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Abstract: Under the advocacy of sustainable and innovation-driven development, the potential
impact of environmental regulation on collaborative innovation has become a controversial issue.
This article uses panel data from 16 cities in the Chengdu–Chongqing urban agglomeration from
2011 to 2021 to analyze the impact of environmental regulation on collaborative innovation efficiency.
First, this study uses the two-stage DEA model to analyze each city’s industry–university–research
collaborative innovation efficiency. Then, the impact of environmental regulation on collaborative
innovation is analyzed using the Tobit model. The results show that in the temporal dimension,
the collaborative innovation efficiency of each city shows an upward trend. This demonstrates the
outstanding effectiveness of transforming knowledge into technology for economic development.
In the spatial dimension, the collaborative innovation efficiency of this urban agglomeration shows
a “high in the center and low in the surroundings” pattern. The Tobit regression model shows that
environmental regulation significantly impacts collaborative innovation in the Chengdu–Chongqing
urban agglomeration. Command-and-control environmental regulation policies have a threshold
effect on collaborative innovation, verifying the Porter hypothesis that appropriate environmental
regulation promotes innovative activities. The results provide an initial basis for formulating re-
gional environmental policies to achieve a win–win situation for innovation and sustainability in
underdeveloped regions.

Keywords: collaborative innovation; environmental regulation; two-stage DEA–Tobit model; urban
agglomeration; the Porter hypothesis

1. Introduction

Due to the rapid development of the new science and technology revolution, innova-
tion has become a long-term driver of economic growth [1]. However, while innovation
promotes regional economic development, it inevitably leads to environmental problems.
The Global Sustainable Development Report 2023 suggests that transformational shifts
rooted in science can achieve Sustainable Development Goals by 2030. The low-carbon
green development path is an essential choice for future human development. Similar to
many industrialized nations, China made economic profits at the cost of the environment
in the early years [2]. China is still in accelerated industrialization, and the consumption of
environmental resources is rising in the context of innovation-driven high-quality economic
development. To achieve the goals of low-carbon and sustainable development, the Chi-
nese Government has put forward the Beautiful China Initiative [3], which emphasizes the
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priority of an ecological civilization. At the same time, China has issued environmental reg-
ulatory regimes, such as the Overall Program for the Reform of the Ecological Civilization
System and the Comprehensive List of Environmental Protection, to control environmental
pollution caused by economic development. The innovation-driven development strategy
has become essential for China to realize high-quality development [4]. Collaborative
innovation (CI) has become critical to promoting regional development and building an
innovative country. Environmental regulation (ER) inevitably conflicts with some inno-
vative development goals. ER in each region may also have different impacts on CI. The
famous theory for this effect is the Porter hypothesis. The Porter hypothesis argues that
environmental policies promote technological innovation, reduce pollution, and promote
economic development [5]. The verifiability of the Porter hypothesis has been debated in
the academic field. On the one hand, many studies support the Porter hypothesis in that
environmental policies force firms to innovate, which can lead to innovation compensation
and promote economic development [2,6,7]. On the other hand, environmental policies
increase production costs and reduce firms’ investments in innovation [8]. However, some
studies suggest there is no correlation [9]. The main reason for this difference is the het-
erogeneity of the study area. Many studies on China confirm the reliability of the Porter
hypothesis [2,6]; most are based on analyses of provincial data, and fewer are based on
data from urban agglomerations. Urban agglomerations are associations formed by the
integration of several geographically concentrated cities. In China, urban agglomerations
have become the main form of continuous regional economic growth. Building a collabora-
tive innovation pattern of urban agglomeration to lead regional high-quality development
is a new goal for China to move toward the ranks of innovative countries [10,11]. The
development of urban agglomerations can provide a new solution to China’s current urban
diseases and realize the coordinated development of large, medium, and small cities [12].

The nineteen urban agglomerations in China have their functions. The Chengdu–
Chongqing urban agglomeration (CCUA) is in the core of southwestern China, forming
an emerging growth pole in China to balance regional development incoherence [13]. The
unique and significant strategic position of the CCUA was highlighted in the Master Plan for
the Chengdu–Chongqing Urban Agglomeration released by the State Council of the People’s
Republic of China on 20 October 2021 [14]. The government is building the CCUA into a
science and technology innovation center with national influence to promote collaborative
innovation [13]. However, the CCUA also faces the same problem: excessive economic de-
velopment from innovation may cause high energy consumption, wasted resources, and
excessive environmental burden [11]. Therefore, the Ecological Environmental Protection
Plan for the Chengdu–Chongqing Economic Circle, released in February 2022, states that by
2025, severe environmental problems should be effectively managed. By 2035, the modern
environmental governance system will be fully improved. There are differences in pollution
control investments due to different economic scales between Chengdu and Chongqing,
leading to differences in ecological and environmental governance capacity and intensity. This
difference will affect the effectiveness of ER [15]. Based on policy, environmental protection is
gradually rising to the same importance as quality economic development and impacting the
effectiveness of CI of the urban agglomeration.

In this context, what is the performance of CI in the CCUA? What is the impact of ER on
CI? Can it prove the win–win situation between ER and innovation advancement in the Porter
hypothesis? Based on this, this study selects the Chengdu–Chongqing urban agglomeration
located in southwest China as the research area and analyses the impact of ER on CI by
constructing indexes. Firstly, this study decomposes the collaborative innovation efficiency
(CIE) into the knowledge transformation-stage efficiency and the technological transformation-
stage efficiency and constructs the evaluation indices of the CCUA’s CIE using a two-stage
dynamic DEA model. Then, a spatial–temporal comparison of urban agglomerations is carried
out to explore the differences in CIE in different cities and the reasons for changes. Next, the
entropy method measures the environmental regulation intensity. Finally, the impact of ER
on CI is analyzed using the Tobit model. This research aims to establish a more reasonable
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evaluation index of CIE for urban agglomeration in western or underdeveloped regions of
China and then be able to analyze the impact of ER on CIE in these regions. The purpose is to
promote the rational flow and equitable distribution of regional innovation factors, thereby
providing novel decision-making references for the authorities to formulate environmental
regulation policies and innovation development policies.

2. Literature Review

This literature review is based on the Porter hypothesis. Reasonable environmental
regulation can improve environmental quality through technological compensation and
learning effects, stimulate enterprises’ technological innovation, increase productivity, and
offset the possible costs of ER. In the long term, it can improve technological innovation
capacity [16]. This contrasts with the traditional view that “environmental regulation increases
costs and thus reduces technological innovation” [17,18]. Existing research on ER and CI
mainly focuses on three aspects: connotation, assessment, and influencing factors; therefore,
this article summarizes the relevant literature based on three aspects. The first stage of the
review addresses the concept, measurement methods, and analysis of influencing factors of
CI; the second stage considers the concept, assessment of effects, and analysis of influencing
factors of ER; and the third stage examines the correlation between ER and CI.

2.1. Research on Collaborative Innovation

CI is the driver of achieving industrial innovation and upgrading in a country or re-
gion [6]. Scholars have conducted in-depth research on CI, mainly focusing on three aspects.

First, as for the concept of CI, one theoretical foundation of CI is the synergy theory
founded by Professor Haken of Germany. The central meaning is that economic and
social development is jointly promoted through the interaction and coordination of various
systems and elements within systems [19]. Schumpeter’s theory of innovation further
explores the role of innovation in economic development [20]. The combination of the two
theories can form the theoretical basis of CI. Entering the 21st century, innovation has been
recognized as a new product under the complex interaction of various innovation subjects
and factors [21], involving collaborative cooperation between enterprises, universities,
research institutes, and governments [22]. CI can perform well by reorganizing subjects
and resources in the regional innovation system; therefore, this study analyzes CI in terms
of subjects and resources.

Second, as for the measurement of CI, scholars usually adopt the DEA or coupled co-
ordination degree model to evaluate regional collaborative innovation performance [23,24].
Evaluation models can be constructed from synergistic processes, including R&D cooper-
ation, patent transfer, and technological innovation [25]. Models can also be constructed
based on innovation processes and outcomes to evaluate the innovation process regard-
ing participatory, synergistic, configurative, and sharing capabilities [26] and to evaluate
collaborative innovation outcomes regarding resource input, achievement output, perfor-
mance spillover, and environmental support [27]. The number of patents filed and papers
published by regions and subjects are more common indicators scholars use to assess CI.
Most studies show that CIE increases with economic growth and regional development.
From the perspective of urban agglomerations, CI grows in different urban agglomerations
but at different rates. There is variability in the efficiency of CI among cities within urban
agglomerations [26].

