
little growth, green to pale-colored leaves, dwarf, and lesions on the leaves.

Crop yield measurement in massive agricultural areas is difficult to verify under
current circumstances, such as time, budgetary, and surveyor constraints. Recently, a data-
driven remote sensing approach has become efficient in measuring crop conditions and
predicting crop yield production from a distance without being physically present in the
study area. This can be performed using various sensors and platforms, including satellites,
which can collect data on various aspects of the surface of the Earth, including land usage,
vegetation, and weather patterns. There are many studies that utilize remote sensing data
to forecast agricultural crop production [8–12]. The weather factors have long been used
to explain crop yield fluctuations. For instance, [13] applied machine learning (ML) with
land surface temperature (LST), the enhanced vegetation index (EVI), and the normalized
difference vegetation index (NDVI) from MODIS satellite and weather variables to improve
soybean yield forecasts with a mean absolute error of around 0.24 to 0.42 Mg/ha. The
study by [14] employed LST and air temperature to foresee corn outcomes across the US
with an r-square of 0.56 to 0.65. In addition, [15] indicated that the eXtreme Gradient
Boosting (XGBoost) Machine Learning (ML) method exhibited the best metrics, which can
reduce the predicting errors of cereal yield by combining remote sensing data and weather
data in Morocco. Additionally, several studies used drought and health indices that were
obtained from computed indices of remotely sensed data, such as the vegetation health
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index [16], the temperature condition index (TCI) [17], and the vegetation condition index
(VCI) [18,19]. They outperform the use of health and drought indicators to predict crop
production when combined with machine learning technologies [15].

Accurate and up-to-date prediction of crop yields is essential for sustainable food
security and agriculture because it helps farmers by providing decision support systems
about planting and harvesting and enables policymakers to plan for and address potential
food shortages. The conventional regression approaches have been overcome by ML and
deep learning to provide precise and accurate statistical predictions [20,21]. Several studies
have recently observed the statistical metrics of ML algorithms, for instance, support vector
regression (SVR) [22], random forest (RF) regression [23], and XGBoost regression [24],
to predict crop production at local (i.e., province) scales. The study by [8] investigated
eight different ML classifiers and regressors to forecast the outcome of wheat in the winter
season in China. The result indicated that SVR, RF, and Gaussian process regression
(GPR) denote the top three of the greatest methods for prediction, amongst others, with
an r-square > 0.75. ML approaches are popular and outperform results when applied to
crop yield prediction in many aspects, but there is evidence that the multivariate ordinary
least squares approach can provide a lower error rate of soybean yield prediction than RF
and long short-term memory (LSTM) [13]. Then, linear regression and ML regression have
been compared [25]. Moreover, hyperparameter tuning of ML models is complicated to
adjust, so grid search cross-validation (CV) has been developed [26] to apply to crop yield
prediction. However, a number of studies have attempted to forecast agricultural yield at
the regional level using remote sensing data without taking meteorological information
into account. These are the primary elements that have a significant impact on crop yield.
For instance, [27] found that the root-mean-square error (RMSE), which is based on remote
sensing data, ranged from 14% to 49%. The study by [28] illustrated how remote sensing
data could be used to predict wheat yields in Australia. According to the findings, the
RMSE varies depending on the research locations and is between 0.07 and 0.25 t/ha−1. It
is unclear if using solely remote sensing data or combining them with climatic data can
produce accurate results, especially in tropical areas. As a result, the goal of this work is to
demonstrate and offer not just input datasets but also model methods that can minimize
crop production forecast errors.

The objective of this study is to test the capability of MLR models and machine learning
(RF, XGBoost, and SVR) to predict crop yields. The model uses several variables, including
various indices derived from satellite images and climate variables. Before performing
the models, the variable selection process will be conducted to identify the most relevant
predictors of crop yield in the Chi basin area. Different combinations of predictor variables
will be tested. In addition, all models will be used to train and test to validate using metric
assessments, such as the coefficient of determination (R2) and RMSE. The comparison of
model assessment with the testing dataset will be performed, and the outstanding model
among others will be applied to predict crop yields at the provincial scale.

