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Abstract: This study empirically examines the spatial effects and spatial mechanisms of energy system
digitization on carbon emissions by using the projection pursuit method and spatial Durbin model
with panel data of 30 provinces in China from 2013 to 2021 as samples. The results show that (1) the
digitization of the energy system reduces the carbon emission intensity of the surrounding areas
by 2.069%, which has a significant spatial emission reduction effect. (2) Technological innovation
and industrial structure optimization are important spatial impact mechanisms. (3) The spatial
emission reduction effect of energy system digitization is significant in the eastern region, but not in
the central and western regions, indicating that the spatial emission reduction effect of energy system
digitization is spatially heterogeneous.

Keywords: carbon emissions; energy system digitization; industrial structure; smart energy;
technological innovation

1. Introduction

In the context of global climate change and the rapid growth of the digital economy,
energy system digitization has emerged as one of the more crucial auxiliary tools for re-
ducing carbon emissions and promoting energy transformation. Deep integration between
the energy sector and digital technology has accelerated the growth of energy system
digitization [1]. Energy system digitization performs an instrumental role in promoting
productivity and improving quality of life [2]. Additionally, it provides optimized solutions
for saving energy and reducing emissions, which is a crucial approach to decreasing carbon
emissions [3]. Energy system digitization promotes profound changes in the mode of
energy production and consumption and becomes an important instrument and vehicle
for the achievement of carbon emission reduction goals, as well as a major catalyst for
energy transformation [4]. Energy system digitization entails enhancing the entire efficacy
of the energy system via the multidimensional integration and profound interconnection
of energy, carbon, information, and value flows [5]. Energy system digitization improves
energy efficiency by coordinating the precise matching of energy supply and demand to
reduce carbon emissions [6]. Energy system digitization optimizes the energy structure by
integrating multiple energy sources to minimize carbon emissions [7,8]. It is essential that
energy system digitization may lead to interregional energy network technology sharing
and enhance the degree of regional spatial interconnectivity, achieving a breakthrough in
geographical distance constraints [9]. With information transfer and production element
flows, energy system digitization can have a spatial influence on production and living in
surrounding areas. Hence, energy system digitization may also affect the carbon emissions
of surrounding areas.

This question follows: Since energy system digitization can reduce carbon emissions,
does the reduction effect have spatial effects? If so, what are the specific influencing
mechanisms? The answers to these questions will contribute not just to the accomplishment
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of regional carbon reduction goals but also to the strategic adjustment of regional energy
system digitization construction.

Previous studies have failed to provide a unified framework for investigating the
spatial effects of energy system digitization on carbon emissions. Meanwhile, due to the
absence of a unified standard for measuring energy system digitization, there currently is
a limitation of quantitative research on the spatial emission reduction in energy system
digitization. In view of this, this study introduces energy system digitization technology
and carbon emission factors into the endogenous growth model and analyzes the logical
relationship and mechanism between energy system digitization and spatial carbon emis-
sion from the theoretical dimension by applying the dynamic optimization method. The
projected tracer method serves to comprehensively evaluate the extent of energy system
digitization, and the spatial measurement model is applied to verify the spatial effects of
energy system digitization on carbon emissions.

In light of this, the potential marginal contributions of this paper encompass the
following aspects: Firstly, this study’s purpose is to enhance the theoretical awareness of
the inherent connection between energy system digitization and carbon emission reduction.
Secondly, adopting the projection pursuit method to comprehensively evaluate the level of
energy system digitization will serve as an essential supplement to the existing literature.
Finally, the spatial Durbin model is used to empirically examine the spatial effect of energy
system digitization on carbon emissions and the effect’s mechanism to compensate for the
evident deficiencies of previous empirical investigations.

The remainder of this study is as follows: Section 2 reviews the relevant literature.
Section 3 presents the theoretical analysis and research hypotheses. Section 4 presents the
study methodology and data. Section 5 reports the empirical results of the impact of the
energy system digitization on space carbon emissions. Section 6 discusses the findings of
the study. Section 7 summarizes the study and makes several policy recommendations.

2. Literature Review
2.1. Energy System Digitization

Energy system digitization has lately emerged as a prominent subject in academic
research, attracting substantial attention and sparking extensive discussion. The current
field of study primarily emphasizes the discussion of energy system digitization in terms
of concepts, technology applications, and actual practices.

The first focuses on the discussion of the concept of energy system digitization. The
concept and content of “energy system digitization” lack a unified and precise definition,
since the quick advancement of digital technology has caused varying interpretations of
this term. In 2017, the International Energy Agency (IEA) published Digitalization & Energy,
the first specific description of the digitization of energy, highlighting the consequences of
digital technologies on the energy demand sector. In October 2022, the European Union
introduced the “Digitalization of Energy: EU Action Plan,” which focuses on the digitization
of the energy field and its impact on the entirety of the energy value chain. Energy system
digitization has been characterized by certain experts in terms of the impacts resulting from
the application of digital technologies. Ren et al. declare that energy system digitization
relies on energy big data and utilizes digital technology and control technology to facilitate
the systematic movement of energy and accomplish efficient management and accurate
alignment within energy supply and demand [5]. According to Baidya et al., the provision
of energy may effectively meet the energy requirements of different areas, demographics,
and scales, therefore producing a contemporary energy system that is characterized by
high efficiency, cleanliness, and cost effectiveness [10]. This, in turn, enhances the stability,
efficiency, accessibility, and sustainability of the energy system.