Third, as for the influence factor of CI, various factors influence collaborative inno-
vation performance, including internal and external factors [28]. Internal factors include
inter-subjective cooperative relationships, cooperative strategy, and technical support.
External factors include the market environment, institutional environment, cultural envi-
ronment, and innovation policy. Firstly, inter-regional policy coordination impacts regional
innovation [29]. Moreover, policy regulation in different regions produces different effects.
Furthermore, the differences in innovation resources among innovation agents also signifi-
cantly impact CI [30]. Therefore, collaborative innovation alliances can reduce transaction
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costs and achieve the transformation and application of knowledge and technology. In
addition, the degree of synergy, innovation input, infrastructure level, and knowledge input
level also affect regional collaborative innovation efficiency [31]. In recent years, research
has gradually focused on the spillover and diffusion of knowledge and technology, the
cross-domain flow of innovation factors, and the upgrading of high-tech industries [32,33].
These can affect CI in different regions in different ways.

Based on Section 2.1, this study proposes the first hypothesis:

Hypothesis 1. Industry–university–research collaborative innovation efficiency will increase but
with significant differences among cities in the Chengdu–Chongqing urban agglomeration.

2.2. Research on Environmental Regulation

Countries are pursuing sustainable development and a low-carbon economy. However,
many high-energy and high-emission industries still negatively impact the ecological
environment. Therefore, scholars have focused on the ecological environment and green
development, with studies focusing on the following three aspects.

The first aspect is the connotation of ER. Environmental resources are public prop-
erty [34] and the government can protect environmental ownership through regulation.
ER refers to the government’s use of laws and regulations to constrain polluting behavior
caused by social activities [35]. Because reducing pollution is not a natural behavior, reg-
ulatory systems are needed to curb polluting activities. According to the Environmental
Kuznets Curve, economic growth is accompanied by increased pollution, and ER is becom-
ing increasingly important [36]. ER should govern industry, businesses, and the people
who use public resources. Local government is the leading implementer of environmental
governance policies [37].

In recent years, the instruments of ER have been divided into three categories. The
first type is the command-and-control type in the form of mandatory regulations [38].
This type of instrument is easy to implement but has high implementation costs. The
second type is market regulation with economic incentives [39]. This type of tool has low
implementation costs but ambiguous implementation effects. The third category is the
voluntary implementation type associated with the subject’s environmental perception or
the acquisition of competitive advantage [40]. Such instruments have a low voluntariness
standard, and their contribution to environmental protection is small and poorly measured.
China mainly adopts command-and-control environmental regulatory instruments, sup-
plemented by market-based and voluntary instruments [41]. The CCUA follows the first
type of instrument. Regardless of the type of environmental regulation tool, the aim is
to achieve the control of environmental pollution and regional sustainable development;
therefore, it is necessary to take into account the region’s advantages in terms of location,
economic development, industrial structure, and resource endowment before selecting the
tool and implementing the system [42].

The second aspect is the evaluation of environmental regulation effects. Some scholars
have measured environmental regulatory effects through laws and regulations enacted by local
governments. Examples include environmental law, administrative law, tort law, or industrial
environmental regulatory standards [43]. However, laws or industrial standards are relatively
stable within a certain period or a fixed industry, making it challenging to dynamically reflect
changes in the intensity of ER. In addition, laws and regulations are not easy to quantify;
therefore, more and more scholars choose to evaluate them from the perspective of pollutant
emission or elimination. Scholars have constructed a comprehensive index-type indicator to
measure the effect of ER by assigning different weights to each indicator, for example, the
wastewater discharge compliance rate, sulfur dioxide removal rate, soot removal rate, dust
removal rate, and solid waste comprehensive utilization rate [6]. Some scholars have also
measured it from the perspective of pollution control investment. The amount of pollution
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treatment investment, the capital stock, and the number of people in the environmental
protection system are also measurable indicators [35,44].

The third aspect is the impact of ER. ER affects a country or region’s production effi-
ciency [45], industrial structure [46], economic growth [47], and innovative activities [48].
However, according to relevant studies, ER’s impacts are inconsistent across regions. There-
fore, ERs do not necessarily improve production efficiency, promote industrial structure
upgrading, stimulate economic growth, and incentivize innovative activities. China’s
environmental governance is an administrative regulation [37]. Such regulation can poten-
tially increase compliance costs for firms and negatively affect productivity and economic
growth [17]. However, it may also enhance environmental quality, curb the negative exter-
nalities of environmental pollution, and force firms to engage in technological innovation,
thus potentially promoting economic growth [37].

2.3. Research on the Relationship between Environmental Regulation and Collaborative Innovation

According to the Porter hypothesis, environmental protection policies can generate
innovation compensation effects and achieve a “win–win” situation for environmental
protection and innovation upgrading [5]. In recent years, more and more research on the
Porter hypothesis has produced different results; thus, the correlation between ER and CI
is unclear. Existing research can be broadly categorized into the following two aspects.

The first aspect is the measurement of the relationship between ER and innovation. Most
studies used DEA–Tobit, generalized linear, and geographic weighted regression models [2,7,49].
Minority studies also use vector autoregressive models and case studies [50,51]. The DEA–Tobit
model is a common model for efficiency assessment and factor analysis. Shuai and Fan [2]
used the DEA–Tobit model to analyze ER’s impact on green economy efficiency in Chinese
provinces; Huang, Xu et al. [6] have further analyzed the impact of ER on regional collaborative
innovation in China’s thirty provinces. Wu and Fu et al. [52] have narrowed the research scope
and analyzed the impact of ER on green innovation efficiency in the Yangtze River Economic
Belt with the DEA–Tobit model. There are differences in the results obtained due to differences
in the study area, economic development, resource endowment, geographical location, and the
selection of indicators.

The second aspect is the relationship between ER and CI. Most studies have focused on
analyzing the relationship between ER and technological innovation or green innovation.
This has three effect types: not significant, one-way, and dual. Regarding technological
innovation, market-incentivized ER affects technological innovation, and command-and-
control ER has no significant effect on technological innovation [51]. In technologically
advanced countries, stricter environmental policies are more likely to promote short-term
economic growth and innovation. However, in the long term, market-based environmental
policies appear more favorable to productivity gains than non-market instruments [53]. Re-
garding green innovation, ER and green innovation might show a positive correlation [54]
or an U-shaped relationship [7]. ER demonstrates a dual impact on regional innovation if
considering factor allocation. The current-period ER policy is not conducive to improving
regional innovation capacity. In contrast, the lagged-period ER favors enhance regional
innovation capacity because the negative environmental cost effect is exceeded [55]. Based
on the Porter hypothesis, studies have produced different results. Most Chinese-based
research confirms the Porter. The results may be more plausible and generalizable if studies
are conducted in specific industries or regions [2].

Based on Sections 2.1–2.3, this study proposes the second hypothesis:

Hypothesis 2. The impact of environmental regulation on collaborative innovation in the Chengdu–
Chongqing urban agglomeration is consistent with Porter hypothesis: Environmental regulation
can improve environmental quality, promote technological innovation, and offset the costs incurred
by environmental regulation.
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In summary, academics have conducted a wide range of studies on the applicability of
the Porter hypothesis. Nevertheless, the conclusions are inconsistent due to differences in
indicators, data, or models, as well as the economic development level, resource endow-
ment, environmental regulation intensity, and how regulation is carried out in each region.
First, fewer studies have analyzed data from the perspective of urban agglomeration data in
western China or underdeveloped areas. Most have only analyzed provincial or developed
region data. Second, few studies have specifically analyzed the influence of ER on CI, and
most focus on the relationship between environmental protection and innovation. This
study further remedies these two issues and verifies whether the Porter hypothesis is valid
in the CCUA.

This study has three main contributions. First, it analyzes the innovation efficiency
of ER from the perspective of urban agglomeration in western China (underdeveloped
regions) to compensate for the inadequacy of previous national, provincial, or developed
region studies. Second, ArcGIS 10.8 software is used to draw spatial distribution maps to
compare the collaborative innovation performance of the CCUA on a geographical scale.
This differs from previous studies in the literature that have used simple chart comparisons.
Third, the Tobit model is used to analyze the impact, which avoids the bias that may arise
from using the ordinary least squares (OLS) method for truncated data. At the same time,
this study analyzes the heterogeneity of the impact of ER on CI. Analyzing the heterogeneity
of the two stages of CI and the heterogeneity of the geographical distribution helps to
identify the specific reasons for the differences and to make micro-level recommendations.

3. Method and Data
3.1. Study Area and Data Collection

This study selected the CCUA as the study area. The CCUA is located in the core
of southwestern China, driving the western region’s socio-economic development and
the region’s coordinated development. According to the Chengdu–Chongqing Urban
Agglomeration Development Plan released in 2016, the division is classified by cities; the
CCUA includes 16 cities. Therefore, this study focuses on the CCUA’s 16 cities as the
research object (Figure 1).
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This study uses the panel data of 16 cities in the CCUA from 2011 to 2021. Dur-
ing this period of 11 years, China has experienced three Five-Year Plans, each of which
has profoundly impacted China’s development. The world today is going through pro-
found changes unseen in a century, and China’s economy is in a period of transformation
and upgrading [10]. As an essential growth pole for the high-quality development of
the western economy, the CCUA, its ecological environment’s current status, and its
innovation-driven development’s effectiveness have attracted the attention of scholars and
decision-makers [13]. The CCUA is building the Western Science City. As a comprehen-
sive science center, it has gathered several universities, research institutes, and leading
science and technology enterprises with international influence. Increasing government
financial investment has also laid a solid foundation for the transformation of knowledge
achievements and technological achievements in this urban agglomeration.