This study makes several significant contributions to crop yield prediction. Firstly, it
pioneers the integration of climatic and remote sensing data-driven approaches to analyze
and predict crop yield at the provincial scale. By combining climate datasets with crop
phenology, this study provides a comprehensive understanding of the climatic drivers
influencing crop production, thereby advancing yield management strategies. Secondly,
this study introduces a novel combination of multiple aspect indicators derived from re-
mote sensing imagery, enhancing the precision and applicability of climatic analyses for
predicting crop yield. Thirdly, this study innovatively uses crop phenological phases as a
reference in time for identifying factors that influence yield. Together, these contributions
significantly advance our understanding of crop yield prediction and have practical impli-
cations for agriculture and public policy. Lastly, this research has the potential to serve as
a foundational system to help farmers and government entities make informed decisions
and formulate effective intervention policies.
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2. Materials and Methods
2.1. Study Area

The Chi basin is a region situated in central Thailand, positioned between 15◦13′

and 17◦40′ N latitude and 101◦14′ and 104◦46′ E longitude, and ranging in altitude from
104 to 1060 m above mean sea level (Figure 1). The study area covers approximately
4.91 million hectares, with approximately 3.22 million hectares of cropland (https://esa-
worldcover.org/en/data-access, accessed on 1 August 2022). The climate of the Chi basin
is characterized by humid and hot conditions, with average temperatures ranging from 27
to 32 ◦C. The region experiences two monsoon seasons: the Southwest Monsoon, which
brings wet and rainy conditions from May to October, and the Northeast Monsoon, which
brings dry and cool conditions from November to April. The rainy season in the Chi basin
typically lasts from May to October, with an average annual rainfall of 1380 mm. Crop
cultivation in the region typically occurs from June to November, with harvest occurring in
December [29].
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2.2. Crop Yield Data and Their Phenology

In this study, historical crop yield at the administrative provincial scale is derived
between 2011 and 2019 from the Office of Agricultural Economics (OAE) for fourteen
provinces (https://www.oae.go.th/, accessed on 25 July 2022), which are described in
Table 1. Data acquisition involves field observations divided into 24 areas, covering
the entire Thailand region. The method includes creating a square box for each sample,
followed by rice milling to estimate rice production and convert it into units (ton/ha).
Moreover, the annual crop production in this study was calculated as the ratio of total crop
production divided by harvested area. The annual crop yield production ranges from 1.97
to 4.4 tons/ha, depending on area.

https://esa-worldcover.org/en/data-access
https://esa-worldcover.org/en/data-access
https://www.oae.go.th/
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Table 1. Names of the fourteen study areas in the Chi basin (ton/ha).

No. Province Acronym 2011 2012 2013 2014 2015 2016 2017 2018 2019

1 NAKHON
RATCHASIMA NS 2.59 2.25 2.31 2.24 2.26 2.22 2.26 2.22 2.27

2 SI SA KET SK 2.51 2.30 2.45 2.28 2.26 2.27 2.29 2.28 2.17

3 UBON
RATCHATHANI UR 2.16 2.15 2.15 2.06 2.06 2.09 2.18 2.27 2.25

4 YASOTHON YT 2.54 2.27 2.28 2.31 2.21 2.23 2.22 2.27 2.25
5 CHAIYAPHUM CP 2.46 2.36 2.39 2.21 2.19 2.25 2.32 2.29 2.32

6 NONG BUA
LAMPHU NL 2.41 2.33 1.97 2.01 1.98 2.11 2.16 2.07 2.08

7 KHON KAEN KK 2.16 2.09 2.11 2.12 2.11 2.15 2.14 2.02 1.98
8 UDON THANI UD 2.47 2.32 2.24 2.32 2.34 2.37 2.40 2.28 2.23
9 LOEI LO 2.41 2.42 2.46 2.34 2.31 2.43 2.46 2.33 2.11

