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Abstract: Precise nutrient management for enhancing crop yield is possible through delineating soil
management zones. Generally, the fertilizer recommendations followed use a blanket application for a
larger area without considering the soil spatial variability. This may lead to low fertilizer application in
pockets of less nutrient content and vice versa. Therefore, this study aims to develop soil management
zones (MZs) adopting geostatistical and fuzzy clustering techniques in the Alwarthirunagiri block
of the Thoothukudi district in Southern India. One hundred and seventy-one surface samples were
collected from a study area of 2760 ha. The collected soils were processed and characterized by
available macronutrients and micronutrients. The coefficient of variation of the soils varied from low
(9.72%) to high (74.60%). Ordinary kriging and semivariogram analysis showed wide variation in
the soil characteristics within the study site, with a spatial dependence ranging from moderate to
strong. Four management zones were demarcated based on fuzzy performance index and normalized
classification entropy using PCA and fuzzy K-means clustering. The study results indicated that
the soil properties differed significantly under different management zones and provided potential
site-specific fertilizer management options. The management zone map could be useful to the farmers
to adopt precise management of nutrients for different zones.

Keywords: site-specific nutrient management zones; soil fertility; variability mapping; fuzzy
clustering; geostatistics

1. Introduction

Declining soil organic carbon, inappropriate, imbalanced fertilizer application and
intensive cropping patterns without replenishing soil nutrients has led to soil degradation
and environmental contamination in various agroecosystems, which has led to a negative
impact on humans, animals and aquatic ecosystem [1]. It has also led to diminishing soil
fertility and crop productivity loss across the entire Indian geography [2]. The soils thus
exhibit multi-nutrient deficiencies [3]. Being fertile alluvial land with sufficient moisture
availability under a tropical climate, extensive cultivation of a more intensive nature is
common in the Tamirabarani River basin of Southern India where the study area is located.
Intensive cultivation without appropriate management as per site condition leads to soil
fertility imbalance and deficiency of nutrients which, in turn, causes crop yield decline.
Therefore, understanding the state of the soil is vital for sustainable agricultural production.
Soil nutrient variability is one of the prime factors affecting crop growth and yield of
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crop. Soil surveys facilitate implementing appropriate management practices by providing
holistic information on soil characteristics. Soil-specific management practices enhance
land productivity and sustain environmental health.

Soil nutrient status is highly variable due to topography, soil type, vegetation, climate
and different cultivation practices. Neglecting this variation, fertilizer is often applied in
a blanket application that may lead to excessive or insufficient input application. Excess
fertilizer application should be avoided to improve the crop yield with a less detrimental
environmental impact. Hence, to manage the spatial variability, fertilizer dosage for a
desired targeted yield has to be calibrated [4,5]. Therefore, facts about the distribution of
nutrients are essential for efficient nutrient management and to achieve sustainable crop
production [6,7]. An efficient technique for proper understanding of the variations in soil
properties assigned within fields for designating homogeneous management zones should
be established [8]. Delineating management zones with homogenous soil properties is the
most identified technique for precise soil fertility management. However, to demarcate
homogenous soil zones, assessment of the inherent soil nutrient status of an area is vital, as
this aids sustainable management of crops. Several researchers utilized soil nutrient data
to identify management zones [9–12].

Numerous techniques and tools were employed to define the management zones. Typ-
ically, low-cost sensing data—such as electrical conductivity data [13] and remotely sensed
data [14]—and digital elevation models [15,16], topographical and soil maps [17], crop
yield [18,19], nutrient index methods [20] and geostatistics-based nutrient management
zone methodology [21] were used conventionally for demarcating management zones for
appropriate management. These methods help to identify critical nutrients that limit crop
productivity [22]. To divide a land into potential zones for crop management, Speranza
et al. [23] employed yield data, whereas Shukla and Sharma [24] used fuzzy clustering of
soil parameters.

Principal component analysis (PCA) minimizes the data redundancy and aids in
grouping data through clustering process [25,26]. Amongst other approaches, fuzzy cluster-
ing was utilized by several researchers to identify alike management zones [27–29]. These
are the two major steps involved in demarcating soil management zones.