The data in this study were obtained from the China Environmental Statistics Yearbook,
China Science and Technology Statistics Yearbook, China Urban Statistics Yearbook, and
statistical yearbooks of Chongqing, Sichuan, and various cities from 2012 to 2022. For a
small amount of missing data, linear interpolation was used to complete the data.

3.2. The Two-Stage DEA Model
3.2.1. Model Construction

Among the efficiency evaluation tools, commonly used methods include the Del-
phi method and Fuzzy Hierarchical analysis, but subjectivity in prioritizing indicators
can affect the evaluation results [2]. The DEA model is a mathematical planning-based
efficiency analysis tool for analyzing the effectiveness of a decision-making unit (DMU)
with multiple inputs and outputs, which can effectively avoid the problem of subjectivity.
Cook established a two-stage network DEA model [56]. Liang and Y. Li have improved
Cook’s model [57,58], and more and more scholars have adopted this model for efficiency
analysis [59]. In this study, focusing on the method of Liang and Li, the inputs of the second
stage include the outputs of the first stage and the additional inputs of the second stage.
The multiplication of the first stage’s efficiency with the second stage’s efficiency equals the
total efficiency of the two stages. The process is shown in Figure 2.
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Assume that there are n decision units and that the effective value of a decision unit is
θ, specified as 0 ≤ θ ≤ 1, and the input and output variables are x and y. The coefficients are
denoted by λ. Excesses of inputs are denoted by k+, and deficiencies of outputs are denoted
by k−. If θ = 1, the overall efficiency is effective; if θ < 1, the decision unit is inefficient.
This study uses the two-stage dynamic DEA model to divide the evaluation process into
two sub-stages from the perspective of CIE, including the knowledge transformation
stage and the technological transformation stage. This study uses an input–output model
that can reflect the collaborative process of universities, research institutes, enterprises,
and the government as the basis for model construction. In regional innovation systems
constituted by the above subjects, knowledge can be transformed into new technologies and
applied in production to enhance technological innovation [60]; this stage is expressed as
knowledge transformation. Technological innovation can promote economic development
and social progress [61]; this stage is expressed as technological transformation. This
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approach improves the accuracy of efficiency calculations and analyses the internal factors
influencing efficiency in stages. The two-stage dynamic DEA model is based on Equation
(1). 

Min
[
θ− η

(
k+ + k−)]

s. t.
n
∑

j=1
λjxj + k− = θx0

n
∑

j=1
λjyj − k+ = y0

λj ≥ 0, j = 1, 2, 3, · · · n
k+, k− ≥ 0

(1)

3.2.2. Variable Selection

This study constructs evaluation indexes of CIE from knowledge and technological
transformation perspectives and conducts two-stage DEA analyses. The Western Science
City in the CCUA is committed to building top universities, research institutes, and science
and technology innovation centers with greater influence [7]. Talent factors, capital factors,
technology factors, and financial support can have a noticeable impact on collaborative
innovation. Based on this, this study also refers to the studies of Huang and Xu et al. [6]
and Wang and Hu [32] to categorize the inputs and outputs of CIE. The selected indicators
of CIE are shown in Table 1.

Table 1. Evaluation index of collaborative innovation efficiency.

Stage Vector Category Indicator

Knowledge
transformation stage

Inputs Human resources
The number of full-time teachers in

colleges and universities (TCUs)
The number of students in colleges and

universities (SCUs)

Capital Education expenditure of finance (EEF)

Outputs Science and technology The number of scientific papers (SPs)
The number of invention patents (IPs)

Technological
transformation stage

Inputs
Science and technology The number of scientific papers (SPs)

The number of invention patents (IPs)

Human resources The number of employees in scientific
research and technical services (ESTs)

Capital Science expenditure of finance (SEF)

Outputs GDP GDP

Innovation Innovation index (II)

In the knowledge transformation stage, inputs consist of human resources of higher
education, capital, and the transformation of scientific and technological achievements.
Therefore, the input indicators include the number of teachers in colleges and universities
(TCUs), students in colleges and universities (SCUs), and education expenditure of finance
(EEF) [62]. The output indicators are the number of science papers (SPs) and invention
patents (IPs). The FTCU, SCU, EEF, and IP values can be found directly in the statistical
yearbook of each city. The SPs can be obtained by referring to the statistical methods of Lyu
et al. [48], which include the number of Chinese and English scientific papers published
annually in each city.

In the technological transformation stage, the output variables “science and technology—
SPs and IPs” from the first stage become input indicators. In addition to technology-
related human and capital, the contribution to economic development and effectiveness
of environmental innovation are also considered. Therefore, the number of employees in
scientific research and technical services (ESTs) and science expenditure of finance (SEF)
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are considered additional input variables [63,64]. The output indicators are the regional
GDP (GDP) and the innovation index (II). The EST, SEF, and GDP are obtained in each
city’s statistical yearbook. The II can be calculated by referring to the “Report on the
Innovativeness of Chinese Cities and Industries” published by the Centre for Industrial
Development Research of Fudan University in 2017.

All indicators were normalized prior to the model analysis to avoid the effect of
outliers. Linear mapping of the original data through min–max normalization maps the
result from 0 to 1, in the 0–1 normalization method. Using the DEARUN 3.2 software,
CIE and two-stage efficiency can be obtained so that annual averages and city averages
can be calculated for comparing overall efficiency and temporal trends. Then, this study
uses the Natural Breaks method to classify CIE into five levels and express it in geospatial
visualization by using ArcGIS 10.8 software to carry out spatial distribution analysis [65].

3.3. The Tobit Model
3.3.1. Model Construction

Using the Tobit model, this study analyzed the impact of ER on CIE through two
processes.

In the first process, the prevailing method measures ER through a composite index [66].
This study calculated environmental regulation intensity using the entropy method. “En-
tropy” is a measure of uncertain information. The entropy method can determine the
weight coefficients of the metrics, which is more objective than the hierarchical analysis
method of metrics, making the data evaluation more credible [67]. This objective weighting
method avoids bias caused by human factors. The more information, the less uncertainty,
and the less entropy; conversely, the less information, the more uncertainty, and the more
entropy [68]. The smaller the entropy of the metrics, the greater the degree of disper-
sion and the greater the influence of the metrics on the comprehensive evaluation (i.e.,
the weight). The existing research on environmental regulation intensity has no direct
indicators; therefore, the entropy weight method was used.

In the second process, the Tobit model was constructed to analyze the impact of
environmental regulation intensity on CIE. The efficiency measured using the two-stage
dynamic DEA model is between 0 and 1, and the data above one were truncated to 1 [6].
Therefore, the CIE of the two-stage DEA model are truncated data. Ordinary least squares
(OLS) is a commonly used method to conduct regression analyses, but the dependent
variable obtained is perhaps discrete [69]. As a result, the panel regression of OLS may be
biased. The Tobit model can estimate linear regression models with missing or restricted
dependent variables [70]; thus, using the Tobit model can effectively avoid the problems of
OLS. As a result, this study used the panel Tobit regression model.

yij =


y*

ij = βxij + µij

0, otherwise
y*

ij, 0 ≤ y*
ij ≤ 1, i = 1, 2, 3, · · ·

(2)

The panel Tobit model is constructed as shown in Equation (2). i represents the
year; j represents the city; yij is the CIE of the jth city in the ith year, between 0 and 1;
β is a coefficient vector; xij represents the value of the influencing factors of the city’s
corresponding indicators in the ith year; µij is a random disturbance term; and y*

ij is the
potential CIE.

3.3.2. Variable Selection

Since the model construction is divided into two processes, the variable selection also
includes two aspects.

The first aspect is the determination of the variables of environmental regulation
intensity in the entropy method. Most studies use environmental protection input and
pollution output indicators to measure the effect of ER. In March 2023, the Ministry of
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Ecology and Environment of the People’s Republic of China issued the Implementation
Plan for Setting and Allocating National Carbon Emission Trading Quotas in 2021 and
2022 to cope with climate change. As environmental pollutants and carbon emissions are
highly homologous, synergizing to promote pollution reduction and carbon reduction has
become an inevitable choice for the comprehensive green transformation of economic and
social development in China’s new development stage. This study, from the perspective
of carbon emission and concerning the study of Huang and Xu et al. [6], has selected the
urban domestic sewage treatment ratio (UDSTR), industrial solid waste comprehensive
utilization ratio (ISWCUR), domestic waste harmless treatment ratio (DWHTR), volume
of industrial sulfur dioxide removed (VISDR), industrial wastewater discharge reaches
standard level (IWDRSL), and volume of industrial soot removed (VISR) indicators to
measure the effect of ER. The corresponding indices are more relevant to carbon emissions
than in previous studies. The larger (smaller) these indices are, the fewer (more) pollutants
are emitted, and the more effective ER is. This can be seen in Table 2.