10 MAHA
SARAKHAM MK 2.37 2.32 2.33 2.30 2.28 2.30 2.23 2.18 2.25

11 ROI ET RT 2.37 2.32 2.33 2.34 2.38 2.39 2.37 2.21 2.15
12 KALASIN KS 2.32 2.26 2.26 2.29 2.30 2.32 2.30 2.31 2.33
13 MUKDAHAN MH 2.40 2.24 2.26 2.40 2.40 2.40 2.38 2.47 2.19
14 PHETCHABUN PB 3.54 3.54 3.61 4.37 4.36 3.46 4.33 3.53 4.40

According to the crop calendar period [30], the crop transplanted in this region is
usually planted around June and July, flowers around late October to November, and the
harvest is around December. In Thailand, rice grows through several stages, starting with
the planting of seedlings and ending with the harvest of mature grains, and the stages
are the nursery stage, vegetative growth stage, reproductive growth stage, and maturity
stage. These stages take about 5–6 months [31], depending on the environmental condition
and variety of crop types (Figure 2). As the rice plant progresses through different stages
of growth, its reflectance is impacted at various wavelengths. Studies have revealed that
indices used for vegetation, for example, the NDVI, can be used to accurately track rice
growth [32–34]. During the early vegetative stage, the NDVI is typically low due to the
low percentage of vegetation cover. As the plant continues to grow and the chlorophyll
content increases, the absorbance of light in the red and blue regions also increases [35].
The reflectance in the near-infrared (NIR) region increases with the development of foliage
and tillers. As the plant reaches maturity, the NDVI begins to decrease due to a reduction
in biomass, a decrease in chlorophyll content, and an increase in grain filling [36].
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2.3. Remotely Sensed Data and Climate Data

The remote sensing (RS) data for the proposed study originated from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor. The remotely sensed MODIS
data are applied to delimit the spatial extent of the crop area in the Chi basin, Thailand.
The crop land use masked in this study was derived from the land use data of the Land
Development Department (LDD) of Thailand in 2020. The vegetation indices are usually
used for vegetation tracking and monitoring. The enhanced vegetation index (EVI), NDVI,
and LST daytime and nighttime products of MODIS data were used in this study. As
mentioned above, the disaster (drought) and climate were the factors that affected crop
productivity. Therefore, drought and healthy conditions, the temperature condition index
(TCI), the vegetation condition index (VCI), and and vegetation health index (VHI) were
also applied in this study [37–39], which can be calculated from the NDVI and tempera-
ture [40]. In addition, all remote sensing datasets will be aggregated to monthly mean data.
The major climatic factors used in this study were the monthly mean values of rainfall, min-
imum temperature (Tmin), mean temperature (Tmean), and maximum temperature (Tmax)
throughout the crop growth period (June to November). The variables (both predictors and
response) used in this study can be summarized as shown in Table 2.

Table 2. The predictors to be applied for modeling and predicting crop production.

Data
Type Product Variable Spatial

Resolution
Temporal

Resolution
Acquisition

Date Data Source

Yield
recorded Crop yield Provincial

level Annual 2011–2019 https://www.oae.go.th/
(accessed on 20 July 2022).

RS data

MOD13Q1 NDVI
250 m 16-day

interval
2011–2022 https://lpdaac.usgs.gov/products/

mod13q1v006/,
(accessed on 20 July 2022).EVI

2011–2022

MOD11A2 LST daytime
1 km 8-day interval 2011–2022 https://lpdaac.usgs.gov/products/

mod11a1v006/.
(accessed on 20 July 2022).LST nighttime

2011–2022

Climatic
data

ERA5

Rainfall

27.83 km Monthly

2011–2022 https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5,

(accessed on 20 July 2022).

Tmean 2011–2022
Tmin 2011–2022
Tmax 2011–2022

All RS and climatic data were averaged into the crop growth season from June to November.