The second focuses on the utilization of digital technology within the energy field. The
energy sector has witnessed the widespread utilization of digital technologies, including
artificial intelligence, big data, cloud computing, and blockchain [11]. Hossein et al. in-
vestigate the implementation of IoT in the energy supply chain, specifically in smart cities
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and smart grids [12]. They indicate that the energy sector can become a decentralized and
smart structure with the help of IoT technologies to change the originally centralized and
hierarchical supply chain. Singh et al. perform a comprehensive review of the significance
and practical implementation of digital technology in many aspects of electricity genera-
tion, distribution, transmission, grid management, and trading procedures [13]. Krawczyk
et al. highlight the potential of utilizing big data technologies in energy data mining to
generate novel data insights that can aid in decision making or facilitate the automated and
intelligent functioning of corporations [14]. Ahmad and Zhang examine the incorporation
of blockchain technology into energy systems to provide technical support for distributive
and autonomous control operations as well as market transactions [1].

The third focuses on the specific practice of energy system digitization. For example,
Kim et al. point out in their study that digital technologies have a dominant function
in future sustainable smart city energy systems [15]; Wang and Zhan point out that en-
ergy digital technologies can provide smart solutions such as better energy planning and
management for smart cities and industrial parks [16]. Wu et al. point out the impact of
energy system digitization in the form of decentralized transactions enabled by the IoT as
an infrastructure of energy consumption in the building and transportation sectors [17].

2.2. Energy System Digitization and Carbon Emissions

The increasing significance of energy system digitization for sustainable development
is evident due to the rapid progress and widespread utilization of digital technologies in
the energy sector. Consequently, there is a growing focus on researching the correlation
with energy system digitization and carbon emissions. The current collection of research
has predominantly concentrated on two key facets:

One facet is the theoretical examination of the correlation between energy system
digitization and the generation of carbon emissions. For example, Zhu et al. investigate
the potential influence of digital technology in the energy industry, specifically focusing
on uncertainty forecasting, demand-side management, and multi-energy convergence.
Additionally, the study explores the influence of smart energy on social sustainability [18].
Mahmud et al. demonstrate that the comprehensive integration of clean energy and infor-
mation technology and the establishment of intelligent multi-energy systems with high
intelligence, information transparency, and open interconnection are crucial to improving
global energy efficiency and lowering emissions [19]. Zhang and Wu analyze the main
shortcomings and weaknesses of energy transformation under the carbon emission reduc-
tion target from a theoretical perspective, systematically analyze the contribution of smart
energy to the carbon emission reduction target, and finally point out that smart energy
plays a supporting role for China’s energy transformation and carbon emission reduction
target in energy supply, safe operation, and clean spending [20].

The second facet involves quantifying the influence of energy system digitization
on carbon emissions. Raimi and Carrico study the association between smart grids and
greenhouse gases and quantified the results, showing that smart grids have the potential
to mitigate greenhouse gas emissions by around 0.9–2.2 gigatons annually, equivalent to
approximately 2–5% of the world emissions [21]. This underscores the significance of smart
energy systems as a crucial avenue for carbon emission reduction.

In summary, research related to energy system digitization is proceeding at a rapid
pace, but due to problem identification and data limitations, the following shortcomings
exist in terms of current research progress: First, direct research around energy system
digitization and carbon emissions is not common and lacks rigorous theoretical clarification.
Second, limited to case studies of energy system digitization, empirical studies that prove
the effectiveness and transmission mechanism of its carbon emission reduction are clearly
in short supply. Finally, existing research ignores its effect on the spatial dimension.
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3. Theoretical Analysis and Research Hypothesis

In order to delineate the mechanism of action between energy system digitization and
carbon emissions, an endogenous growth model incorporating energy digital technology
and carbon emission levels is constructed, drawing on the research ideas of Haldar [22].

3.1. Basic Setting

First, the final product component: By introducing carbon emissions into the endoge-
nous growth model, the output includes the carbon emission intensity (E) in addition to
technological progress (A), labor (L), and capital (K) decisions [23], and the production
function is shown specifically in Equation (1). The carbon emission intensity E (E ∈ [0, 1])
measures the degree of carbon emission from enterprise production [24]. When E < 1, it
indicates that enterprises invest in some production factors for emission reduction and the
actual output is lower than the potential output; when E = 1, it indicates that enterprises
do not consider investing in production factors for carbon emission control and the actual
output is equal to the potential output. The production function follows the Cobb–Douglas
form, expressed as

y = f (A, L, K, E) = Aα(µL)αK1−αE(0 < µ < 1; 0 < α < 1; A > 0) (1)

In Equation (1), α represents the proportion of labor in the final production sector to
the total labor force, and µ represents the effective labor elasticity coefficient.

Second, the energy data services sector. The enhancement of the energy digital level η
depends on the workforce size (1 − µ) L and production capacity of the energy information
services sector ω [25]. The dynamic equation on the upgrading of energy digital technology
is expressed as

.
η = ω(1 − µ)Lη (ω > 0) (2)

The utilization of digital technologies in the energy industry has led to the devel-
opment of an energy network infrastructure, resulting in the enhanced dissemination
capabilities of energy-related information and reduced costs associated with information
exchange. Consequently, this has had a noticeable impact on the technological advance-
ments within the output sector, gradually becoming more apparent. First, it is reflected in
the influence of digital technology on the approach of energy transactions and production,
as well as the effectiveness of factor production and the synergistic efficacy of the industrial
chain [5]. Second, it is reflected in the diffusion of digital technology on energy information
and energy information services, inducing technological transformation and the technolog-
ical renewal of traditional industries [26]. Therefore, the technological transformation rate
ε (ε > 0) is added to represent the technological progress of the final product component,
which is set as in Equation (3).