Table 2. Selection of indicators of environmental regulation.

Indicator Weight

Environmental
Regulation (ER)

Urban domestic sewage treatment ratio (UDSTR) 0.054130137
Industrial solid waste comprehensive utilization

ratio (ISWCUR) 0.050324387

Domestic waste harmless treatment ratio
(DWHTR) 0.005603409

The volume of industrial sulfur dioxide removed
(VISDR) 0.163104783

Industrial wastewater discharge reaches
standard level (IWDRSL) 0.466230143

The volume of industrial soot removed (VISR) 0.260607140
Note: Weight is calculated via the entropy method.

The second aspect is the determination of the variables in the Tobit model.
Explained variables: Collaborative innovation efficiency (CIE) was selected as the ex-

plained variable in the total effects model. Knowledge transformation-stage efficiency (KE)
and technological transformation-stage efficiency (TE) were each selected as explanatory
variables in the two-stage decomposition.

Explanatory variable: Environmental Regulation (ER).
Control variables: The performance of regional CIE is related to each region’s physical

capital, economic development, and financial input. This study refers to the research of
Huang and Xu et al. [6]. It utilized fixed asset investment (FAI), regional economic level
(GDP), and science and education expenditure of finance (SEEF) indicators as control
variables. The selected indicators are shown in Table 3.

Table 3. Indicator selection of the factors affecting the collaborative innovation efficiency.

Index Category Index Name

Explained variables
Collaborative innovation efficiency (CIE)

Knowledge transformation-stage efficiency (KE)
Technological transformation-stage efficiency (TE)

Explanatory variable Environmental regulation (ER)

Control variables
Fixed asset investment (FAI)

Economic level (GDP)
Science and education expenditure of finance (SEEF)

Thus, Equation (3) of the Tobit model was derived.

Yk
ij = α0 + α1ER+α2ER2+α3lnFAIij+α4lnGDPij+α5lnSEEFij + εij (3)
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Here, i represents the year; j represents the city; α is the regression coefficient of each
variable; ε is a random interference term; and Y is the explained variable. When k = 1, 2, 3,
it represents CIE, knowledge transformation efficiency, and technological transformation ef-
ficiency, respectively. The explanatory variable is environmental regulation (ER). According
to the Porter hypothesis and related studies, the relationship between ER and innovation
may show a U shape. The quadratic term may fit the data better; therefore, ER2 is one
of the explanatory variables. The other control variables are fixed asset investment (FAI),
regional economic level (GDP), and science and education expenditure in finance (SEEF).
To make the model more stable, the variables are taken to be logarithmic. Table 4 shows the
descriptive statistics of the variables.

Table 4. Descriptive statistics of variables.

Variable Sample
Size Mean Median Standard

Deviation Min Max

CIE 176 0.6819 0.6857 0.0913 0.4946 0.9506
KE 176 0.8205 0.8300 0.1018 0.5300 1.0000
TE 176 0.8345 0.8083 0.0844 0.6224 1.0000
ER 176 0.1084 0.0716 0.1487 0.0152 0.9252
ER2 176 0.0337 0.0052 0.1185 0.0002 0.8561

LNGAI 176 16.4457 16.2689 0.9769 14.8573 19.0518
LNGDP 176 16.6619 16.4305 0.9062 15.0686 19.4465
LNSEEF 176 13.2642 13.0434 0.8829 11.5469 15.9989

4. Results and Discussion

This section begins with analyzing CIE and making a spatial–temporal comparison,
followed by an analysis of the regression results of the panel Tobit model.

4.1. Results of the Two-Stage DEA Model

This study evaluated the CIE of the CCUA and the two-stage efficiency from 2011 to
2021. Based on this, it compared the spatial–temporal differences in 16 cities.

4.1.1. Overall Efficiency Analysis

The DEA model can obtain the efficiency of collaborative innovation in each city in
each period. By analyzing the average CIE of each period during the study time, Figure 3
was obtained. To make the results more accurate, an analysis of variance (ANOVA) was
conducted in this study. Table 5 shows that the differences in CIE (p < 0.01), knowledge
transformation efficiency (p < 0.01), and technological transformation efficiency (p < 0.01)
among different cities are statistically significant. There are significant differences in CIE
among the cities in the CCUA. The city efficiency is between 0.55 and 0.85. The efficiency of
Chengdu, Chongqing, Yibin, and Ziyang is above 0.75. The efficiency of Dazhou, Suining,
and Guang’an is between 0.7 and 0.75. The efficiency of Neijiang and Meishan is between
0.65 and 0.7. The efficiency of Zigong, Luzhou, Mianyang, and Leshan is between 0.6 and
0.65. The efficiency of Deyang, Nanchong, and Ya’an is between 0.55 and 0.6. There is a
significant gap between Chengdu, with the highest efficiency value, and Deyang, with the
lowest. The 2022 China Urban Statistical Yearbook shows that Chengdu has 65 regular
higher education institutions. Chengdu is a center of education and research in southwest
China, and several high-quality universities and research institutes are located here [71],
indicating that the knowledge transformation is effective. The number of patent authoriza-
tions in Chengdu is 88,414, transforming technological achievements more effectively as the
government’s financial investment continues to increase. The 2022 China Urban Statistical
Yearbook shows that Deyang has 13 regular higher education institutions, and most are
vocational colleges. Therefore, the knowledge transformation efficiency is weak in the short
term, which negatively impacts CI. The number of patent authorizations in Deyang is 6743,
which is 7.6% of that of Chengdu. Deyang has a substantial accumulation of innovation
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resources but a relative lack of output capacity and low innovation performance in a short
period [72]. Therefore, there is a gap between the two cities.
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Figure 3. Average collaborative innovation efficiency and its stages of 16 cities in the CCUA.

Table 5. Results of the ANOVA for three efficiencies.

ANOVA—Collaborative innovation efficiency

Source of Variation Sum of
Squares

Degrees
of

Freedom

Mean
Square F-value p-value F crit

Between Group 1.013878 15 0.067592 24.30412 0.0000 1.72930841
Within Group 0.444974 160 0.002781

Total 1.458851 175

ANOVA—Knowledge transformation efficiency

Source of Variation Sum of
Squares

Degrees
of

Freedom

Mean
Square F-value p-value F crit

Between Group 1.42189 15 0.094793 38.63534 0.0000 1.72930841
Within Group 0.392564 160 0.002454

Total 1.814454 175

ANOVA—Technological transformation efficiency

Source of Variation Sum of
Squares

Degrees
of

Freedom

Mean
Square F-value p-value F crit

Between Group 0.534873 15 0.035658 8.020298 0.0000 1.72930841
Within Group 0.711359 160 0.004446

Total 1.246232 175
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There is a wide gap in knowledge transformation-stage efficiency among the cities in
the CCUA. The efficiency of each city is between 0.6 and 1; most are concentrated between
0.75 and 1. This result indicates that the CCUA has a better effect on knowledge transfor-
mation, but there is still room for upward growth. Universities and local governments also
strongly support the region’s high economic development, but more attention needs to be
paid to the balanced distribution of knowledge resources.

There is little difference in technological transformation-stage efficiency among the
cities in the CCUA, and the development is relatively balanced. The efficiency of each
city is between 0.75 and 1, and most are concentrated between 0.8 and 1. These results
indicate that the CCUA has a better effect on technological transformation, but there is
still room for upward growth. This trend indicates that the urban agglomeration has a
high transformation rate of technological innovation, which is consistent with the critical
positioning of the Chengdu–Chongqing region to build a “scientific and technological
innovation center with national influence”. In recent years, technological innovation has
been effective in promoting economic development.

4.1.2. Temporal Dynamics Analysis

By comparing the dynamic development of each year, this study further analyzed the CIE
and the two-stage efficiency. Figure 4 shows the averages for each city over the study period.

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 29 
 

universities and educational resources, but the transformation rate of results is low. Ac-

cording to the 2022 China Urban Statistical Yearbook, Sichuan and Chongqing have 208 

colleges and universities. Still, there are only 80 undergraduate colleges and universities, 

and even fewer high-quality undergraduate colleges and universities, with most under-

graduate colleges and universities are concentrated in the core cities of Chengdu and 

Chongqing. As a result, the transformation rate of educational resources in this urban ag-

glomeration is low, and the transformation efficiency of knowledge in non-core cities is 

low. 

Conversely, technological transformation efficiency shows a continuous increase 

from 2011 to 2021. This result indicates that the transformation of technological inputs in 

these cities is improving. Influenced and radiated by the Western (Chengdu) Science City 

and the Western (Chongqing) Science City, the cities in the CCUA, relying on their own 

industrial and policy advantages, have made significant progress in the transformation of 

scientific and technological achievements with the support of financial and technological 

funds [71]. However, the efficiency has not yet reached a value of 1, indicating that there 

is still room for most cities to rise in terms of science and technology fueling economic 

development. This further reflects that the development strategy of establishing the 

CCUA as a national urban agglomeration is still a short period, and the government’s 

support for the innovation capacity of high-tech industries still needs to be improved. 