2.4. Feature Selection: Correlation Analysis (CA) and Variance Inflation Factor

There are various factors that can be applied to reduce the overfitting results, such as
removing one of the correlated variables, combining correlated variables, and principal
component analysis (PCA). In this case, the variable indicators to predict crop yield are
limited indicators. However, removing or combining correlated variables is not consistent
with this procedure. Likewise, PCA is another approach that can transform multiple
correlated variables into one variable to be used as a predictor in the model [41]. However,
the limitation of this study is a number of variables. Thus, it is necessary to apply the
appropriate approach. On the other hand, the main problem with multiple linear regression
is the multicollinear problem, in which some variables are highly correlated together.
For the purpose of variable selection, correlation analysis (CA) was used to analyze the
correlation between variables. It helps to determine if there is a correlation, or association,
between the two variables, along with the intensity and direction of the relationship. Several
studies have applied the CA to reduce redundant variables by removing highly co-related
variables [42–44]. The variance inflation factor (VIF) is a tool used in multiple regression
analysis to assess the degree of multicollinearity between independent factors. When two
or more predictor variables are extremely related, multicollinearity occurs, which can lead
to unstable and unreliable regression coefficient estimates [45,46]. There are studies that

https://www.oae.go.th/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod11a1v006/
https://lpdaac.usgs.gov/products/mod11a1v006/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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attempt to integrate the VIF as an indicator to reduce multicollinearity (VIF < 5–10) [47,48].
The VIF score threshold applied in this study was 5, considerable to moderate correlation.
This study applied both statistical methods (i.e., CA and VIF) to analyze the influent factors
in crop yield prediction by determining a p-value < 0.05 and a VIF < 5 [49] (Figure 3). The
selected variables in this step will be used as the predictor variables for the next step.
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2.5. Regression Model

Regression models are statistical methods used to investigate the relationship between
one or more independent variables and a dependent variable. Regression models aim to
estimate the effect of the independent variables on the dependent variable. These models
assume a functional form for this relationship, such as linear or nonlinear. The model
parameters are estimated using statistical techniques, and the model’s goodness of fit is
assessed using various metrics, such as R2 and RMSE. In addition, the selected variables
in the previous step were used as the input variable in the regression model. This study
utilized four regression models: multiple linear regression (MLR), random forest (RF)
regression, XGBoost regression, and the SVR model. The crop yield dataset (126 sam-
ples) was separated into a training dataset (98 samples) (2011–2017) and a testing dataset
(28 samples) (2018–2019) (Figure 3). Since machine learning approaches require optimiza-
tion methods to deal with hyperparameters, grid search cross-validation (GridSearchCV)
was utilized to choose the appropriate hyperparameters for each ML model. Since machine
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learning approaches require optimization methods to deal with hyperparameters, grid
search cross-validation (GridSearchCV) from the scikit-learn library in Python was utilized
to optimize the hyperparameters of a machine learning model [50]. GridSearchCV exhaus-
tively searches through a specified hyperparameter grid to find the optimal combination of
hyperparameters for a given model by training and evaluating the model with different
combinations and selecting the combination that performs best according to a chosen
evaluation metric [51]. The RMSE and R2 were used to evaluate the performance of a
regression model. The regression model was performed in a Python environment using the
scikit-learn library. The reliable predictive model will be applied for predicting crop yield
at the provincial scale in fourteen provinces and visualized as a map prediction. On the
other hand, analyzing trends for future periods is required for farmers and policymakers to
make more informed decisions regarding agricultural practices and resource allocation.

3. Results
3.1. Variables Selection

Eliminating redundant variables (keeping the significant variables) is required to
reduce misleading and avoid overfitting models. This study applied CA and the VIF as
an initial step to remove redundant variables and utilized the remaining crucial variables
in the model for predicting crop yields in the Chi basin region. The result indicated that
RS data showed six significant variables consisting of the TCI, NDVI, LSTnighttime, VCI,
VHI, and EVI, all with p-values of less than 0.05 (Table 3), while climatic data remained
only a single variable, that is, Tmean. After applying the VIF, only four variables remain
(Table 3). Therefore, the variables selected for the training and testing model that provided
a VIF lower than 5 are the TCI, NDVI, LSTnighttime for RS data, and Tmean for climatic data,
which range from 1.31 to 2.17 (Table 3).

