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Abstract: The ongoing progress of industrialization and urbanization has exacerbated the imbalance
between carbon emissions and absorption, leading to heightened risks of climate change, such as
frequent occurrences of extreme weather events. Clarifying the driving forces and temporal–spatial
evolution characteristics of China’s carbon balance holds significant theoretical value in understand-
ing the systemic nature and patterns of interaction between carbon emissions and absorption. We
utilize provincial panel data from 2005 to 2021 in China and a spatial Durbin model to explore the
spatial spillover effects of carbon imbalance and its influencing factors. The results indicate a gradual
exacerbation of carbon imbalance in China over time. There exists a spatially positive correlation
pattern in provincial carbon imbalance distribution. From 2005 to 2010, intra-regional differences in
carbon imbalance levels were a significant contributor to China’s overall carbon imbalance disparity,
while from 2011 to 2019, inter-regional differences played a more substantial role. Given the apparent
phenomena of population aggregation, industrial concentration, and economic interdependence
among provinces, changes in population size, economic growth, and industrial structure exacerbate
the level of carbon imbalance in spatially correlated regions. Conversely, due to knowledge and
technology spillovers, improvements in energy efficiency facilitated by the flow of production factors
like capital aid in the governance of carbon imbalance in spatially associated areas. We emphasize that
local governments should focus on a regional integration perspective in carbon imbalance governance
and strategically coordinate with neighboring provinces and cities to advance carbon imbalance
governance. The findings provide theoretical support for understanding and effectively managing
the situation of carbon imbalance in China.
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1. Introduction

Since the industrial revolution, human activities, especially the substantial consump-
tion of fossil fuels by developed nations, have led to a significant accumulation of carbon
dioxide emissions in the atmosphere, intensifying global climate change which is primarily
characterized by warming trends. Greenhouse gas emissions have resulted in increased
occurrences of extreme weather events and frequent natural disasters, contributing to
adverse climate changes. The alterations in meteorological elements such as temperature,
radiation, precipitation, and wind speed triggered by climate change, in turn, impact the
generation and transmission of pollutants, exacerbating regional air pollution levels and
posing a threat to human health.

The emission of greenhouse gases, primarily carbon dioxide, has led to global climate
warming, posing a severe threat to human existence and sustainable development, standing
as one of the significant global challenges humanity faces today. The milestone significance
of the 2016 international treaty, the Paris Agreement, signifies the collective global concern
for climate change, and the transition towards green and low-carbon development has
become a widespread consensus among nations.
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In 2020, China accounted for approximately 30% of global carbon emissions. Con-
currently, China’s energy consumption per unit of gross domestic product (GDP) stood
at 3.4 tons of standard coal per USD ten thousand, with a carbon dioxide emissions inten-
sity of 6.7 tons per USD ten thousand of GDP, which are 1.5 times and 1.8 times higher
than the world average, respectively. China has only a 30-year transition period from
carbon peaking to carbon neutrality, facing more stringent and extensive emission reduc-
tion requirements than developed countries within a tighter timeframe. However, on the
one hand, as the spatial scope of end-of-pipe pollution control measures diminishes, the
marginal costs of further environmental benefits and the difficulty of emission reduction
increase. China faces dual pressures to achieve carbon neutrality goals while ensuring
environmental pollution prevention and control. On the other hand, due to cost and tech-
nological limitations, large-scale market applications of “end-of-pipe” carbon capture and
storage technologies for greenhouse gas emission reduction remain challenging, and carbon
sequestration capacity remains insufficient. Therefore, the escalating climate issues in China
fundamentally stem from the contradiction between excessive consumption of fossil fuels
and inadequate carbon sequestration capacities, resulting in carbon imbalance. Some argue
that the disparities in carbon imbalance among different regions became more pronounced
between 2011 and 2019, whereas such differences were not as significant before 2010 [1,2].
Consequently, we aim to delve deeper into the temporal–spatial evolution characteristics
of China’s carbon imbalance and its driving factors, aiming to provide a scientific basis for
addressing climate change, environmental protection, and sustainable development.