 

Figure 4. Annual collaborative innovation efficiency and its stages of the CCUA from 2011 to 2021. 

Taken together, Hypothesis 1 is valid, and the CIE of the CCUA is increasing yearly. 

The knowledge transformation stage has a negative impact on CI, and the technological 

transformation stage positively impacts CI. The negative impact of the knowledge trans-

formation stage was particularly significant between 2011 and 2015. During these five 

years, the technological transformation stage continued to increase steadily. Still, it did 

not lead to an increase in CIE in the urban agglomerations because the negative impact of 

the knowledge transformation stage outweighed the positive impact of the technological 

transformation stage. After 2015, the positive impact of the technological transformation 

stage far exceeds the negative impact of the technological transformation stage, causing 

CI to rise steadily. This fully illustrates that the transformation of scientific and technolog-

ical achievements significantly affects regional economic development [47,73]. 

4.1.3. Spatial Distribution Analysis 

Based on each city’s CIE average from 2011 to 2021 (Table 6), the sixteen cities in the 

CCUA are divided into five categories. The details are presented in Table 7. 

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Collaborative Innovation Average

Knowledge Transformation Average

Technological Transformation Average

Figure 4. Annual collaborative innovation efficiency and its stages of the CCUA from 2011 to 2021.

The CIE shows an oscillating upward trend from 2011 to 2021. The first wave of minor
increases from 2015 to 2017 indicates that the Chengdu–Chongqing Urban Agglomeration
Development Plan (CCUADP) has begun to bear fruit. The CCUADP proposed that the CCUA
would build a series of industrial zones with output values of CNY 100 billion and CNY 10
billion and promote the independent innovation capacity of the Chongqing Economic and
Technological Development Zone and the Chengdu Economic and Technological Development
Zone. Based on this, the CCUA established an industry–university–research innovation
alliance, breaking down regional administrative barriers and forming the foundation for
CI. The second wave of minor increases from 2018 to 2021 indicates that the effectiveness
of the construction of the Western Science City, built with Chengdu and Chongqing at its
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core, is gradually coming to the fore. In July 2020, the People’s Government of Sichuan and
Chongqing issued the “Advancement Program for Building Regional Development Functional
Platforms in Adjacent Regions of Sichuan and Chongqing”, which demanded that adjacent
regions of Sichuan and Chongqing cooperate to build “9+1” regional (cities included in this
study) development functional platforms. This policy opens channels for innovative resource
flows, effectively promotes exchanges and cooperation among adjacent cities in the CCUA,
and contributes to the transformation of CI’s knowledge and technology.

From the outcomes of CI, the CCUA set up the National Technology Innovation
Center for the Sichuan–Xizang Railway, the National Technology Innovation Center for
High-end Aviation Equipment, the National Technology Innovation Center for Hogs, and
the China Earthquake Science Experimental Ground, which are national scientific and
technological infrastructures. Since establishing the Chengdu–Chongqing Comprehensive
Science Center, 11 national key laboratories have been reorganized, and 114 key R&D
projects were implemented before July 2023. The amount of growth in 11 years proves
Hypothesis 1, that industry–university–research CIE will increase.

Knowledge transformation efficiency shows a slow downward trend from 2011 to 2021.
There are two reasons to explain this. First, most cities in the CCUA have a knowledge
transformation innovation efficiency higher than 0.75, which is a high starting point, so
there is less room for increase. Second, Sichuan and Chongqing have abundant universities
and educational resources, but the transformation rate of results is low. According to the
2022 China Urban Statistical Yearbook, Sichuan and Chongqing have 208 colleges and
universities. Still, there are only 80 undergraduate colleges and universities, and even
fewer high-quality undergraduate colleges and universities, with most undergraduate
colleges and universities are concentrated in the core cities of Chengdu and Chongqing. As
a result, the transformation rate of educational resources in this urban agglomeration is
low, and the transformation efficiency of knowledge in non-core cities is low.

Conversely, technological transformation efficiency shows a continuous increase from
2011 to 2021. This result indicates that the transformation of technological inputs in these
cities is improving. Influenced and radiated by the Western (Chengdu) Science City and the
Western (Chongqing) Science City, the cities in the CCUA, relying on their own industrial
and policy advantages, have made significant progress in the transformation of scientific
and technological achievements with the support of financial and technological funds [71].
However, the efficiency has not yet reached a value of 1, indicating that there is still room for
most cities to rise in terms of science and technology fueling economic development. This
further reflects that the development strategy of establishing the CCUA as a national urban
agglomeration is still a short period, and the government’s support for the innovation
capacity of high-tech industries still needs to be improved.

Taken together, Hypothesis 1 is valid, and the CIE of the CCUA is increasing yearly.
The knowledge transformation stage has a negative impact on CI, and the technological
transformation stage positively impacts CI. The negative impact of the knowledge trans-
formation stage was particularly significant between 2011 and 2015. During these five
years, the technological transformation stage continued to increase steadily. Still, it did
not lead to an increase in CIE in the urban agglomerations because the negative impact of
the knowledge transformation stage outweighed the positive impact of the technological
transformation stage. After 2015, the positive impact of the technological transformation
stage far exceeds the negative impact of the technological transformation stage, causing CI
to rise steadily. This fully illustrates that the transformation of scientific and technological
achievements significantly affects regional economic development [47,73].

4.1.3. Spatial Distribution Analysis

Based on each city’s CIE average from 2011 to 2021 (Table 6), the sixteen cities in the
CCUA are divided into five categories. The details are presented in Table 7.
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Table 6. The average of each city’s collaborative innovation efficiency from 2011 to 2021.

City
Collaborative

Innovation
Efficiency

Knowledge
Transformation

Efficiency

Technological
Transformation

Efficiency

Chongqing 0.772 0.787 0.980
Chengdu 0.812 0.903 0.902
Zigong 0.647 0.822 0.788
Luzhou 0.633 0.779 0.814
Deyang 0.552 0.638 0.877

Mianyang 0.627 0.795 0.790
Suining 0.734 0.922 0.796
Neijiang 0.688 0.870 0.793
Leshan 0.638 0.750 0.851

Nanchong 0.575 0.657 0.876
Meishan 0.664 0.819 0.813

Yibin 0.762 0.883 0.865
Guang’an 0.749 0.947 0.792
Dazhou 0.719 0.833 0.866

Ya’an 0.583 0.766 0.762
Ziyang 0.754 0.956 0.788

Table 7. Classification of collaborative innovation efficiency cities in the CCUA.

Category Number City

Category I 1 Chengdu

Category II 6 Chongqing, Guang’an, Ziyang, Suining,
Yibin, Dazhou

Category III 2 Neijiang, Meishan
Category IV 4 Mianyang, Leshan, Zigong, Luzhou
Category V 3 Ya’an, Deyang, Nanchong

Chengdu, Chongqing, Guang’an, Ziyang, Suining, Yibin, and Dazhou have outstand-
ing performance in CIE and are in Category I and Category II. Chengdu and Chongqing
have several high-level educational institutions and the Western Science City, which pro-
vide an advantage in knowledge and technological transformation. The high CIE of Ziyang,
Suining, and Guang’an is because the three cities have fewer inputs and fewer outputs
for knowledge transformation and technological transformation. Therefore, it does not
represent the solid collaborative innovation capacity of the three cities. Ziyang, Suining,
and Guang’an are relatively backward areas in the urban agglomeration, and they have
small-scale economies with insufficient aggregate effects. Based on data from the China Ur-
ban Statistical Yearbook, since 2016, the GDP of Suining, Guang’an, and Ziyan ranked 13th,
14th, and 15th among the CCUA’s 16 cities. Yibin’s fiscal spending on education and science
is higher than comparable cities. Relying on the construction of university cities and science
and technology cities, Yibin has promoted the integration of industry–university–research,
which has facilitated the rapid transformation of knowledge and technology. Dazhou
is close to Chongqing, favoring the flow of innovation factors. Dazhou has focused on
building the Dazhou High-Tech Zone in recent years as its Eastern Economic Development
Zone is the core area for high-tech research and development.

Ya’an, Deyang, and Nanchong have the worst performances in CI and are in the fifth
category, which indicates that the ability of knowledge transformation and technological
transformation in this category is weak and does not have a more obvious promotion ef-
fect on economic development. Ya’an is an impoverished area on the edge of the CCUA,
with both science and education levels lagging. Deyang has many students and teachers
in colleges and universities; therefore, its educational expenditure is high. Based on data
from the China Urban Statistical Yearbook, since 2013, the number of students and teach-
ers in universities and colleges in Deyang have ranked third or fourth among the CCUA’s
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16 cities. However, the number of papers and patents in Deyang have ranked eighth or
ninth. Fewer papers and patents on scientific and technological achievements result in lower
knowledge transformation efficiency, dragging CI in the city down. Nanchong invests more
in education and science but produces fewer knowledge outputs, leading to less CI.