A = εη(ε > 0, η > 0) (3)

In addition, we notice that the growth of digital technology breaks through the rigid
constraints of geographic space–time distance, accelerates regional information sharing,
knowledge accumulation, and technology diffusion, and contributes to the increasing
economic spatial linkage, which requires consideration of the externality impact of energy
information networks. This paper uses φ to portray the spillover effect of neighboring
subjects’ ICT network technology on the output sector, and the higher the level of energy
information network technology η* of neighboring subjects, the stronger the spillover effect
φ (η*) of energy information services, ∂φ(η∗)

∂η∗ > 0, and the production function is adjusted
to Equation (4):

Y = F(A, L, K, E) = φAα
(

µL)αK1−αE(φ > 0) (4)
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The increase in capital stock is equal to the surplus of total output Y minus total
consumption C. The dynamic equation for capital accumulation is

.
K = Y − C (5)

Again, it is the level of carbon emissions (Z). The actual carbon emission level (Z) is
jointly influenced by the environmental self-purification capacity θ and carbon emission
YEγ. The carbon emission level is defined as the difference between the actual carbon emis-
sion level and the desired optimal carbon emission level, where the dynamic equation is

.
Z = −YEγ − θZ(γ, θ > 0) (6)

where γ is the carbon emission regulation intensity, the larger γ is, the less the actual carbon
emission of enterprises. The occurrence of extreme cases of destructive environmental
damage is disregarded, so

.
Z > 0.

Finally, the objective function is constructed. The social welfare level is defined as a
representative consumer’s utility function U (C, Z) in relation to material consumption
C and carbon emission level Z. The instantaneous utility function at time t has fixed
intertemporal elasticity of substitution and additive differentiability and can be written as

U(C, Z) =
C1−σ − 1

1 − σ
− (−Z)1+ν − 1

1 + ν
(0 < σ < 1, 0 < ν < 1) (7)

The social welfare objective of maximizing the total discounted value of instantaneous
consumer utility can be expressed as

Ω = max
∫ ∞

0
U(C, Z)e−ρtdt (8)

The relative risk aversion coefficient, denoted as σ, is equivalent to the reciprocal of
the intertemporal elasticity of substitution; ν is the degree of consumer preference for the
quality of carbon emission levels; and ρ is the time discount rate.

3.2. Model Solution

Social planners are faced with the task of optimizing intertemporal utility for con-
sumers while simultaneously adhering to the dual constraints of promoting economic
growth and managing carbon emissions. To address this challenge, a dynamic optimum
control problem is formulated in the following manner:

max
∫ ∞

0
U(C , Z)e−ρtdt (9)

s.t.
.
K = Y − C

.
η = ω(1 − µ)Lη
.
Z = −YEγ − θZ

Y = φAα(µL)αK1−αZ

A = εη

Construct the Hamiltonian function as

H = U(C, Z) + λ1(Y − C) + λ2(ω(1 − µ)Lη) + λ3(−YEγ − θZ) (10)
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where λ is the Lagrange multiplier, C, E and µ are the control variables, and K, η, and Z are
the state variables. Based on the maximum principle, the first-order conditions are obtained
as follows:

∂H
∂C

= 0 =⇒ λ1 = C−σ (11)

∂H
∂E

= 0 =⇒ λ1 = λ3(γ + 1)Eγ (12)

∂H
∂µ

= 0 =⇒ λ2ωLη =
αYγ

µ(γ + 1)
(13)

The Euler equations are

∂H
∂K

= ρλ1 −
.

λ1 =⇒
.

λ1 = ρλ1 −
(1 − α)γY
(γ + 1)K

λ1 (14)

∂H
∂η

= ρλ2 −
.

λ2 =⇒
.

λ2 = ρλ2 − ωLλ2 (15)

∂H
∂Z

= ρλ3 −
.

λ3 =⇒
.

λ3 = ρλ3 − (−Z)υ − θλ3 (16)

Taking the logarithm and deriving from Equation (9) the first-order-condition
Equations (11)–(13) and Euler’s Equations (14)–(16) gives

gc =
1
σ

[
(1 − α)

γ

γ + 1
Y
K
− ρ

]
=

1
σ

[
(1 − α)

γ

γ + 1
φ(εη)α(µL)αK−αE − ρ

]
(17)

gZ =
1 − σ

1 + ω
gc =

1 − σ

σ(1 + ω)

[
(1 − α)

γ

γ + 1
φ(εη)α(µL)αK−αE − ρ

]
(18)

Considering the optimal sustainable growth path, energy system digitization will be
upgraded faster than physical capital accumulation to overcome the pressure on polluting
output from diminishing returns to capital; thus, gc > 0. To avoid the ecosystem experi-
encing irreversibility, the intertemporal elasticity of the substitution of rational consumers
satisfies the preference constraint of 1/σ < 1; thus, gz < 0. It is clear that on the steady-
state growth path, energy system digitization is a critical factor in sustaining economic
growth and lowering carbon emissions. Combining Equation (18), solving the first-order
differential equation yields

Z = Z0exp
{

(1 − σ)t
σ(1 + ω)

[
(1 − α)

γ

γ + 1
φ(εη)α(µL)αK−αE − ρ

]}
(19)

Using Equation (19) to find the partial derivative of Z with respect to η, we obtain
∂Z/∂η > 0, which implies that energy digital technology has a favorable impact on reducing
carbon emissions. Using Equation (19) to find the partial derivative of Z with respect
to φ, we obtain ∂Z/∂φ > 0, indicating that the utilization of energy digital technology
exhibits a geographical spillover phenomenon that contributes to the reduction in carbon
emission intensity. In the context of regional connectedness facilitated by energy networks,
the process of energy system digitization has the potential to impact not only the carbon
emissions inside a specific region but additionally extends its influence to the neighboring
regions. In view of this, the following assumptions are proposed in this study: Hypothesis 1.
The development of energy system digitization contributes to the reduction in surrounding
regions’ carbon emissions, displaying a spatial emission reduction effect.