However, information on the soil characteristics variation in Southern India is still
limited. At present, the majority of the farmers adopt general fertilizer recommendations,
which could cause soil degradation due to excessive or insufficient input application.
The present study divided the field into zones in which the soil properties had very low
variability. Thus, this research work was executed (i) to assess the soil nutrient status of
the Alwarthirunagiri block of the Thoothukudi district of Tamil Nadu, India, by utilizing
geostatistics and (ii) to determine the possible management zones according to nutrient
availability by utilizing fuzzy clustering for site-specific management.

2. Material and Methods
2.1. Study Sites

Study region is spread around the 30 village panchayats falling under Alwarthiruna-
gari block, Thoothukudi district of Tamil Nadu (Figure 1). The extent of study site ranges
between 8◦24′ to 8◦39′ N and 77◦48′ to 78◦07′ E. The total geographical area is 2760 ha. The
climate of the study area is humid and receives an annual rainfall of 700 mm, mostly during
the monsoon period (October to December). The physiography of the study area falls under
flat alluvial plain. The soil consists of coastal sands and alluvium derived from the black
soil of the quaternary period [30] and some forest areas covered by Theri lands, red sand
dunes locally known as ‘Theri’. Major soil orders of the study area are Entisols, Inceptisols
and Vertisols, and the soil texture varies from coarse loamy to clayey. Agriculture is the
predominant land use, mainly with a rice–rice cropping pattern. The banana crop is also
common in this area.
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Figure 1. Study region depicting soil-sampled locations.

2.2. Sampling and Characterization of Soils

The grid sampling, with a grid size of 1 km, was used to collect the soil samples [27,31]
from the study site, considering uniform underlying geology and lesser soil variability.
The soils in the Theri sand complex are red sand dunes and are uniform where cashew
trees are cultivated (Figure 1). A total of 171 geocoded soil samples were collected at
0–15 cm depth during the summer season of May 2022 and before planting of the paddy
crops. The collected samples were dried naturally under the shade, sieved (2 mm size) and
then characterized by soil fertility status (available macro- and micronutrients) in addition
to soil reaction and electrical conductivity.

Soil reaction and electrical conductivity were determined from the suspension pre-
pared from soil and water in the ratio of 1:2 through pH and conductivity meters [32]. Soil-
available nitrogen, phosphorous, potassium and organic carbon were quantified by adopt-
ing standard procedures, viz., Walkley and Black method [33], alkaline KMnO4method [34],
Olsen method [35] and NH4OAC method [36]. DTPA extractant was used for extracting soil-
available micronutrients [37] and was analysed using atomic absorption spectrophotometer
(Varian Spectr AA 55B).

2.3. Statistical Procedures

By adopting SPSS 19 software, statistical variables, viz., standard deviation, coefficient
of variation, mean, skewness and kurtosis, were computed. The relationship between
different soil properties was envisaged utilizing Pearson’s correlation coefficient [38].

2.4. Geostatistical Analysis

Geostatistical study of soil properties was carried out using ArcGIS 9.1 software for
semivariogram modelling and for attaining a suitable semivariogram model. Logarithm
transformation was applied to skewed soil properties to determine normally distributed
data before geostatistical study. Data was interpreted after back transformation of soil
data. Spherical and exponential variogram models were exploited to the empirical semi-
variance. The residual sum of squares and coefficient of determination were used to choose
semivariogram models. The fitted models were utilized to estimate various attributes of
non-sampled locations through interpolation of data for mapping using ordinary kriging
technique [39]. Results obtained were validated to assess the bias and kriging accuracy.
A spatial domain’s measured points are individually removed, and kriging estimates are
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made as if they are present [40]. In this approach, the estimated and real values for each
sample location can be compared.

2.5. Principal Component Analysis

PCA reduces voluminous information without losing necessary information that uses
correlated attributes to identify the best linear combination of the characteristics. Data on
soil characteristics were inputted for PCA. Large number of principal components (PC)
variables were extracted in this study. Principal components (PC) with eigen values (>1)
would serve as the best representation of the field’s characteristics [40] and explain the
maximum variability; these were utilized for constructing ideal management zones for
precise nutrient management.

2.6. Fuzzy Clustering Algorithm

Experimental site was grouped into different management regions by utilizing fuzzy
c-mean values. In general, fuzzy clustering decreases variability within a group and vice
versa. A sample with various characteristics in fuzzy clustering may belong to multiple
groups simultaneously when assigning membership to them, which might lessen the
impact of outliers on the sample’s overall results. Using the R programming language, the
field was divided into 2–7 cluster groups by means of applying unsupervised continuous
classification methodology i.e., fuzzy c-mean [41]. In this analysis, 7 clusters were identified
to be the most practicable management zones following the procedure outlined by [42]. A
repetitive grouping process was used to identify membership in each cluster, for which
random cluster mean was used for starting this process. The closest of these means was
chosen for each observation. For every cluster, new means were produced as per the
difference between the observation and the cluster mean. The Euclidean distance was used
to compute the difference between data points and cluster centre points.