Based on Table 6, Figure 5 was plotted. It shows the breakpoints of spatial differences
in CIE and two-stage efficiency for each city. Regarding regional spatial differences, the
CIE of the urban agglomeration is balanced, but there are variations among cities. This
proves that Hypothesis 1 is valid. Significant differences exist in CIE among cities in this
urban agglomeration. It roughly shows higher values for Chengdu, Chongqing, and their
intermediate cities, with the remaining cities’ efficiency values gradually decreasing. The
urban agglomeration’s higher knowledge transformation efficiency region is in the northwest,
with Chengdu, Ziyang, Suining, Neijiang, and Guang’an having higher efficiency values. The
remaining cities around the northwest have progressively lower efficiency values. The highest
technological transformation efficiency in the urban agglomeration is found in Chongqing in
the southeastern part of the urban agglomeration. At the same time, the rest of the cities with
high-efficiency values are dispersed in different parts of the urban agglomeration.
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In summary, combining the results of the two-stage analysis, cities with higher knowl-
edge transformation efficiency and technological transformation efficiency constitute sev-
eral cities with higher CIE, i.e., Chengdu, Chongqing, and Yibin. The knowledge transfor-
mation effect is relatively low, and the technological transformation effect is relatively high,
confirming the negative impact of knowledge transformation on CI and the positive impact
of technological transformation on CI.

4.2. Results of the Panel Tobit Model

Using the Stata 17.0 software, this study applied the Tobit model to analyze the impact
of ER on the CIE of 16 cities in the CCUA.

4.2.1. Model Selection

Fixed effects Tobit models do not usually produce consistent, unbiased estimates, and
random effects models are better [74]. However, based on multiple circumstances, this
study began with selecting the different models. Since the Tobit model is mainly the pooled
Tobit model or the random Tobit model, the Breusch–Pagan Lagrange multiplier (LM) test
was performed. The chibar2 value was 272.21, and the p-value was 0.0000. The hypothesis
of “no random effects” was rejected, implying that the random effects model was preferred
over the fixed effects model. Therefore, the random Tobit model was chosen.

4.2.2. Regression Results

The regression results of the three efficiencies using the random effects Tobit model
are shown in Table 8.

Table 8. Tobit regression results of influencing factors.

CIE Coefficient Std. Err. z p > z [95% Conf. Interval]

ER −0.5343932 0.2434281 −2.2 0.0280 −1.011503 −0.057283
ER2 0.5600783 0.1961016 2.86 0.0040 0.1757262 0.9444305

LNFAI −0.0291481 0.01567 −1.86 0.0630 −0.0598608 0.0015645
LNGDP 0.2143501 0.0356376 6.01 0.0000 0.1445016 0.2841986
LNSEEF −0.1095134 0.029577 −3.7 0.0000 −0.1674832 −0.0515436

_cons −0.9186117 0.2322074 −3.96 0.0000 −1.37373 −0.4634936

LR test of sigma_u = 0: chibar2(01) = 163.80 Prob ≥ chibar2 = 0.000.

The Tobit regression analysis revealed the following:
As the core explanatory variable, the coefficient of ER is −0.53439 with a p-value

of 0.0280, which passes the 5% test. This means the negative effect of ER on CIE is sig-
nificant. The coefficient of ER2 is 0.5600783 with a p-value of 0.0040, which passes the
1% test. This indicates that ER2 has a significant positive effect on CIE. According to the
regression results, the influence of ER on CIE is in a U shape. However, existing studies
point out that it is not rigorous enough to judge the U shape only by the significance of
the quadratic term coefficients. This study refers to Lind and Mehlum et al. [75] to test the
existence of a U shape between ER and CIE through the U test. The results are shown in
Table 9. According to the results of the U test, first, the extreme point is 0.47707, which
is in the range of value of the independent variable (0.0152–0.9252). The overall test of
the presence of a U shape shows that the p-value is significant at a 5% level, rejecting
the null hypothesis that the curve is monotonic or an inverted U shape, meaning that
the curve exhibits a U shape. Second, the slopes on both sides of the curve are consis-
tent with a U shape. When the independent variable is on the lower bound, the slope
of the curve is significantly negative (−0.5173668, p = 0.0155). When the independent
variable is on the upper bound, the slope of the curve is significantly positive (0.5019757,
p = 0.0008). This study further plotted the U-shaped relationship. Figure 6 shows that with
the growth of ER, CIE first decreases and then increases. Growing environmental regulation
may increase innovation costs and reduce innovation efficiency. However, once reaching
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the threshold minimum, stricter environmental regulation promotes innovative activity,
realizing “innovation compensation”, increasing productive efficiency, and promoting
economic growth. This is consistent with the Porter hypothesis. The Porter hypothesis
suggests that the adoption of innovative technologies is the primary way in which ER has
an impact on the economy [16]. This result validates Hypothesis 2; that is, the impact of ER
on CIE is consistent with the Porter hypothesis in the CCUA.

Table 9. Results of the U test.

Lower Bound Upper Bound

Extreme point 0.47707
Interval 0.0152 0.9252

Overall test of the presence of a U shape t-value 2.18
p > t 0.0155

Slope −0.5173668 0.5019757
t-value −2.175422 3.200778
p > |t| 0.015466 0.0008131
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There are two potential reasons for the Tobit regression results. The first reason may be
that the CCUA’s environmental regulatory policies positively offset the cost of innovation
only afte r a reasonable value has been reached. This reasonable value is the threshold
value. This process produces different effects with differences in cities and time. Different
cities with different intensities of environmental policies and different timings of regulatory
effects will have different effects on collaborative innovation. Therefore, the “innovation
compensation” effect of the Porter hypothesis could emerge after the “threshold effect”
of ER on CIE in the CCUA. The second reason lies in the instruments of ER. China’s
environmental regulation approach is based chiefly on command-and-control policies, with
low environmental regulation standards and a lack of cost-effectiveness or even feasibility
of some policies. The government’s economic incentives and information disclosure policies
also have limitations [41]. Voluntary environmental disclosure usually comes at the cost
of weaker tax contributions, leading to fiscal constraints for governments [76] (p. 452).
The ER in Sichuan and Chongqing are of the command-and-control type, with lower
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market incentives and lower voluntary implementation [77]. In this situation, the ER in the
CCUA raises the cost of business, although it significantly facilitates the transformation of
knowledge resources into technology. However, enterprises need to spend a lot of money
on pollution control, which takes up resources that could be used for R&D and innovation
in the short term. This implies that more flexible and diverse environmental regulatory
instruments can mobilize enterprises to innovate effectively and, consequently, to realize
the “innovation compensation” effect of the Porter hypothesis more speedily.

Next, the control variables were analyzed. Fixed asset investment (FAI) significantly
negatively affects CIE. The economic development of the CCUA is mainly driven by
investment, but it is still in the initial stage [78]. This indicates that initial investment-
driven urban construction inhibits urban innovation performance in the sample period.
Regional economic development (GDP) significantly positively affects CIE. In recent years,
the GDP of the CCUA has steadily increased, ranking high in the country and growing
faster than the national average [11]. The CCUA remains the economic development leader
in southwest China. Therefore, the higher economic level can provide funding for science
and technology innovation and CI. The science and education expenditure of finance (SEEF)
significantly negatively impacts CIE. Regions with backward tertiary industries may show
inefficient uses of fiscal expenditures [79], affecting innovation effectiveness. The Chengdu–
Chongqing region used to be the core area of third-line construction. In recent years, it has
undertaken many manufacturing-based industrial transfers; therefore, the development of
the tertiary industry has lagged behind relative to the secondary industry [80]. Therefore,
the financial expenditure on science and education of the CCUA has not provided full play
to the original impetus of collaborative innovation and technological transformation.

4.2.3. Robustness Tests

To further verify the reliability of the findings, this study conducts a robustness test in
two dimensions: replacing explanatory variables and replacing the research models.

1. Replacement of the explanatory variables

Based on the previous analyses, this study refers to the study of Qing-qing and Jun
et al. [81] to lag the explanatory variables to verify the robustness of the model. Considering
that there may be a delay in the impact of ER on CI, a one-phase lag term and a two-phase
lag term of ER were adopted as the replaced explanatory variables to evaluate the robustness
of the model. The estimation results after replacing the explanatory variables are shown
in Table 10. It is not difficult to find that after replacing the explanatory variables, ER with
one and two lags still has a significant negative effect on CIE, and ER2 still has a significant
positive effect on CIE. This is consistent with the previous findings. The significance and
impact of control variables are consistent with the results of random Tobit regression.

2. Replacement of research models

To further validate the robustness of the model, this study used different models to
test whether the model’s results are consistent. The selected models include fixed effects
OLS estimation and random effects GLS estimation.

Table 11 shows the comparison results of fixed effects OLS estimation, random effects
GLS estimation, and random effects Tobit estimation. Based on the comparison results,
the fixed effects model and the random effects model show the negative effect of ER on
CIE, and ER2 shows a significant positive effect on CIE. The significance and impact of the
control variables are also consistent with the previous findings using the random effects
Tobit model. However, the significance of using the random effects Tobit model is better
than the other two, and the model fit is the best. Therefore, conclusions based on this model
will be more robust.
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Table 10. Comparison of explanatory variable replacement.