Table 3. The statistical metrics of correlation analysis (CA) and the variance inflation factor (VIF).

Data Type Variable p-Value VIF

RS data

TCI 0.001 ** 1.31
NDVI 0.023 * 1.22
LSTnighttime 0.001 ** 2.17
VCI 0.001 ** 15.49
VHI 0.001 ** 65.2
EVI 0.035 * 20.67
LSTdaytime 0.37 11.19

Climate data

Tmean 0.001 ** 2.05
Rainfall 0.213 1.76
Tmax 0.24 13.44
Tmin 0.051 5

Note: * and ** refer to the confidence interval for p-values < 0.05 and 0.01, respectively.

3.2. Regression Model Predictions for Province-Level Crop Yield Prediction in the Chi Basin

In this study, a total of 126 samples were used to examine crop yield production at the
provincial scale. These samples were divided into two time periods as training and testing
data: 2011–2017 (98 samples) and 2018–2019 (28 samples). Four regression models (MLR
and machine learning techniques) were applied to the three categories of data (Table 3):
remote sensing (RS), climatic, and a combination of both. The MLR model using RS data
provided the lowest R2 value of 0.42 in the training dataset, while the XGBoost model
using fusion data possessed the highest R2 value of 0.95 (Table 4). This study is congruent
with the report of previous research [15], which stated that a fusion of remote sensing-
based drought indicators and climatic and weather indicators can provide high statistical
measurement when used with the XGBoost model for cereal yield forecasting. In terms of
validation (RMSE), the XGBoost model with combination data provided the lowest RMSE
of 0.18 ton/ha, while the support vector regression (SVR) model using climatic data had
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the second lowest RMSE of 0.18 to 0.3 ton/ha. This error threshold is generally accepted
in European agro-statistics [52]. Overall, the XGBoost model was the most reliable for
predicting crop yield production (highest R2 and lowest RMSE) (Table 4).

Table 4. Training and testing of each model and data type for predicting crop yield production.

Category
R-Square (Training: 2011–2017)

MLR RF XGBoost SVR

RS data 0.42 0.74 0.89 0.64
Climatic data 0.55 0.94 0.93 0.88
Combination 0.63 0.92 0.95 0.81

RMSE (Testing: 2018–2019) (ton/ha)

RS data 0.36 0.42 0.45 0.4
Climatic data 0.3 0.23 0.21 0.18
Combination 0.26 0.19 0.18 0.29

3.3. Temporal Trend of Crop Production Measurement and Changes of Crop Production Validation

To further elaborate on the findings presented in Figure 4, it is crucial that the observed
crop yield data and predicted crop yield data are evaluated using four different approaches:
three non-parametric approaches (RF, XGBoost, and SVR) and one parametric approach
(MLR). These approaches were then used to predict crop yield for a period of one month
leading up to the harvest. The results showed that while there were fluctuations in yield
among the variables and regression models, these fluctuations were not well reflected in the
predicted crop yields. In fact, the peak yields actually observed in 2011 and 2017 (Figure 4)
resulted in a reduced yield observed in 2018.
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To further assess the accuracy of the prediction models, the changes in crop yield
were calculated for the validation periods (testing datasets) of 2018 and 2019 (Table 5). The
outcomes showed that the MLR model executed very well for almost all predictor variables,
with a difference of 0.03, 0.01, and 0.01 ton/ha for combination, RS, and climatic data,
respectively. In 2019, the XGBoost and RF regression models showed insignificant changes
in observed and predicted data, with a difference of around −0.01 ton/ha. Overall, these
findings suggest that the non-parametric and parametric approaches used in this study can
effectively predict crop yield for the period leading up to harvest, with the XGBoost and
MLR models performing particularly well. However, it is notable that the linear regression
model can perform well with the testing dataset, but it is not fully agreeable to apply for
crop yield prediction if we consider the training statistical result, which has a low r-square
when compared to other models.