The normalised classification entropy (NCE) and the fuzzy performance index
(FPI) [43,44] were employed to calculate the optimal cluster number [45], as
detailed below:

FPI = 1 − C
C − 1

[
1 − ∑c

i=1 ∑n
k=1(µik )2
n

]
(1)

NCE = 1 − n
n − C

[
1 −

∑n
k=1 ∑c

i=1 µikloga (µik)

n

]
(2)

where C is the number of clusters, and n is the number of observations, and µik is the fuzzy
membership. The extent of fuzziness caused by a specific is determined by the FPI, which
ranged between 0 and 1. Values near 0 indicated differing classes, i.e., least relationship
with other clusters, whereas value 1 suggested that members within this cluster had high
relationships with each other. NCE determines the level of disarray brought about by a
given number of classes. Optimal cluster number arrived when the index value was low
for each computed index (FPI) and most organisation (NCE) due to clustering [46]. The
variance analysis was used to show how various MZs differed from one another.

3. Results
3.1. Soil Characteristics Variation

The soil reactions varied between mildly acidic (6.2) and alkaline (8.9) (Table 1). The
soil EC (1:2.5) exhibited considerable variation, with a very high coefficient of variation
(74.60%). The available K content ranged from 105 kg ha−1 to 832 kg ha−1, with a moderate
CV (41.40%). The mean p value was 12.8 kg ha−1 (ranging from 2.2 to 21.4 kg ha−1) falls
under the low to medium category. The mean available nitrogen was 210 kg ha−1. The
mean SOC content (ranging from 0.09 to 0.9%) was 0.45%.
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Table 1. Descriptive data about the study area’s soil characteristics.

S.No Soil Properties Min Max SD Median Mean CV (%) Skewness Kurtosis

1 pH 6.2 8.9 0.72 7.58 7.40 9.72 −0.22 −1.12

2 EC (dS m−1) 0.08 1.2 0.18 0.18 0.24 74.60 2.53 8.51

3 K (Kg ha−1) 105 832 148.12 310.00 357.90 41.40 1.44 2.30

4 P (Kg ha−1) 2.2 21.4 4.50 12.20 12.80 35.00 0.04 −0.40

5 N (Kg ha−1) 85.6 275 46.16 212.80 210.00 22.00 −0.80 0.31

6 SOC (%) 0.09 0.9 0.24 0.45 0.45 53.02 0.17 −1.31

7 Fe (mg kg−1) 1.10 9.98 2.31 4.82 5.00 46.50 0.33 −0.80

8 Zn (mg kg−1) 0.03 3.14 0.70 1.09 1.13 60.62 0.48 0.26

9 Cu (mg kg−1) 0.10 4.78 0.93 1.56 1.74 53.32 0.46 −0.22

10 Mn (mg kg−1) 0.08 7.86 2.14 2.91 3.27 65.40 0.58 −0.48

3.2. Association between Soil Characteristics and Available Nutrients

Table 2 displays the extent of association among different soil parameters. With a
few exceptions, practically all of the attributes had a substantial positive and negative
correlation with one another. The correlation coefficient (−0.277) showed a negative
relationship between pH and soil Mn. The P, N, Fe and Cu were positively correlated
with SOC.

Table 2. Correlation matrix for soil properties in study area.

pH EC AK AP AN SOC Fe Zn Cu Mn

pH 1

EC 0.451 ** 1

K 0.502 ** 0.622 ** 1

P 0.179 * 0.126 0.411 ** 1

N 0.196 * −0.173 * 0.099 0.342 ** 1

SOC 0.082 −0.001 0.056 0.297 ** 0.347 ** 1

Fe 0.350 ** 0.170 * 0.294 ** 0.225 ** 0.240 ** 0.193 * 1

Zn 0.325 ** 0.109 0.273 ** 0.280 ** 0.359 ** 0.111 0.371 ** 1

Cu 0.075 0.058 0.157 * 0.148 0.289 ** 0.157 * 0.133 0.253 ** 1

Mn −0.277 ** −0.154 * 0.188 * 0.234 ** 0.261 ** 0.028 0.113 0.092 0.175 * 1

** Correlation is significant at 0.01 level, * Correlation is significant at 0.05 level.

With the exception of K and Mn, all of the parameters were skewed slightly
(skewness < 1), and their medians were near to their means (Table 1).