Combining Equations (2) and (3), the spatial emission reduction mechanisms for ana-
lyzing energy system digitization will be specifically divided into technological innovation
and industrial structure optimization mechanisms.

In the mechanism of technological innovation, green technological innovation can be
rapidly diffused to surrounding areas through the information network of energy system
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digitization. According to existing research, the accessibility of external information is
recognized as a key factor affecting green technology innovation [27]. Temporal and spatial
constraints limited the process of exchanging and obtaining information prior to the broad
use of digital technology. Limited by traditional information collection tools and communi-
cation means, obtaining information on green technology innovation requires high search
costs, tracking costs, and negotiation costs [28]. Energy system digitization depends on
digital technology being widely used and incorporated into the energy sector. This makes
energy information transmission timely, accurate, and sufficient, and it also helps reduce
information inequality. Digitizing energy can potentially address the limitations of time and
physical space, reducing expenses associated with searching for and tracking information
related to green energy technology innovation. Moreover, this digitization can facilitate the
spread of green technology innovation to neighboring regions, therefore yielding various
benefits. On this basis, we propose Hypothesis 2, that energy system digitization can
influence spatial carbon emission via the spread of green technology innovations.

In the mechanism of industrial structure optimization, energy system digitization af-
fects the carbon emissions of the surrounding region by optimizing the industrial structure.
The construction of energy system digitization will absorb a large amount of investment
into the industry and guide the industry to transformation and advancement in the di-
rection of clean, green, and low-carbon energy [29]. Simultaneously, it will also facilitate
the advancement and enhancement of industries in the adjacent regions via the influence
of economies of scale and competitive forces, hence mitigating carbon emissions in the
bordering areas [30]. On this basis, Hypothesis 3 proposes that energy system digitiza-
tion can optimize the industrial structure and thereby influence carbon emissions in the
surrounding region.

4. Methodology and Data
4.1. Research Methods

Regions in China have extensive and interconnected economic connections, resulting
in strong spatial correlations in various aspects of economic activities, such as regional
digital economic development and carbon emissions. If such spatial correlations are
ignored, biases may arise in coefficient estimation, and spatial econometric models need
to be established. For that reason, it is necessary to examine and control for the spatial
association when examining the influence of energy system digitization on carbon emission
intensity. Therefore, we build the spatial Durbin model as follows:

lnceiit = a0

n

∑
j=1

Wijlnceiit + b0lnesdit+c0ln(Xit) + d0

n

∑
j=1

Wijlnesdit

+e0

n

∑
j=1

Wijln(Xit) + µi + νt + εit

(20)

ceiit denotes the regional carbon emission intensity; lnesdit denotes the energy system
digitization level of the explained variables; Xit denotes the control variable; a0 is the
spatial autocorrelation coefficient of the explanatory variable; b0 denotes the regression
coefficient of the explanatory variable; c0 denotes the spatially lagged regression coefficient
of the explanatory variable; µi,νt,εit denote the regional fixed effects, time fixed effects, and
residual terms. W is the spatial weight matrix, using the geographical distance between
regions as the weights.

4.2. Data and Variable Description
4.2.1. Explained Variables

The core explanatory variable selected for this study is carbon emission intensity
(cei). This is precisely indicated by the amount of carbon emissions produced per unit of
GDP. The carbon emissions data are obtained with reference to the IPCC carbon emission
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factor accounted method, while the GDP data are obtained from the China Statistical
Yearbook [31].

4.2.2. Explanatory Variable

The degree of energy system digitization (esd) is the explanatory variable in this paper.
Academics argue that the digital transformation of industries is often a complex process.
The utilization of digital technology within the industrial sector is contingent upon several
aspects, including the prevailing technological advancements and the current state of
industry growth.

For researchers to fully analyze the consequences of digital technology on the energy
industry, it is vital to carefully investigate the specific characteristics related to the incorpo-
ration of digital technology in this sector. Currently, there is no authoritative understanding
of how to determine the degree of energy system digitization.

Nevertheless, the most representative approach to assess the digitalization level of
different industries is through the use of indicator methods to build a multidimensional
indicator system for quantitative assessment. Many scholars refer to the assessment system
of the OECD to gauge the extent of informatization, and this research also refers to relevant
studies to create a multidimensional index system for gauging the extent of regional energy
system digitization. This paper considers digital infrastructure and digital applications as
the primary indicators for measuring the first levels of energy system digitization, taking
into account that digitalization is mainly expressed in these terms. In Table 1, we select
specific measurement indicators. This paper uses Liu et al.’s projection pursuit method
to perform a full evaluation because the data are high-dimensional, nonlinear, and not
normal [32]. This method not only keeps as many of the original data’s characteristics
as possible but also gets around the problem of traditional evaluation methods being too
subjective. Using the projection pursuit method to measure the extent of energy system
digitization includes three main steps [33]:

Table 1. Energy system digitization level evaluation index system.