Table 5. Changes of the crop yield validation relative to the historical values of each model.

Model Year
Mean Actual
Yield (ton/ha)

Variable Change

Combination RS Climate

∆Combination ∆RS ∆ClimateMean
Predicted

Yield (ton/ha)

Mean
Predicted

Yield (ton/ha)

Mean
Predicted

Yield (ton/ha)

Linear
2018 2.34 2.37 2.35 2.34 0.03 0.01 0.01
2019 2.36 2.45 2.51 2.45 0.10 0.15 0.09

RF
2018 2.34 2.28 2.32 2.26 −0.05 −0.01 −0.07
2019 2.36 2.35 2.45 2.35 0.00 0.10 −0.01

XGBoost
2018 2.34 2.28 2.36 2.27 −0.06 0.02 −0.07
2019 2.36 2.35 2.50 2.35 −0.01 0.14 −0.01

SVR
2018 2.34 2.31 2.30 2.31 −0.02 −0.04 −0.02
2019 2.36 2.41 2.45 2.36 0.05 0.10 0.00

MLR and XGBoost regression are two different techniques that can be utilized to
obtain predictions using the input data. MLR is a parametric approach that assumes a linear
correlation between the input factors and the output variable. This means that the output
variable changes in a directly proportional manner with respect to the input variables. In
contrast, XGBoost is a non-parametric technique that uses decision trees as weak learners
and unites them through boosting to make predictions. Boosting is an ensemble learning
approach that trains weak models sequentially, with each model attempting to correct the
errors made by the previous model. While MLR is generally easier to understand and
implement, XGBoost is more flexible and can model non-linear relationships. However,
it can be more complex to implement and may require more computational resources.
Therefore, in this study, XGBoost was selected as the main algorithm used for crop yield
prediction at the provincial scale due to its ability to handle the complexity of the observed
data and predictor variables and produce accurate and reliable results.

3.4. Crop Yield Prediction between 2018 and 2022

XGBoost is a selected machine learning algorithm that can be utilized to forecast the
yield production of crops, as was already mentioned. The crop yield ratio (tons/ha) was
calculated over 14 provinces from 2018 to 2022 using the XGBoost model. The results
showed that in 2018 and 2019, the highest crop yield ratio was observed in the PB province
at 3.77 tons/ha, while the lowest value was observed in the NL province (2.23 tons/ha). In
2020, the PB province still possessed the highest crop yield ratio at 3.60 tons/ha, which is
a decrease of 4.5% and 2.9% from 2018 and 2019, respectively. It is worth noting that the
CP and KK provinces had the largest areas suitable for crop production, with 0.699 million
hectares and 0.683 million hectares, respectively. Finally, in 2022, the crop yield ratio in
the PB province decreased by 11.9% from 2021 and 2018. These findings suggest that the
XGBoost model can effectively forecast the ratios of crop outcomes at the provincial stage
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and highlight the importance of considering both yield and production area when making
predictions. On the other hand, crop yield prediction was reproduced in CP province with
the following number of areas: 1.61, 1.58, 1.90, 1.59, and 1.74 million tons a year between
2018 and 2022. Additionally, the KK province was the second-largest region and produced
crop yields ranging from 1.55 to 1.62 million tons a year. The total crop yield production
that can reproduce in the Chi basin region ranges from 7.33 to 7.88 million tons a year
starting from 2018 to 2022. The total of the predicted crop yield production maps at the
provincial scale for 2020–2022 is shown in Figure 5. Therefore, this prediction may help
gauge the overall economic performance of a country and is considered a key indicator of
the standard of living for Thailand’s citizens.
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4. Discussion