3.3. Spatial Nature of Soil Parameters

Semivariograms were computed, and the best models were determined for different
soil properties, as shown in Figure 2. Table 3 exhibits the output of the semivariogram
analysis. Spherical theoretical models showed the best fit for most soil attributes except for
pH and available phosphorous where exponential models were fitted. The soil properties
pH, EC, K, and Cu showed lower (<1.0) RMSE values, and other soil properties exhibited
higher (>1.0) RMSE values.
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pH Exponential 0.296 0.493 0.198 40.11 6378 0.57 Moderate 
EC Spherical 0.233 0.267 0.034 12.81 1911 0.13 Strong 
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Figure 2. Semivariograms of soil parameters (a) pH, (b) EC, (c) K, (d) P, (e) N, (f) SOC, (g) Fe, (h) Zn,
(i) Cu and (j) Mn.

Table 3. Semivariogram models for soil parameters.

Soil
Property Model Partial Sill Sill Nugget Nugget/Sill Range (m) RMSE Spatial

Dependence Class

pH Exponential 0.296 0.493 0.198 40.11 6378 0.57 Moderate

EC Spherical 0.233 0.267 0.034 12.81 1911 0.13 Strong

K Spherical 0.134 0.137 0.003 2.12 8170 0.90 Strong

P Exponential 15.312 19.178 3.866 20.16 4634 3.65 Strong

N Spherical 1633.625 1900.684 267.059 14.05 4050 3.40 Strong

SOC Spherical 267.059 6.054 2.970 49.06 4700 2.05 Moderate

Fe Spherical 2.205 5.653 3.448 60.99 6196 2.06 Moderate

Zn Spherical 0.256 0.465 0.256 55.05 3693 2.12 Moderate

Cu Spherical 0.629 0.874 0.629 71.96 3641 0.61 Moderate

Mn Spherical 0.322 1.035 0.322 31.08 4601 2.19 Moderate
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For soil factors, the nugget/sill ratio was evaluated (Table 3). The geographical
dependence of the soil characteristics is exemplified by the nugget/sill ratio [47]. A
ratio of >75%, 25–75% and <25% indicates severe, moderate and light spatial depen-
dency, respectively. Within the study site, electrical conductivity, K, P and N recorded
sound spatial dependence, whereas pH, SOC, Fe, Zn, Cu and Mn recorded moderate
spatial dependence.

The strong spatial correlation was exhibited by P (per cent nugget of 20 and range
of 4634 m; exponential model), N (per cent nugget of 14% and range of 4050 m; spherical
model), electrical conductivity (per cent nugget of 12% and range of 1911 m; spherical
model) and K (per cent nugget of 2% and range of 8170 m; spherical model). The properties,
viz., pH, SOC, Cu, Mn, Fe and Zn, had moderate per cent nugget (31–72%) with varied
ranges (3461–6378 m) (Table 3).

Figure 3 displays maps showing the spatial distribution of the soil parameters. A
heterogenous pattern was observed for different soil parameters. The available soil K was
low surrounding the Theri land area and in the northwest of the study region. The low
values of K were due to prolonged extensive rice farming without applying K fertilizer
around the Theri soil area due to coarse-textured soils [48]. Soil P was low-to-medium and
was low around the fringe of Theri lands and northwest of the block. The low soil-available
nitrogen in the study site was due to continuous cropping with imbalanced fertilization
and tropical climatic conditions. Soil N was very low in the eastern part of the block and
along the Theri land area because of coarse-textured soil. The low content and varied
distribution of SOC owed to the tropical weather and adopted land use, in addition to
differing biological properties during the cultivation and decomposition of litter [49]. The
distribution of available nitrogen, as shown in Figure 3e, was similar to the SOC distribution
pattern shown in Figure 3f. The maps provided valuable details regarding the variation in
nutrient content across the study.
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(h) Zn, (i) Cu and (j) Mn.