The existing literature has extensively delved into the spatiotemporal evolution char-
acteristics of carbon emissions [3–6] and their intricate impact mechanisms [7–9]. The study
in [10] examined the potential influences of energy poverty, renewable energy consumption,
GDP, natural gas consumption, and trade freedom on carbon emissions, concluding that
prioritizing the reduction of energy poverty in developing countries is pivotal for achieving
sustainable development goals. The study in [11] employed autoregressive distributed
lag models to analyze the influence of political and social factors on carbon emissions,
demonstrating that reduced corruption and increased female political participation signifi-
cantly diminish carbon emissions, while heightened political stability markedly reduces
emissions in the short term. Considering China’s status as the largest emitter of carbon,
the study in [12] employed production theory decomposition and index decomposition
analysis to investigate the underlying driving factors of China’s carbon emissions. Their
findings highlight economic activities as the primary contributor to increased emissions,
with GDP-related technological changes and energy intensity playing significant roles in
most Chinese provinces’ emissions. There are many similar studies [13–17].

However, the continuous progression of industrialization and urbanization has im-
posed significant pressure for emissions reduction, gradually making the enhancement of
carbon sequestration capacity an increasingly scrutinized focal point within academia [18–21].
The study in [22], drawing upon the theoretical framework of a dynamic stochastic general
equilibrium model, discussed the influence of carbon sink insurance and fiscal subsidies on
forestry’s carbon sequestration capabilities. Their findings illustrate that carbon sink insur-
ance and premium subsidies can enhance forestry carbon sink capacities, while direct fiscal
subsidies and premium subsidies can augment forestry’s carbon sequestration abilities.
The study in [23] delved into the spatiotemporal dynamics of the net primary productivity
(NPP) and net ecosystem productivity (NEP) of vegetation in the Wei River Basin, quanti-
fying the impact of climate change and human activities on vegetation’s carbon fixation
capabilities. The existing literature primarily concentrates on the factors influencing carbon
emissions and absorption capacities and their spatiotemporal evolution. However, a sys-
tematic examination from a balanced interaction perspective between carbon emissions
and absorption, elucidating the mechanisms influencing carbon balance, is lacking. There
is a dearth of theoretical mechanism analysis regarding carbon balance, underscoring the
significance of unraveling the driving factors and spatiotemporal evolution characteristics



Sustainability 2024, 16, 1805 3 of 19

of carbon balance in comprehending the systematic nature and patterns of interaction
between carbon emissions and absorption.

The main contributions of this work are as follows:

(1) We innovatively construct a Carbon Imbalance Index at the provincial level in China
by utilizing high-spatiotemporal-resolution and dynamically updated global multi-
scale databases provided by NASA and the MEIC platform. This approach integrates
data on carbon emissions and absorption, offering a new perspective on the carbon
imbalance scenario.

(2) The evolution patterns of carbon emissions and absorption in different regions and
periods across China reveal intricate dynamics. By unveiling the dynamic evolution
characteristics and spatial disparities in carbon imbalance among Chinese provinces,
we aim to comprehend the current status and evolving patterns of carbon imbalance.

(3) Employing a spatial Durbin model, we identify the driving factors behind China’s
carbon imbalance and, from a spatial spillover perspective, elucidate the dynamic
interrelationships of carbon imbalance among provincial regions. This analytical
approach uncovers the interconnectedness of carbon imbalance dynamics within and
between provinces.

2. Materials and Methods
2.1. Kernel Density Estimation

In statistics, Kernel Density Estimation (KDE) is a non-parametric method that applies
kernel smoothing to estimate the probability density function of a random variable by
using kernels as weights. In this work, the KDE method is employed to analyze the
spatiotemporal changes in carbon imbalance in China. Equation (1) is utilized to estimate
the kernel density of carbon imbalance.