First-Level Indicators Second-Level Indicators Indicator Description

Energy system digitization
foundation

Information infrastructure Length of fiber-optic cable
lines

Mobile network infrastructure Cell phone penetration rate

Internet penetration rate Number of computers per
hundred people

Digitalization level at the
energy consumption end

Number of websites per
hundred enterprises

Electricity infrastructure Length of 35 kV and above
transmission line circuits

Electricity digitalization
investment

Investment in power grid
construction

Energy system digitization
applications

Industrial power availability Industrial electricity prices
Residential electricity

availability Residential electricity price

Electricity reliability Reliability rate of electricity
supply

Electricity responsiveness Power outage time
Electricity flexibility Number of charging piles

Firstly, the data of the energy system digital indicator system are normalized. Assume
that the indicator values are {x (i, j)|i = 1, 2,..., n; j = 1, 2,..., m}, where n and m are the
number of samples and the number of indicators, respectively; the sequence of indicator
eigenvalues X (i, j) is obtained after normalization.

Secondly, construct the projection indicator function Q (q). Initially, the p-dimensional
data {X (i, j)| j = 1, 2,..., m} in a one-dimensional projection with q = {q (1), q (2),..., q (m)}
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are given the one-dimensional projection value p (i) in the projection direction. Then,
the projection indicator function Q (q) is constructed according to the principle that the
projection value p (i) is dispersed as much as possible.

p(i) =
m

∑
j=1

q(j)× X(i, j) (i = 1, 2, · · · , n) (21)

Sp =

√
∑n

i=1(p(i)− X(p))2

n − 1
(22)

Dp =

n

∑
i=1

m

∑
j=1

[(R − r(i, j))u(R − r(i, j))] (23)

Q(q) = Sp×Dp (24)

where Sp is the standard deviation of the sequence p (i), Dp is the local density of the
sequence p (i), and Q (q) is the projection indicator function.

Finally, the ideal projection direction is determined. The projection function Q (q) is a
function of the projection direction q. The different q will exhibit different data structure
characters. To ensure the maximum exposure of the data characteristics of the energy
system digitization multidimensional indicators, this study searches for the most optimal
projection direction q* by solving the projection function maximization method.

maxQ(q) = max
{

Sp × Dp
}

s.t.∑m
j=1 q2(j) = 1

(25)

When using traditional methods to optimize the projection objective function, the
objective function is generally required to be continuous, derivable, and computationally
intensive, which is difficult to handle. To overcome this shortcoming, this paper invokes
the real number encoding accelerated genetic algorithm (RAGA), which simulates the
mechanisms of biological meritocracy and chromosomal information exchange within the
whole population, to solve the problem and simplify the operation by using computer
technology. The projection value of every sample is determined by putting the optimal
projection direction (q*) obtained in the previous step into Equation (21).

4.2.3. Control Variable

Referring to the decomposition of carbon emission influencing factors in the IPAT
model [34], we control the following variables that may impact carbon emissions: (1) popu-
lation (pop), expressed using the total regional population [35]; (2) gross domestic product of
the region (GDP), using the regional gross product [36]; (3) energy intensity (ei), expressed
using energy consumption per unit of GDP [37]; (4) energy structure (es), expressed using
carbon emissions per unit of energy consumption [38].

This study utilizes panel data, including 30 provinces in China from 2013 to 2021, as
the sample for analysis. Due to limitations of the data availability, Tibet, Hong Kong, Macau,
and Taiwan were excluded from the dataset. Relevant measures such as the digitization
of energy systems, regional carbon emissions, and other control variables are selected
from the China Statistical Yearbook (2013–2021), the China Electricity Statistical Yearbook
(2013–2021), and the yearbooks of each province and city. Descriptive statistics of the
variables involved in this paper are summarized in Table 2. The software used for data
processing and empirical analysis in this study is Stata 17.0.
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Table 2. Descriptive statistics of variables related to energy system digitization and carbon intensity.

Variables Mean Std. Dev. Min Max Obs

cei 0.0182315 0.0143008 0.0022916 0.0808533 270
esd 1.245928 0.4588142 0.398113 2.38057 270

GDP 26,749.78 23,917.77 904.635 124,369 270
pop 3930.97 3029.346 163.2 11,192 270
iso 0.3957767 0.076695 0.159671 0.55762 270
git 4372.626 6244.653 22 45,359 270
es 357.2353 517.1539 1.24646 4576.07 270
ei 0.9022378 0.7090153 0.0542 3.20352 270

5. Empirical Results
5.1. Spatial Autoregressive Test

Prior to commencing the spatial econometric assessment, it must be imperative to
ascertain the presence of a spatial correlation among the variables [39]. This investigation
employs the global Moran’s I index to determine the presence of a spatial correlation
between the carbon emission intensity of Chinese provinces and cities. The corresponding
calculation outcomes are shown below in Table 3.

Table 3. Moran’s I index of China’s emission intensity.

Year Moran’s I

2013 0.013 *
2014 0.028 **
2015 0.033 **
2016 0.033 **
2017 0.027 **
2018 0.023 *
2019 0.024 *
2020 0.011 *
2021 0.010 *

* p < 0.1, ** p < 0.05, and *** p < 0.01.

The outcomes in Table 3 reveal that the Moran’s I index of the carbon emission intensity
of Chinese provinces and cities from 2013 to 2021 has a minimum value of 0.010, and the
Moran’s I indexes are all positive and passed the significance test at the 10% level. This
indicates that the distribution of the carbon emission intensity in Chinese provinces is
characterized by spatial agglomeration, and it is necessary to add spatial geographic factors
to analyze the impact of energy system digitization on regional carbon emission levels.

5.2. Baseline Results

Both the Wald test and the LR test indicated statistical significance at the 1% level,
demonstrating the presence of both a spatial error term and a spatial lag term in the model.
The initial hypothesis of using an SLM model and SEM model are rejected. The spatial
Durbin model is considered suitable. The estimation results of the spatial Durbin model
are shown in Table 4.