Variables (1) CIE
Random_Tobit

(2) CIE
Lag1−Random_Tobit

(3) CIE
Lag2−Random_Tobit

ER
−0.534 **

(0.243)

ER2 0.560 ***
(0.196)

LNFAI
−0.0291 * −0.0404 ** −0.0431 **
(0.0157) (0.0160) (0.0171)

LNGDP
0.214 *** 0.225 *** 0.241 ***
(0.0356) (0.0397) (0.0426)

LNSEEF
−0.110 *** −0.0968 ** −0.0964 **

(0.0296) (0.0387) (0.0423)

Lag1.ER −0.470 *
(0.263)

Lag2.ER −0.528 *
(0.291)

Lag1.ER2 0.580 **
(0.229)

Lag2.ER2 0.694 **
(0.272)

_cons −0.919 *** −1.085 *** −1.313 ***
(0.232) (0.247) (0.275)

N 176 160 144
Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 11. Comparison of model replacement.

Models (4)
Fixed_Ols

(5)
Random_Gls

(6)
Random_Tobit

ER
−0.585 −0.462 −0.534 **
(0.343) (0.302) (0.243)

ER2 0.581 ** 0.520 *** 0.560 ***
(0.240) (0.178) (0.196)

LNFAI
−0.0374 −0.0204 −0.0291 *
(0.0450) (0.0385) (0.0157)

LNGDP
0.248 ** 0.177 ** 0.214 ***
(0.0945) (0.0781) (0.0356)

LNSEEF
−0.127 ** −0.0893 −0.110 ***
(0.0545) (0.0570) (0.0296)

_cons −1.106 −0.721 −0.919 ***
(0.814) (0.610) (0.232)

N 176 176 176
Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

4.2.4. Endogeneity Test

Although the model passes the robustness test, the regression results obtained from
the random Tobit model may be affected by endogeneity, resulting in biased and incon-
sistent regression results. Endogeneity mainly comes from reverse causation and omitted
variables. First, we consider reverse causation: innovative activities can affect environ-
mental sustainability and stimulate governments to take action to protect the environment.
Second, we consider omitted variables; some unobservable individual micro-variables
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related to ER may also affect CI activities. The instrumental variables method can solve the
endogeneity problem. The selection of instrumental variables must fulfill the conditions
of correlation and exogeneity. Correlation means that the instrumental variable and the
endogenous variable must be related. Exogeneity means that the instrumental variables
affect the explained variables only through the endogenous variables. In this study, starting
from the micro dimension, referring to the studies of [47,73], the number of practitioners in
water conservation, environment, and public facility management (PWEPM) was selected
as the instrumental variable of ER. The correlation of the instrumental variable was fulfilled
because a city with more environmental practitioners can reflect that the government is
more stringent in ER. At the same time, environmental practitioners’ behaviors do not
directly affect the subject’s innovative activities. Therefore, the exogeneity of instrumental
variables was also fulfilled.

The first-stage regression shows that the coefficient of PWEPM on the effect of ER is
0.018897 with a standard error of 0.0026695 and a p-value of 0.000, which is significantly
positive at 1% level, indicating a strong correlation between the instrumental variable and
the explanatory variable. The F statistic is 1071.83 > 10, and there are no weak instrumental
variables, indicating that the selected instrumental variables are valid. The results of
the Tobit with endogenous regressors show that ER significantly negatively affects CIE
and ER2 significantly positively affects CIE, which is consistent with the U shape of the
Porter hypothesis. This shows consistency with the previous findings after overcoming
endogeneity. The results of the instrumental variables regression are provided in Table 12.

Table 12. The results of the endogenous analysis.

First-Stage Regression Tobit with Endogenous
Regressors

ER −1.083742 ** (0.4854951)
ER2 1.045021 *** (0.0231158) 1.169474 ** (0.5196073)

IV(PWEPM) 0.018897 *** (0.0026695)
Standard errors in parentheses; ** p < 0.05, *** p < 0.01.

4.2.5. Heterogeneity Test

For more comprehensive results, this study considers heterogeneity. On the one hand,
according to the previous analysis, CI is divided into two stages. Therefore, there would
be differences in the impact of ER on different stages of CI. On the other hand, there are
differences in the development of different cities in the CCUA. Therefore, there are also
regional differences in the impact of ER on CI. This study focuses on two heterogeneity
tests: one is the heterogeneity test based on the two-stage CI, and the other is the regional
heterogeneity test based on the geographic locations of “East, Central, and West”.

1. Heterogeneity test for two-stage collaborative innovation

Table 13 shows the influence of ER on two-stage collaborative innovation. In the
knowledge transformation efficiency stage, only FAI is significant, and the other variables
are insignificant. In the technological transformation efficiency stage, all variables are signif-
icant. Regarding the core variables, ER and ER2 positively affect knowledge transformation
efficiency but are statistically insignificant. ER has a significant negative effect on techno-
logical transformation efficiency, and ER2 has a significant positive effect on technological
transformation. Therefore, in this urban agglomeration, there is heterogeneity in the effect
of ER on two-stage collaborative innovation, and the effect of ER on innovation in the
technological transformation stage is more significant than its effect on innovation in the
knowledge transformation stage. This indicates that in this urban agglomeration, stricter
governmental environmental regulations affect CI mainly through the transformation of
technological innovations rather than the transformation of knowledge innovations.
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Table 13. Impact of environmental regulation on different stages of collaborative innovation.

Variables
Explained Variables

CIE KE TE

Explanatory variable

ER
−0.534 ** 0.0211 −0.739 ***

(0.243) (0.251) (0.242)

ER2 0.560 *** 0.304 0.530 **
(0.196) (0.201) (0.245)

Control variables

LNFAI
−0.0291 * −0.0566 *** 0.0345 *
(0.0157) (0.0155) (0.0180)

LNGDP
0.214 *** 0.0341 0.228 ***
(0.0356) (0.0340) (0.0454)

LNSEEF
−0.110 *** −0.0231 −0.129 ***

(0.0296) (0.0291) (0.0328)

_cons −0.919 *** 1.479 *** −1.765 ***
(0.232) (0.227) (0.298)

N 176 176 176
Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

2. Heterogeneity test of different regions

This study divides the CCUA into three regions by geographic location. Eastern
cities include Chongqing, Luzhou, Guang’an, and Dazhou. Central cities include Zigong,
Suining, Neijiang, Nanchong, Yibin, and Ziyang. Western cities include Chengdu, Deyang,
Leshan, Meishan, Mianyang, and Ya’an. Table 14 shows the impact in the eastern, central,
and western regions. There are obvious differences in impact in each region. Eastern cities
show a significant negative effect of ER on CIE, and ER2 has a significant positive effect
on CIE. Central cities show a positive effect of ER on CIE and a negative effect of ER2 on
CIE. Western cities show a negative effect of ER on CIE and a positive effect of ER2 on
CIE. However, in terms of statistical significance, the impacts of both central and western
cities are not significant, and only the impact and significance of ER on CIE in the eastern
region are consistent with the findings of the CCUA, which is U-shaped. Therefore, in this
urban agglomeration, there is heterogeneity in the effect of ER on CI in cities with different
locations, and the effect in eastern cities is significantly higher than that in central and
western cities. This indicates that the CCUA is mainly attributed to the influence of eastern
cities. Therefore, central–western cities need to strengthen their links with eastern cities to
allow for a more balanced development of the environment and innovation in the CCUA.

Table 14. Impact of environmental regulation on collaborative innovation in different regions.

Variables Total UR
Different Regions

EAST CENTRAL WEST

Explanatory variable

ER
−0.534 ** −0.497 *** 2.414 −1.421

(0.243) (0.162) (5.690) (−0.57)

ER2 0.560 *** 0.570 *** −30.62 2.249
(0.196) (0.130) (39.45) (0.17)

Control variables

LNFAI
−0.0291 * −0.0219 −0.0263 −0.122 ***
(0.0157) (0.0211) (0.0180) (−3.54)

LNGDP
0.214 *** 0.139 *** 0.241 *** 0.394 ***
(0.0356) (0.0312) (0.0398) (5.11)

LNSEEF
−0.110 *** −0.0543 −0.0649 * −0.211 **

(0.0296) (0.0430) (0.0343) (−3.10)

_cons −0.919 *** −0.491 * −1.993 *** −1.075 **
(0.232) (0.253) (0.304) (−2.64)

N 176 44 66 66

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.
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4.3. Discussion

The empirical results confirm Hypothesis 1 and Hypothesis 2. International studies on
the impact of ER on CI are broadly classified into three categories: the first is the innovation
compensation theory, which argues that ER can incentivize firms to innovate and thus
reduce costs [5]. Albrizio and Kozluk et al. [53] have found that strict environmental
policies in technologically advanced countries can promote short-term productivity growth
in industries. The second is “the following the cost theory”, which argues that ERs can
increase the cost of firms and discourage innovation [8,68]. The third is the uncertainty
theory, which argues that the relationship between ER and innovation is uncertain [9].