Fg(CII) =
1

ng

n

∑
i=1

K(
CII − CIIi

g
) (1)

where K(.) represents the Epanechnikov kernel density function, n denotes the number of
provinces, CIIi represents the carbon imbalance of the ith province, and g is the estimated
bandwidth. The study utilizes the optimal bandwidth method to determine the bandwidth.

2.2. Dagum’s Gini Coefficient Decomposition

Compared to the Theil index and the Gini index, Dagum’s proposed Gini coefficient
decomposition method effectively addresses the issue of regional disparity sources. In this
work, Dagum’s Gini coefficient and its decomposition method are utilized to analyze the
spatial disparities in carbon imbalance among various provinces in China, as illustrated in
Equation (2):

G =
∑l

k=1 ∑l
h=1 ∑nk

i=1 ∑nh
r=1|CIIki − CIIhr|

2CIIn2
(2)

where CIIki represents the carbon imbalance in province i within region k, CIIhr represents
the carbon imbalance level in province N within region H, CII denotes the average carbon
imbalance across provinces, N denotes the total number of provinces, and l represents
the total number of regions. For the ease of Dagum’s Gini coefficient decomposition, we
define the within-region and between-region Dagum’s Gini coefficients as depicted in
Equations (3) and (4).

Gkk =
∑nk

i=1 ∑nk
r=1|CIIki − CIIkr|

2CIIkn2
k

(3)

Gkh =
∑nk

i=1 ∑nh
r=1|CIIki − CIIhr|

nknh(CIIk + CIIh)
(4)
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Furthermore, we further decompose Dagum’s Gini coefficient into within-region
disparities Gintra, between-region disparities Gnd, and super-variation density Ghyper, as
illustrated below:

G = Gintra + Gnd + Ghyper (5)

G = ∑m
j=1 Gkkdkek + ∑m

k=1 ∑
h ̸=k

GkhdkehDkh + ∑m
k=1 ∑

h ̸=k
Gkhdkeh(1 − Dkh) (6)

where dk = nk/n represents the proportion of the number of provinces in region k to
the total number of provinces. ek = nkCIIk/nCII signifies the proportion of the average
carbon imbalance level in region k to the national average carbon imbalance level. Dkh =∫ ∞

0 dFk(S)
∫ S

0 (S − x)dFh(x) denotes the relative influence of carbon imbalance between
regions k and h.

2.3. Spatial Correlation Test

The global spatial autocorrelation test assesses the interdependence among sample
units based on geographical information. By combining specific years with current car-
bon imbalance data for each province and city, it becomes possible to evaluate whether
there are spatial clustering characteristics in China’s provincial-level carbon imbalance
phenomenon. However, the global Moran’s Index test primarily reflects the overall spatial
correlation of the Carbon Imbalance Index and does not delve into revealing atypical
features in local areas. Hence, the adoption of the local Moran’s test is necessary for further
analysis. The equations for both global and local Moran’s Index tests used in this work are
provided below:

I =
n∑n

i=1 ∑n
j=1 wij(xi − x)(xj − x)

∑n
i=1 ∑n

j=1 wij(xi − x)2 (7)

Ii =
(xi − x)∑n

j=1 wij(xj − x)

∑n
i=1 (xi − x)2 (8)

where xi and xj represent the mean carbon imbalance indices of regions i and j, respectively;
x signifies the mean Carbon Imbalance Index of the overall sample; wij denotes the elements
in the spatial weight matrix; and n represents the 30 provincial-level samples in this work.

2.4. Econometric Model

As is well known, the IPAT framework elucidates the environmental impact (I) result-
ing from population size and distribution (P), affluence (A), and technological level (T).
This framework has found extensive application in environmental policy formulation and
research [24,25]. In this work, environmental impact is defined as the Carbon Imbalance
Index (CII), which concurrently considers both total carbon dioxide emissions and the
ecosystem’s total carbon dioxide absorption. Therefore, we have extended the traditional
IPAT framework beyond population size (PS) and economic growth (EG) by incorporat-
ing industrial structure (IS), energy efficiency (EE), and electricity structure (ES) into this
framework. Equation (9) in our study encompasses these variables, reflecting technological
factors within the changes in economic growth and energy efficiency.