The baseline regression outcomes listed in column (1) of Table 4 show that the coeffi-
cient of the effect of energy system digitization on the carbon emission intensity is −0.822,
which is significantly negative. The coefficient of the spatial spillover effect of energy sys-
tem digitization is −2.069, which is also significantly negative. This indicates that energy
system digitization can reduce both the local and neighboring carbon emission intensity.

Furthermore, this work adopts the partial differential approach for the purpose of
effect decomposition and the results of the decomposition are displayed in Table 5. Energy
system digitization has two distinct effects on carbon emissions: direct and indirect. The
direct impact refers to the way energy system digitization affects the local carbon emissions.
Simultaneously, the indirect effect pertains to the influence of energy system digitization on
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carbon emissions in the nearby regions. The decomposition analysis reveals that both the
direct and indirect impacts coefficients are −0.780 and −0.396, respectively, and both are
statistically significant. This demonstrates that energy system digitization has a suppressive
effect on the carbon emission intensity of both local and surrounding areas.

Table 4. Spatial econometric model regression results.

Variable
Baseline Return Technology Innovation Industry Structure

(1) (2) (3) (4) (5)

esd −0.822 *** 1.733 *** −0.073 ***
(−10.624) (27.021) (−7.355)

esd * lngit −0.081 ***
(−11.940)

esd * iso −1.548 ***
(−4.782)

W * esd −2.069 *** 1.708 *** −0.332 ***
(−3.696) (3.006) (−4.219)

W * esd * lngit −0.226 ***
(−4.392)

W * esd * iso −13.482 ***
(−4.508)

Control variable yes
Year FE yes

Wald SLM 16.44 ***
Wald SEM 16.51 ***

N 270 270 270 270 270

* p < 0.1, ** p < 0.05, and *** p < 0.01.

Table 5. Decomposition effect results.

Variable
Baseline Return Technology Innovation Industry Structure

(1) (2) (3) (4) (5)

LR_Direct
esd −0.780 *** 1.718 *** −0.062 ***

(−9.621) (27.105) (−6.353)
esd * lngit −0.076 ***

(−10.466)
esd * iso −0.989 ***

(−3.739)
LR_Indirect

esd −0.396 * 0.810 *** −0.069 ***
(−1.828) (2.655) (−2.649)

esd * lngit −0.041 **
(−2.230)

esd * iso −4.668 ***
(−4.023)

LR_Total
esd −1.176 *** 2.528 *** −0.131 ***

(−5.752) (8.066) (−4.805)
esd * lngit −0.117 ***

(−6.880)
esd * iso −5.657 ***

(−4.534)
N 270 270 270 270 270

* p < 0.1, ** p < 0.05, and *** p < 0.01.

Research Hypothesis 1 verifies that the development of energy system digitization
contributes to the reduction in surrounding regions’ carbon emissions, displaying a spatial
emission reduction effect.
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5.3. Mechanism Results

This study examines the mediated effects model suggested by Zhang, Ge, and Liu to
test the above mechanisms of energy system digitization to reduce spatial carbon emis-
sions [40].

Set the specific models as follows:

Channelit = a01

n

∑
j=1

WijChannelit + b01lnesdit + c01ln(Xit)+

d01

n

∑
j=1

Wijlnesdit + e01

n

∑
j=1

Wijln(Xit) + µi + νt + εit

(26)

lnceiit = a02

n

∑
j=1

Wijlnceiit + b02lnesdit + c02ln(Xit) + f1Channelit × lnesdit+

d02

n

∑
j=1

Wijlnesdit + e02

n

∑
j=1

Wijln(Xit) + f2

n

∑
j=1

WijChannelit × lnesdit + µi + νt + εit

(27)

where Channel denotes channels such as technological innovation and industrial struc-
ture optimization.

In the spatial mechanism test, technological innovation (it) is chosen as the scalar of
the number of green patents [41]. Industrial structure optimization (iso) is denoted by the
percentage of gross product from the secondary sector to the tertiary sector [42].

The test outcomes of the mechanism variables in Equation (26) are listed in
columns (2) and (4) of Table 4. In column (2), the results of the technology innovation mech-
anism test, the coefficient of energy system digitization (esd) is 1.733, and the coefficient
of spatial spillover (W * esd) is 1.708, both of which are statistically significantly positive,
illustrating that energy system digitization has an essential function in promoting techno-
logical innovation in local and surrounding areas. In column (4) of the industrial structure
mechanism test results, the coefficient of energy system digitization (esd) is −0.062, and the
coefficient of spatial spillover (W * esd) is −0.069, both of which are statistically significant
and negative, illustrate that energy system digitization has the ability to optimize the
industrial structure of both local and surrounding areas.

The test outcomes of the mechanism variables resting on Equation (27) are displayed
in columns (3) and (5) of Table 4. Both the regression coefficients of technological innova-
tion (it) and industrial structure (iso) are significant, and the coefficient of energy system
digitization (esd) becomes smaller and less significant compared to the baseline regression,
indicating the existence of a transmission mechanism. Research Hypothesis 2, that energy
system digitization can influence spatial carbon emission via the spread of green technology
innovations, is verified. Research Hypothesis 3, that energy system digitization can opti-
mize the industrial structure and thereby influence carbon emissions in the surrounding
region is verified.

5.4. Robustness Results

Considering the possible endogeneity between energy system digitization and regional
carbon emission levels [43,44], which could introduce bias in the estimation outcomes,
the quasi-natural experiment of “smart energy” is used to further test the results. Smart
energy is a typical practice in energy system digitization [45]. In 2016, the Chinese gov-
ernment put out the “Guiding Opinions on Promoting the Development of “Internet+”
Smart Energy” policy. Subsequently, in 2017, they announced the initial selection of
55 demonstration projects for “Internet+” smart energy. These projects meet the criteria for
quasi-natural experimentation.