3.4. Principal Component Analysis

Significant correlations existed between most of the soil parameters. The variability in
the soil parameters was compiled and summarised using PCA. Three principal components
(with >1 eigen values) explaining 58.41 percent variability were considered for the final
analysis. The variance exhibited by PC1, PC2 and PC3 were 29, 18.9 and 10.4%, respectively
(Table 4).

Table 4. Details of PCA for soil parameters.

Principal Component Eigen Value Component
Variability (%) Cumulative Loading %

PC1 2.902 29.017 29.017

PC2 1.898 18.980 47.998

PC3 1.041 10.408 58.406

PC4 0.915 9.146 67.551

PC5 0.834 8.337 75.889

PC6 0.731 7.308 83.197

PC7 0.539 5.387 88.584

PC8 0.509 5.087 93.670

PC9 0.349 3.493 97.163

PC10 0.284 2.837 100.000

The variables that had the biggest effects on PC1 were pH, P, K, Fe and Zn (Table 5).
The contribution of SOC was more in PC2, whereas the Mn contribution was more in
PC3. Consequently, the distribution map of pH and P was similar to the map of PC1
(Figure 4). The PC2 maps were identical for available N, as shown in Figure 3e, and SOC
(Figure 3f). PC3 map was found to be similar to the map of Mn. Hence, the PCA aggregated
ten variables into three PCs in order to account for the geographical variation of the
soil parameters.
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Table 5. Principal component loading for soil parameters.

Parameters pH EC K P N SOC Fe Zn Cu Mn

PC1 0.639 0.468 0.714 0.619 0.521 0.389 0.610 0.631 0.400 0.171

PC2 −0.480 −0.672 −0.419 0.244 0.550 0.427 0.023 0.123 0.295 0.627

PC3 −0.309 0.327 0.348 0.392 −0.297 0.090 −0.238 −0.383 −0.069 0.510
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3.5. Demarcating Management Zones

The first three principal component values were used as inputs for management zone
analysis in the R programming environment to carry out a fuzzy c-means cluster algorithm
to segregate the three PCs into management zones. The FPI and NCE cluster validity
indices were plotted against the number of classes, as shown in Figure 5. The ideal number
of clusters was calculated when each index reached minimum, which corresponded to the
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minimum membership sharing (FPI) or maximum organization (NCE) [46]. In this research,
four management zones was identified as the optimum number of management zones. To
delineate different management zones, the fuzzy cluster technique and PCA were utilized,
and the combined effectiveness was assessed using analysis of variance.
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Figure 5. Fuzzy performance index (FPI) and normalized classification entropy (NCE).

The analysis of variance (Table 6) showed significant variation in chemical character-
istics among the four delineated management zones. Among these management zones,
there was a significant variation (p < 0.05) for each soil property. The soils of management
zone 1, with lower K, P, N, Fe, Zn, Cu and Mn values, showed lower fertility potential than
the others.

Table 6. Soil nutrient properties in management zones.

Management
Zone pH EC

(dS m−1)
K

(Kg ha−1)
P

(Kg ha−1)
N

(Kg ha−1)
SOC
(%)

Fe
(mg kg−1)

Zn
(mg kg−1)

Cu
(mg kg−1)

Mn
(mg kg−1)

1 6.72 d 0.17 c 111.68 d 4.95 c 103.89 d 0.17 c 1.54 b 0.17 c 0.39 b 0.20 c

2 7.68 b 0.26 b 434.24 b 14.07 a 235.51 a 0.50 a 5.71 a 1.50 a 1.91 a 3.27 a

3 8.21 a 0.57 a 739.88 a 16.13 a 180.01 c 0.39 b 5.73 a 1.20 b 1.76 a 2.90 b

4 7.24 c 0.20 c 300.75 c 12.59 b 214.46 b 0.46 ab 4.87 a 1.09 b 1.81 a 3.61 b

Means with the same letter are not significantly different at 0.05 probability level.