CIIit = α1PSit + α2EGit + α3 ISit + α4EEit + α5ESit + εit (9)

At the same time, we assume that regional carbon imbalance is simultaneously in-
fluenced by multiple factors within the region and neighboring areas. Therefore, based
on Equation (9), spatial effects are introduced to unveil the primary factors influencing
carbon imbalance at the provincial level in China from a spatial perspective. To maintain
generality, we have constructed the spatial Durbin model as depicted in Equation (10):
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CIIit = ρ∑n
j=1 wijCIIjt + β1∑n

i=1 PSit + β2∑n
i=1 EGit + β3∑n

i=1 ISit + β4∑n
i=1 EEit + β5∑n

i=1 ESit

+θ1∑n
j=1 wijPSjt + θ2∑n

j=1 wijEGjt + θ3∑n
j=1 wij ISjt + θ4∑n

j=1 wijEEjt + θ5∑n
j=1 wijESjt

+δi + ςt + εit

(10)

where i represents the province, j stands for the year, wij signifies the (i, j) element in the
spatial adjacency matrix (if two provinces are adjacent, the value is 1; otherwise, it is 0), ρ
is the coefficient of spatially lagged dependent variables, β represents the coefficients of
influencing factors, θ is the coefficient of lagged explanatory variables, individual fixed
effects δi control for provincial characteristics that do not vary across individuals, time
fixed effects ςt encompass factors that do not change across time periods, and εit represents
the disturbance term following a normal distribution.

2.5. Partial Differential Decomposition

Due to the presence of spatial feedback effects, the coefficients of explanatory variables
in the spatial econometric model do not accurately reflect their marginal effects on the
dependent variable. To address the bias in parameter estimation, we employ a partial
differentiation method to decompose the direct and spillover effects [26]. The equations are
as follows:

Direct_e f f ect = [(I − Wλ)−1(βk + Wθk)]
d

(11)

Indirect_e f f ect = [(I − Wλ)−1(βk + Wθk)]
rsum

(12)

where I denotes the identity matrix, W represents the spatial weight matrix, d signifies
the operator for calculating the mean of all elements along the matrix diagonal, and rsum
denotes the operator for computing the row sums of off-diagonal elements and their
mean in the matrix. The meanings of the remaining variables are consistent with those
explained earlier.

2.6. Variable Selection and Data

The dependent variable in this work is the Carbon Imbalance Index (CII), defined
as the absolute difference between total carbon sequestration and total carbon emissions,
as detailed in Equation (13). The carbon sequestration is derived from the net primary
productivity (NPP) of green vegetation obtained through remote sensing data [27]. The
total carbon emissions are computed by multiplying energy consumption by emission
factors and summing them up [28,29]. Based on existing research, this study considers
the following five influencing factors. Firstly, population size (PS) is represented by the
year-end resident population [30]. Secondly, economic growth (EG) is indicated by the
gross domestic product (GDP) [31]. Thirdly, industrial structure (IS) is expressed as the
proportion of the secondary industry [32]. Fourthly, energy efficiency (EE) is depicted by
the economic benefit per unit of energy [33]. Lastly, electricity structure (ES) is characterized
by the proportion of thermal power generation [34].

CIIit = |CSit − CEit| (13)

Given the partial absence and lag in macroscopic data, this study eventually selected
a sample comprising 30 provincial-level regions in China, excluding Tibet, Hong Kong,
Macau, and Taiwan, from 2005 to 2021 for analysis. NPP data were obtained from the
Google Earth Engine official website, while carbon emission data were sourced from the
MEIC website. Other data were gathered from the “China Statistical Yearbook” and the
official website of the National Bureau of Statistics. Linear interpolation was employed to
supplement the scarce missing data. Descriptive statistics for all variables are detailed in
Table 1.
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Table 1. Statistical description of variables.