The conventional difference-in-difference (DID) model needs to strictly satisfy the
assumption that the individual treatment effect is stable [46], but according to the theo-
retical analysis, it is found that the energy system digitization will have an impact on the
surrounding areas, which does not satisfy the SUTVA assumption. This study aims to
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enhance the existing model by including spatial analysis and introducing a spatial lag
component to the conventional difference-in-difference model. Consequently, a spatial
difference-in-differences model (S-DID) is formulated.

lnceiit = a03

n

∑
j=1

Wijlnceiit + b03dudt + c03ln(Xit) + d03

n

∑
j=1

Wijdudt+

e03

n

∑
j=1

Wijln(Xit) + µi + νt + εit

(28)

where du denotes the pilot region dummy variable, dt denotes the time dummy variable,
and other settings are as above.

The baseline regression outcomes of the S-DID are displayed in column (1) of Table 6.
The policy interaction coefficient of the smart energy pilot (dudt) is −0.608 and the spatial
spillover effect (W * dudt) coefficient is −2.822, which are statistically significant and
negative, verifying that research Hypothesis 1 is true.

Table 6. Regression results of spatial difference-in-difference model for smart energy pilot regions.

Variable
Baseline Technology Innovation Industry Structure

(1) (2) (3) (4) (5)

dudt −0.608 *** 1.113 *** −0.048 ***
(−4.880) (7.856) (−4.600)

dudt * lngit −0.075 ***
(−5.484)

dudt * iso −1.355 ***
(−3.816)

W * dudt −2.822 *** 3.215 *** 0.017 *
(−3.091) (3.255) (0.232)

W * dudt * lngit −0.295 ***
(−2.863)

W * dudt * iso −10.333 ***
(−3.603)

Control variable yes
Year FE yes

N 270 270 270 270 270

* p < 0.1, ** p < 0.05, and *** p < 0.01.

The findings of the S-DID spatial effect mechanism test are displayed in Table 6,
columns (2)–(5). The results of the technological innovation mechanism test reveals that
the spatial interaction coefficient between technological innovation and the policy dummy
variable is negative for significance. This implies that smart energy may influence spatial
carbon emissions by using the mechanism of technological innovation.

The results of the industrial structure optimization mechanism test reveals that the
spatial interaction coefficient between industrial structure optimization and the policy
dummy variable is also negative for significance. This indicates that smart energy has the
ability to influence spatial carbon emissions by means of optimizing industrial structure.

Hence, the exogenous shock test of smart energy policies further validates that the
aforementioned conclusions are robust.

5.5. Research on Regional Space

Since economic activities and carbon emissions are not all the same in different areas
and the progress of digitalizing energy infrastructure is not all the same, it is likely that the
effect of digitizing energy on the carbon emission intensity will be different in each area.
This study aims to further examine this regional heterogeneity.
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The sample is split into three regions: eastern, central, and western. The regional
division is detailed in Appendix A, Table A1. The results of the subgroup regressions are
shown in Table 7.

Table 7. Baseline regression results for different regions.

Variable Eastern Central Western

esd −1.067 *** 0.277 0.425
(−17.756) (1.197) (1.005)

W * esd −1.618 *** −0.268 −2.505 *
(−5.732) (−0.344) (−1.731)

Control variable Yes
Year FE Yes

N 99 72 99
* p < 0.1, ** p < 0.05, and *** p < 0.01.

In column (1) of Table 7, the test results for the eastern region show that the coefficient
of the direct effect of energy system digitization on the carbon intensity in the eastern region
is −1.067, and the coefficient of the spatial spillover effect in the eastern region is −1.618,
and it is statistically significantly negative. This indicates that energy system digitization
has both a direct carbon emission reduction effect and a spatial emission reduction effect in
the eastern region. In column (2) of Table 7, the test results for the central region indicate
that the core explanatory variables (esd, W * esd) do not pass the significance test, and it is
not possible to verify that the digitization of the energy system has a significant impact on
the carbon emission intensity in the central region. In column (3) of Table 7, the test results
for the western region indicate that the spatial spillover effect coefficient (W * esd) of energy
system digitization on carbon emission reduction in the western region is −2.505, and it
is significantly negative. This demonstrates that energy system digitization has a spatial
carbon emission reduction effect in the western region.

To explore the reasons for the differences in the emission reduction effects of energy
system digitization in different regions, the spatial mechanism of energy system digitization
in the subregions is further examined. The specific outcomes are presented in Table 8.

Columns (1), (2), (5), (6), (9), and (10) of Table 8 show the results of the test of technology
innovation mechanism in different regions. The test of the impact of the digitization of the
energy system in the eastern region on technological innovation in the core explanatory
variables esd coefficient is 1.596; W * esd is 1.904, and is significantly positive; W * esd * lngit is
−0.139, and is significantly negative. The test of the impact of the digitization of the energy
system in the western region on technological innovation in the core explanatory variables
esd coefficient is 1.589; W * esd is 2.897, and is significantly positive; W * esd * lngit is −0.0.592,
and is significantly negative. The central region’s technology innovation mechanism test
results in the core explanatory variables do not pass the test of significance. This indicates
that the eastern and western regions’ green technology spillover to neighboring regions
creates significant carbon emission reduction effects, while the central region’s technological
innovation mechanism is not significant. We analyze the reasons for this result: First, the
eastern economically developed region has the foundation and advantages of technological
innovation. Second, the western region is wealthy in clean energy resources, and the
impact of relevant policies, policy support, and market choices in recent years have all been
favorable to the growth of green technology innovation in the western region. Third, the
central region lacks the corresponding conditions, and the technological innovation effect
of energy system digitization is not significant, affecting its emission reduction effect.