4. Discussion

Among the soil properties, the CV values for available Zn, Cu, Mn, SOC and EC
were greater than those for available K, P, N and Fe content. High variations in soil
micronutrients may be attributed to the depletion of micronutrients as a result of nutrient
mining [50]. The soil parameters showed high spatial variation within the study region
and the need for appropriate nutrient management, according to spatial variability, to
optimize crop management. Significant correlations existed between the majority of the
soil properties. The SOC is considered as an important property that influences availability
of nutrients. Metwally et al. [51] reported positive correlation between SOC and N and P.
Correlation studies on soil properties revealed that PCA is the ideal tool for figuring out
the primary causes of variability in data.
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The best-fit semivariogram model was spherical. Additionally, researchers observed
that spherical models are well suited to represent major soil parameters [31,52]. The spatial
variability map of soil properties pH, EC, K and Cu were highly accurate as compared
to other soil properties. The finding demonstrated that there is spatial autocorrelation in
the soil parameters. It is attributed to environmental factors such as closeness to the river
Tamirabarani, farming systems, fertilization and management practices implemented for
farming [53]. pH, SOC, Fe, Zn, Cu and Mn had modest geographical dependence, but EC,
K, P and N recorded large geographical dependence. Strong spatial dependency for EC,
N, P and K is attributed to closeness to the sea coast and prevailing climatic conditions,
whereas moderate spatial dependence of the soil properties is ascribed to the intrinsic
soil characteristics, differences in farming techniques and soil fertilization. The spatial
distribution maps showed high variations of soil nutrients, which are ascribed to land use
and management. The PCA aggregated ten variables into three PCs to account for gross
spatial variability in these properties. The technique used to delineate management zones
solely considered the available nutrients and spatial information in the PCA.

The management zone map indicates four fertility management zones, as shown in
Figure 6. ANOVA was performed to evaluate the combined effect of PCA and the fuzzy
cluster algorithm in delineating management zones. The four MZs that were produced were
distinct from one another. A similar approach was adopted by other researchers [25,28].
The low status of N may be ascribed to the mining of nutrients due to the continuous
cultivation of paddy without replenishing it with organic matter. The eastern study area
is affected by seawater intrusion through the Bay of Bengal and may supplement the soil
with K. Except MZ1, K deficiency was less widespread in the research area [31].
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Poor SOC in all four zones can be attributed to the fact that extremely little or nearly
no organic residues get incorporated into soils. MZ3 had the highest soil pH value. K, P
and N were extremely deficient in MZ1. The P was medium in MZ2, MZ3 and MZ4. The K
was high in MZ2, MZ3 and MZ4. The SOC was very low in MZ2, MZ3 and MZ4. The SOC
content has to be enhanced by various management techniques, including crop rotation
with leguminous crops, organic manuring and conservation tillage. Available Fe, Zn, Mn
and Cu were lower than the critical limit required for cultivation in MZ 1. The Fe, Zn, Cu
and Mn values were moderate to support the crop production in the management zones
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(MZ2, MZ3 and MZ4), despite the high variability of these micronutrients. However, MZ2,
MZ3 and MZ4 have the better innate soil fertility owing to greater nutrient reserves and
high buffering capacity. Since the soil pH in the four MZs ranged from 6.72 to 8.21, the
availability of P and other micronutrients is moderate. The homogenous management zone
based on nutrient availability will result in competent and better scientific management of
nutrients. This spatial variability study depicts the variation in soil properties. Farmers
will be able to make decisions about nutrient management as per site conditions with the
use of soil information in different management zones.

5. Conclusions

The geographical heterogeneity in soil characteristics and accessible nutrients is
demonstrated by the current study as a potential strategy to delineate management zones
in the Alwarthirunagiri block of the Thoothukudi district. In this area, site-specific nutrition
management is necessary, as shown by the high correlation of soil parameters, which also
revealed significant spatial variability. The soil properties were quantified and aggregated
into four management zones using PCA and fuzzy clustering techniques. Significant
variations in the assessed soil parameters between the several management zones were
shown by a one-way analysis of variance. The soil fertility parameters assessed in the
study identified that low amounts of organic carbon and available nitrogen are the biggest
barriers of sustainable production. The application of fertilizers is therefore needed to
maintain the crop yield at an optimum level. Consequently, the results reveal that fuzzy
cluster analysis would reduce variability within the zone and would help in demarcating
management zones that will allow farmers to develop nutrition management tailored to
site variation. The mean values of the nutrients in each management zone can be used
for variable rate fertilization. The input cost of every farmer has to be reduced to increase
the profits in agriculture, thereby optimising the fertilizer use. The study’s findings will
assist the farmer in selecting the best fertilizer combination for maximizing the yield and
optimizing profits while simultaneously decreasing the fertilizer requirement. Combining
the zonation map with the land use/cover layer will aid in determining the best locations
for applying nutrients sparingly to grow vegetables, pulses and cereals.
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