Monitoring, mapping, and predicting crop production in large regions can help farm-
ers and policymakers make the best decisions for sustainable management, particularly
in the Chi basin region, which is a major producer of crops in Thailand. This is especially
important at present, as natural hazards often impact tropical monsoon areas. Additionally,
climate change is one of the most important problems for the agricultural sector in the
global region. Crop yield is crucial for global food security, so it is important to monitor and
provide information about threats to crop production. Exact and well-timed early estima-
tion of crop production has the potential for trade and proper food management. There are
various approaches to estimating the crop yield [53–55]. Predictive models for crop yield
have been developed using remote sensing data and ML methods [56,57]. However, these
approaches may not always provide accurate results. The study by [10] applied the NDVI
to forecast crop production in the Canadian Prairies, with results indicating R2 values
ranging from 0.8 to 0.9. The study by [51] used MODIS EVI and LAI data to examine the
prediction of rice crop production in Vietnam’s Mekong Delta and found that the maximum
correlation coefficients at the growing stage of crops were 0.70 and 0.74, respectively.

Agricultural production relies on environmental conditions, such as climatic data
(rainfall, temperature, humidity, and solar radiation) [58], so climatic and remote sensing
data have been integrated for the prediction of crop yield [59], which is consistent with
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the findings in this study. This study compared and evaluated various approaches and
predictor variables for predicting crop yield at the provincial scale in the Chi basin, Thai-
land, prior to the one- to two-month harvest period. This study found that combining
satellite imaging data with climatic data improved the accuracy of predicting crop yield
in the Chi basin. The results showed that the LSTnighttime, NDVI, TCI, and Tmean data
perform well when used with the XGBoost algorithm and can provide an R2 value of up to
0.95. This combination of data can also improve the RMSE to 0.18 ton/ha. The XGBoost
algorithm, which is a non-parametric technique that uses decision trees and joins them
through boosting to make predictions, is an excellent method, similar to what was found
by [15], which reported that the fusion of remote sensing-based drought, climatic, and
weather indicators improved accuracy when used with the XGBoost model for cereal yield
forecasting. The temporal trend of crop yield prediction using XGBoost was rather close
to the actual crop yield data; however, in 2018, the crop yield ratio differed by about 0.05
tons/ha due to natural hazards.

In 2018, there were 66 provinces or 420 districts affected by floods [60] that destroyed
several agricultural areas, especially the rice crop area, which is located in a lowland area.
According to [15], rainfed rice production is expected to decrease by around 5% from 2021
to 2029, which is inconsistent with our study, which predicts that yield will decrease by
around 0.078 million tons per year starting in 2020 to 2022. In addition, drought impacts are
expected to affect crop yield predictions in Thailand by about 5% mean absolute percentage
error (MAPE) [61], and this can be tele-connected from El Niño southern oscillation [62].
According to the results of total crop yield predictions for the period from 2020 to 2022
(Table 6), crop yield predictions have fluctuated and are likely to continue to increase
in the future due to climate conditions. However, climate change has a considerable
influence on the agriculture sector, and it could lead to an increase in temperatures by
1.4 to 5.8 degrees Celsius in 2100 [4]. This will increase crop water requirements due to
increased evapotranspiration, which will mainly affect crop production [63]. This study
shows acceptable accuracy for crop yield prediction that can be used by policymakers
for management at the country and province scales. Since the methodology proposed in
this study can accurately forecast the crop yield, it is anticipated that this methodology
can be used as a guideline for crop yield prediction in other study areas, as well as for
policymaking, to drive the economy at the provincial or country scale, as rice is the main
staple crop in Thailand and is an important source of export income for the country.

Table 6. Estimation of crop yield prediction over crop area in the Chi basin between 2018 and 2022.