Variables Unit Mean Sd Min Max Observations

CS 106 tons 197.38 162.27 4.066 712.64 510
CE 106 tons 290.06 197.07 17.06 936.36 510
CII 106 tons 188.5 178.2 5.600 694.4 510
PS 105 people 449.6 271.2 57.70 1076 510
EG 106 CNY 199.1 182.3 11.39 828.8 510
IS % 54.87 11.90 25.97 79.85 510
EE 102 CNY/ton coal 117.6 97.49 10.71 412.7 510
ES % 75.09 23.38 12.15 99.61 510

3. Analysis of Current Status and Spatiotemporal Characteristics of Carbon Imbalance
3.1. Carbon Imbalance Status

Table 2 presents the carbon emission (CE), carbon sequestration (CS), and carbon
imbalance (CI) status of provincial-level regions in China in 2021. Initially, only nine
provinces (30%) exhibited a carbon surplus. Yunnan province holds the largest surplus,
estimated at approximately 489 million metric tons. The majority of provinces (70%)
are in a carbon deficit state, showing a significant imbalance between carbon emissions
and absorptions. Shandong province records the largest carbon deficit, approximately
809 million metric tons, making it the province with the most substantial deficit in China.
Additionally, despite Inner Mongolia and Yunnan both having carbon sequestration levels
exceeding 600 million metric tons, Inner Mongolia’s carbon emissions surpass 800 million
metric tons, resulting in a deficit of over 200 million metric tons. Conversely, Tianjin and
Shanghai, with emissions of just over 100 million metric tons each, face deficits exceeding
100 million metric tons due to limitations in carbon sequestration, influenced by the natural
environment and territory size. Lastly, a comparative analysis reveals that provinces with
carbon surpluses are predominantly located in the northeast and western regions. In
contrast, carbon deficit phenomena are prevalent in the central and eastern regions.

Table 2. China’s provincial carbon imbalance status (unit: 106 tons).

Province CS CE CI Province CS CE CI

Beijing 13.381 88.789 −75.408 Henan 149.862 457.157 −307.295
Tianjin 6.723 151.856 −145.133 Hubei 207.710 294.394 −86.684
Hebei 150.363 778.368 −628.005 Hunan 254.367 271.688 −17.321
Shanxi 124.954 544.085 −419.131 Guangdong 275.556 558.066 −282.510

Inner Mongolia 621.349 831.906 −210.557 Guangxi 380.086 245.738 134.348
Liaoning 150.872 487.663 −336.791 Hainan 54.588 42.129 12.459

Jilin 202.276 200.632 1.644 Chongqing 99.986 145.801 −45.815
Heilongjiang 488.505 264.757 223.748 Sichuan 501.413 282.319 219.094

Shanghai 4.539 167.442 −162.903 Guizhou 261.876 235.494 26.382
Jiangsu 93.231 733.561 −640.330 Yunnan 699.839 210.73 489.109

Zhejiang 127.867 387.975 −260.108 Shaanxi 198.809 294.513 −95.704
Anhui 146.348 407.111 −260.763 Gansu 183.222 173.829 9.393
Fujian 185.264 278.874 −93.610 Qinghai 165.050 45.56 119.490
Jiangxi 203.537 225.423 −21.886 Ningxia 20.826 221.862 −201.036