Columns (3), (4), (7), (8), (11), and (12) of Table 8 show the results of the test of
industrial structure optimization in different regions.
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Table 8. Regression results for different regional spatial mechanisms.

Variable
Eastern Central Western

Technology Innovation Industry Structure Technology Innovation Industry Structure Technology Innovation Industry Structure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

esd 1.596 *** −0.064 *** 0.178 0.005 1.589 *** −0.119 ***
(15.344) (−3.940) (1.154) (0.159) (3.187) (−4.291)

esd * lngit −0.094 *** 0.029 −0.017
(−18.061) (1.038) (−0.395)

esd * iso −1.843 *** 1.102 ** 2.366 **
(−6.447) (2.379) (2.216)

W * esd 1.904 *** 0.018 −1.304 ** 0.011 2.897 * −0.442 ***
(4.396) (0.223) (−2.064) (0.098) (1.653) (−4.710)

W * esd * lngit −0.139 *** −0.019 −0.592 ***
(−4.761) (−0.218) (−4.401)

W * esd * iso −2.465 −0.163 0.458
(−1.167) (−0.090) (0.119)

Control
variable Yes

Year FE Yes
N 99 99 99 99 72 72 72 72 99 99 99 99

* p < 0.1, ** p < 0.05, and *** p < 0.01.



Sustainability 2024, 16, 1822 16 of 19

The test of the impact of the digitization of the energy system in the eastern region on
industrial structure optimization on the core explanatory variables esd coefficient is −0.064,
W * esd is 0.018, and W * esd * lngit is −0.139. However, the optimization effect of energy
system digitization on the industrial structure in the central and western regions is not
significant. Indeed, there is even a negative spillover of the emission reduction effect. This
means that minimizing the amount of secondary industry will actually increase carbon
emissions in neighboring regions. The change in industrial structure arising from energy
system digitization leads to a shift in carbon emissions and negative spatial spillover effects.
The main reason for this change is the strong demand for economic growth in the central
and western areas.

6. Discussion

Within the framework of the expeditious advancement of the digital economy, the
process of energy system digitization has emerged as a significant approach to mitigate
carbon emissions and expedite the shift towards sustainable energy sources. Whether
energy system digitization can break through geographic and spatial constraints to produce
spatial carbon emission reduction is emerging as a crucial concern in the current state of
energy system digitization and energy green transformation. This study investigates, from
the theoretical perspective, the logical relationship and mechanism of effect between energy
system digitization and spatial carbon emissions.

Firstly, it is clear from the analysis of this study that the energy system digitization
has a direct effect on the carbon emission intensity of the region and an indirect effect on
the carbon emission intensity of the surrounding areas. This indicates that the digitization
of energy system has a significant spatial emission reduction effect.

Secondly, as seen from the study of further spatial impact mechanisms, energy system
digitization can produce significant carbon emission reduction effects through the spillover
of technology innovation to the surrounding regions. Meanwhile, it can also guide indus-
trial transformation and upgrading through the optimization of industrial structure and
influence the carbon emission intensity of the surrounding regions.

Finally, considering the impact of differences between regions, further regional het-
erogeneity analysis is conducted. East China’s energy system digitization implementation
has both significant direct carbon emission decrease effects and spatial emission decrease
spillover effects. Central and Western China’s energy system digitization implementation
does not have a significant effect on carbon emissions, mainly due to local demand for
economic development, innovative sources, and other conditions.

7. Conclusions and Policy Implications

This study employs the projection pursuit method to generate a comprehensive eval-
uation index system for assessing the progress of energy system digitization in Chinese
provinces from 2013 to 2021. The spatial econometric models are utilized to empirically test
the spatial effect of energy system digitization on carbon emission reduction and spatial
mechanisms. The main conclusions are as follows: (1) The energy system digitization signif-
icantly reduces the carbon emission intensity of the surrounding regions by 2.069%. (2) The
spatial mechanism analysis results indicate that technological innovation and industrial
structure optimization are the main transmission mechanisms. (3) The heterogeneity analy-
sis reveals that the spatial emission reduction effect of energy system digitization is more
significant in the eastern region, while it is not significant in the central and western regions.

The analysis concludes with the following proposed policy recommendations:
First, strengthen the radiation-driven role of energy system digitization. Energy

system digitization can achieve spatial spillovers of carbon emission reduction through
technological innovation and industrial structure optimization. Thereby, we can give full
play to the leading demonstrative role of regions with higher levels of energy system
digitization, establish technology alliances, industry alliances, and other cooperation and
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exchange platforms, and provide organizational support for regional alliances in order to
strengthen the radiation-driven role of energy system digitization.

Second, encourage regional spatial linkage to carry out unified and coordinated
construction and planning of energy system digitization. Energy system digitization, as
a method for reducing digital carbon emissions, relies heavily on spatial linkage and its
planning and development within the overall coordinated planning and development
of the region. This approach is essential for maximizing the potential of energy system
digitization in reducing carbon emissions.

Third, we should increase policies related to energy system digitization. The construc-
tion of energy system digitization is characterized by a large scale, a long cycle, and high
costs. To accelerate the energy digital transformation, it is necessary to further guide the
incentives and increase the relevant policies.
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Appendix A

Table A1. Regional division of Chinese provinces and cities.

Region Province

Eastern Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, Hainan

Central Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan, Jilin, Heilongjiang

Western Neimenggu, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang
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