Area Crop Yield Area (ha)

Crop Yield Ratio (ton/ha) Total Crop Yield (Mton)

Validation Period Predicting Period Validation Period Predicting Period

2018 2019 2020 2021 2022 2018 2019 2020 2021 2022

NS 81,076 2.29 2.26 2.9 2.31 2.36 0.19 0.18 0.23 0.19 0.19
SK 16,562 2.29 2.29 2.36 2.26 2.45 0.04 0.04 0.04 0.04 0.04
UR 44,155 2.27 2.27 2.36 2.26 2.42 0.1 0.1 0.1 0.1 0.11
YT 125,803 2.29 2.26 2.36 2.38 2.36 0.29 0.28 0.3 0.3 0.3
CP 699,264 2.3 2.26 2.72 2.27 2.49 1.61 1.58 1.9 1.59 1.74
NL 216,043 2.23 2.23 2.27 2.66 2.2 0.48 0.48 0.49 0.57 0.48
KK 683,868 2.28 2.26 2.34 2.36 2.36 1.56 1.55 1.6 1.61 1.62
UD 256,024 2.29 2.26 2.3 2.36 2.32 0.59 0.58 0.59 0.6 0.59
LO 61,150 2.31 2.24 2.7 2.6 2.6 0.14 0.14 0.16 0.16 0.16
MK 247,999 2.28 2.28 2.32 2.32 2.45 0.56 0.56 0.58 0.57 0.61
RT 366,514 2.29 2.28 2.36 2.38 2.45 0.84 0.83 0.86 0.87 0.9
KS 418,757 2.29 2.28 2.32 2.36 2.26 0.96 0.95 0.97 0.99 0.95

MH 1254 2.32 2.26 2.36 2.66 2.33 0.01 0.01 0.01 0.01 0.01
PB 11,195 3.77 3.66 3.6 3.77 3.32 0.04 0.04 0.04 0.04 0.04

Sum 7.40 7.34 7.89 7.65 7.73
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The rice crop yield in Thailand is important to the overall trade and industry perfor-
mance of the whole region and contributes to the overall GDP. This can be attributed to a
number of aspects, including the adoption of modern agricultural technologies, such as
hybrid seeds and precision agriculture, as well as improvements in irrigation and fertiliza-
tion practices. In addition, Thailand has a well-developed infrastructure for agriculture,
including a network of roads, ports, and storage facilities that facilitate the transportation
and distribution of crops. However, despite these improvements, crop yield production
in Thailand can still be affected by various factors, such as drought and extreme weather
events, which can lead to fluctuations in yield from year to year. In addition, market
demand and prices for crops can also impact production trends, as farmers may choose
to plant crops that are more in demand or more profitable. Finally, a decrease in crop
yield may lead to greater usage of pesticides, fertilizers, and other chemical inputs, which
can negatively impact the environment, including pollution and degradation of natural
resources. Therefore, it is important to apply the proposed approach to early crop yield
prediction and take steps to maintain high crop yields and sustainable development policies
in order to minimize these negative consequences.

5. Conclusions

Crop yield prediction is crucial information for enabling farmers to quickly decide to
increase production by enhancing management techniques for the period of the developing
season one to two months prior to the harvest period. In this study, we demonstrated
the approaches to predict the crop production of RS and climatic variables. This study
aimed to provide a predictive model before harvest for approximating crop outcomes in
Thailand’s Chi basin at the province scale between 2011 and 2019. To perform this, we used
a variety of remotely sensed and meteorological data and applied correlation analysis and
variance inflation factor to identify the most relevant variables. Then, the selected variables
were used to train four regression models (MLR, RF, XGBoost, and SVR); the XGBoost
model performed the best and had a minimum root-mean-square error of 0.18 ton/ha. To
predict total crop production, the XGBoost model was applied in the Chi basin for the
years 2020–2022, with the result that total crop production is expected to be approximately
7.88, 7.64, and 7.72 million tons. This research found that using satellite-based drought
indicators, the vegetation index, and meteorological data with the assistance of machine
learning algorithms is an effective method for predicting agricultural yields in the study
area. This method also provided timely data that can be used for decision making during
the crop growth season. The discoveries of the proposed study may also be exploited
to plot crop yields and their gaps at the provincial level in Thailand and neighboring
countries, helping farmers and policymakers make informed decisions. However, land
use change is the major concern for crop production prediction. Future studies should
consider integrating land use change data to improve crop yield prediction models and
reduce prediction errors.
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