Chinese studies are also consistent with these three theories. Huang and Xu et al. [6],
as well as Zhao and Sun et al. [82] have empirically analyzed the positive impact. This is
consistent with the first category. Yawei and Changqi et al. [55] have found that ERs in Bei-
jing, Inner Mongolia, and Heilongjiang have a small hindering effect on innovation capacity.
Still, ERs in Hainan, Yunnan, and Guangxi, which have better ecological environments,
impede innovation. This is in line with the second type of theory. Pan and Ai et al. [51]
have found that market-incentivized ER significantly impacted innovation. In contrast, by
analyzing provincial data in China, command-and-control ER had an insignificant impact
on innovation. Shuai and Fan et al. [2] have discovered that ER positively promoted green
economic efficiency in eastern China but negatively impacted mid-western China. This
conforms to the third category theory.

With China’s promotion of a coordinated regional development strategy, studies have
gradually considered the impact of ER on regional collaborative innovation. However, the
generalizability and heterogeneity of the research findings need to be discussed in depth.
Through regression analyses, this study confirms that upon reaching the threshold, at the
macro level of the CCUA, the Porter hypothesis can be realized as “innovation compensa-
tion” in line with the first theory. This finding is consistent with international and Chinese
provincial studies, as well as with the findings of studies that adopt command-and-control
ER [51], suggesting that this study has some generalizability. The results confirm the Porter
hypothesis of a win–win situation between environment and innovation and emphasize
the importance of studying regions and policy regimes. Environmental regulation and
collaborative innovation take more time to be effective in regional development. Developed
countries or regions take less time because of their factor endowments. China should
take “advantage of backwardness” in environmental management compared with other
Western industrial countries and make environmental development itself the “lead” for
innovation through the adoption of more advanced and cleaner technologies and diver-
sified incentive-based environmental regulations [83]. This will facilitate the appropriate
allocation of innovation resources within urban agglomerations.

By analyzing heterogeneity, it was determined that the results are not entirely con-
sistent with the Porter Hypothesis at the micro-level of cities. Still, they are consistent
with the third theory and the results of relevant sub-regional studies in China [2,55]. First,
the differences in impacts and significance across the two transformation stages of the
CIE illustrate the diversity of this study. In the CCUA, the utility of high-quality higher
education and research institutes for science and technology development has not been
sufficiently highlighted, which is closely related to the geographic location of the urban
agglomeration and its education policies. This urban agglomeration is inland and moun-
tainous in the west, while China’s educational resources are tilted toward the eastern
and coastal open areas. Although China has been improving the equitable distribution of
education resources in recent years, it will take longer for the effects to be felt in this urban
agglomeration. In the CCUA, the impact of environmental regulations on technological
innovation transformation is significant, suggesting that using environmental regulations
to force technological innovation is effective. The Western (Chongqing) Science City and the
Western (Chengdu) Science City can take advantage of the industry–university–research
collaborative innovation efficiency. Second, differences in the impact relationships and
significance of cities located in different geographic locations in the CCUA also illustrate
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the diversity and comparability of this study. It is expected that the results of this study
will be enlightening for related studies based on cities, micro, individual, or non-developed
regions. At a deeper level, preferential policies for urban conglomerates or “innovation
zones” are more conducive to accelerated innovation and economic development [76] (p.
452) but can cause some districts to become high-pollution districts. In particular, tax
incentives may have a more detrimental effect on voluntary corporate disclosure, thereby
increasing pollution [76] (p. 591). China continuously contributes to regional sustainable
development. The China (Chongqing) pilot Free Trade Zone and China (Sichuan) pilot
Free Trade Zone, established in 2016, can take advantage of the heterogeneity of cities
within urban agglomeration. These “innovation zones” have enacted more environmental
regimes to promote in-depth environmental governance and relieve the government’s
fiscal constraints due to preferential policies such as tax incentives. Enterprises in the
CCUA will be subject to stricter regulatory rules to ensure more transparent disclosure
of environmental information. Such regional heterogeneous development policies will
reduce resource consumption and favor the economic and ecosystemic sustainability of the
regional environment.

5. Conclusions and Suggestions
5.1. Conclusions

This study analyzed the impact of ER on CI based on the panel data of 16 cities
in the CCUA from 2011 to 2021. Firstly, this study used the two-stage dynamic DEA
model to divide the CIE into knowledge transformation-stage efficiency and technological
transformation-stage efficiency. Then, the changes and causes were analyzed regarding
overall efficiency, temporal dynamics, and spatial distribution. The overall efficiency
was analyzed according to the average of the study period. The results showed that the
difference in CIE among the cities in the CCUA is noticeable, and that the knowledge trans-
formation stage efficiency gap is significant. However, the technological transformation
stage efficiency gap is small, with more balanced development. The temporal dynamics
were analyzed based on each city’s average efficiency. The results revealed that the CIE of
the CCUA shows an oscillating upward trend between 2011 and 2021, whereas knowledge
transformation efficiency shows a slow downward trend. Moreover, technological transfor-
mation efficiency shows a continuous upward trend. The Natural Breaks method of ArcGIS
10.8 software was used to analyze the spatial distribution. The results showed that the spa-
tial distribution of CIE in the CCUA is more balanced, showing higher values in Chengdu,
Chongqing, and their intermediate cities. The region with a higher knowledge transforma-
tion efficiency is in the northwest. The region with a higher technological transformation
efficiency is more dispersed. Overall, it was determined that knowledge transformation
stage innovation has a negative impact on CIE, and technological transformation stage
innovation has a positive impact on CIE.

The random effects Tobit model revealed that the impact of ER on CI exhibits a
threshold effect in the CCUA consistent with the Porter hypothesis. There was a significant
negative impact between ER and CIE and a significant positive impact between ER2 and
CIE. The possible reason is that China’s command-and-control ER policy increases the cost
of pollution control for enterprises and crowds out the resources for innovation. However,
upon reaching the threshold, the costs will be offset, resulting in a win–win situation for
both the environment and innovation. Therefore, ER for collaborative innovation produces
better economic, social, and sustainable development outcomes. Fixed asset investment
(FAI) and science and education expenditure of finance (SEEF) were found to have a
significantly negative effect on CIE. Untimely information disclosure, investment-driven
city construction, and inefficient utilization of financial expenditures are the main reasons
for the negative impact. Regional economic development (GDP) was found to have a
significantly positive effect on CIE and technological transformation efficiency, indicating
that economic growth is the driving force and guarantee of innovation.
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5.2. Suggestions

Based on the results of this study, it is recommended to enhance industry–university–
research cooperation and smooth the flow of collaborative innovation factors in the CCUA.
According to the two-stage DEA model results, the CIE is not high, and the knowledge
transformation efficiency of most cities shows a downward trend. Therefore, exploring the
cooperative mechanism of CI across administrative boundaries is necessary to provide full
play to the core and radiation role of Chengdu and Chongqing as megacities, to promote
industry–university–research cooperation, and to make the innovation collaboration among
cross-city research institutes, universities, and enterprises within the urban agglomeration
smoother. At the same time, exploring the cooperative mechanism of CI will provide full
play to the functions of vocational colleges and higher education institutions in marginal
cities with lower innovation efficiency, innovative education and teaching reforms, and tal-
ent training models. Combining the human resources of universities and the technological
resources of enterprises will better assist the high-quality development of the economy.

The next recommendation is the improvement in environmental regulatory policies
and the adoption of incentivized and differentiated policies to stimulate innovation in urban
agglomerations. According to the results of the Tobit model, command-and-control environ-
mental policies increase the cost of pollution control and crowd out innovation resources in
the short term. Therefore, incentives in the form of emission reduction subsidies or mod-
erately higher pollution taxes can be adopted to complement the administrative command
regulation policy. At the same time, differentiated environmental regulation policies should be
formulated for different businesses and different cities. For example, incentivized abatement
subsidies should be adopted for polluters more affected by ER. In contrast, stricter administra-
tive controls should be adopted for polluters less affected by ER [37]. Moreover, governments
need to focus on the balance of policy implementation. Different environmental regulatory
policies for cities in the east, center, and west would be more targeted and more effective.
Policy effects may be more easily realized in the short term.

The final recommendation is to press the responsibility of each city’s government into
service and develop a stricter and more effective monitoring mechanism. According to
the results of the Tobit model, fixed-asset investment and fiscal spending on science and
education have a negative impact on CI. Therefore, the government needs to promote the
construction of innovation-driven cities, strengthen the supervision and assessment of local
environmental protection officials, and provide information disclosure in a timely manner.
At the same time, it should optimize the structure and direction of financial expenditure
and strengthen the assessment and supervision of the efficiency of the financial expenditure
of each city’s government. The government also needs to build a favorable climate of
innovation support to amplify the positive impact of high-quality economic development
on collaborative innovation.
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