Shandong 127.042 936.355 −809.313 Xinjiang 183.110 478.944 −295.834

3.2. Temporal Evolution Characteristics of Carbon Imbalance

We utilized kernel density functions to illustrate the temporal evolution of carbon
imbalance at the provincial level in China. Figure 1 illustrates the kernel density curves for
China’s provincial-level carbon imbalance indices in 2005, 2013, and 2021. It is evident that
the majority of provinces exhibit carbon imbalances ranging between 0 and 300 million
metric tons. However, in some provinces, the carbon imbalance exceeds 600 million metric
tons, indicating a gradual increase in carbon emissions and posing significant challenges
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for emission reduction. Furthermore, upon comparing the three sets of curves, the kernel
density curves for CII demonstrate a “rightward shift.” This signifies a gradual increase
in carbon imbalances among China’s provincial regions over the past decade. On the
one hand, as the spatial scope of end-of-pipe pollution control measures diminishes, the
marginal costs of further environmental benefits and the difficulty of emission reduction
increase. China faces dual pressures to achieve carbon neutrality goals while ensuring
environmental pollution prevention and control. On the other hand, due to cost and
technological limitations, large-scale market applications of “end-of-pipe” carbon capture
and storage technologies for greenhouse gas emission reduction remain challenging, and
carbon sequestration capacity remains insufficient. Therefore, the escalating climate issues
in China fundamentally stem from the contradiction between excessive consumption of
fossil fuels and inadequate carbon sequestration capacities, resulting in carbon imbalance.
Therefore, the carbon imbalance issue in China is intensifying year by year. Additionally,
the peaks of the kernel density curves are progressively decreasing year by year, suggesting
a decrease in provinces with smaller carbon imbalance indices and an increase in provinces
falling within the 2-to-5-billion-ton range of carbon imbalance indices.
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Figure 1. KDE result of provincial carbon imbalance.

3.3. Spatial Characteristics of Carbon Imbalance
3.3.1. Spatial Autocorrelation Test

Based on the results from Table 3 regarding the global spatial autocorrelation and
hypothesis testing, it can be observed that Moran’s Index for China’s provincial-level
carbon imbalance indices from 2005 to 2021 consistently exceeds 0 and is significant at
least at a 10% level. This indicates a positive spatial correlation in the distribution of
provincial-level carbon imbalance across China. Specifically, there is evidence of clustering
among regions with similar values. This finding significantly supports the inter-regional
influence of carbon imbalances among China’s provinces. Moreover, while there is a slight
fluctuation in spatial correlation across different years, the overall change remains minimal.
This underscores the stability of spatial interactions concerning provincial-level carbon
imbalances in China and provides a factual basis for exploring their spatial spillover effects
in subsequent sections of this work.
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Table 3. Spatial autocorrelation test results of provincial carbon imbalance.

Year Moran’s I E (I) Sd (I) Z-Value p-Value

2005 0.189 −0.034 0.121 1.857 0.063
2006 0.212 −0.034 0.120 2.053 0.040
2007 0.259 −0.034 0.120 2.446 0.014
2008 0.288 −0.034 0.120 2.694 0.007
2009 0.275 −0.034 0.120 2.576 0.010
2010 0.294 −0.034 0.120 2.739 0.006
2011 0.303 −0.034 0.121 2.795 0.005
2012 0.316 −0.034 0.119 2.936 0.003
2013 0.312 −0.034 0.121 2.860 0.004
2014 0.278 −0.034 0.121 2.591 0.010
2015 0.272 −0.034 0.120 2.557 0.011
2016 0.290 −0.034 0.119 2.716 0.007
2017 0.261 −0.034 0.121 2.454 0.014
2018 0.237 −0.034 0.120 2.269 0.023
2019 0.243 −0.034 0.119 2.332 0.020
2020 0.234 −0.034 0.120 2.242 0.025
2021 0.230 −0.034 0.120 2.207 0.027

3.3.2. Spatial Agglomeration Characteristics

The Moran scatter plots for China’s provincial-level carbon imbalance indices in 2005
and 2021 are depicted in Figure 2. The horizontal axis represents the standardized carbon
imbalance indices for each province, while the vertical axis signifies the spatial lag values of
the carbon imbalance indices for each province. It is evident that the majority of provinces
fall within the spatially positive correlation regions in quadrants one and three on the
scatter plot, with the spatial fit line traversing these quadrants. This indicates that regions
with higher carbon imbalance indices tend to have neighboring regions with similarly high
carbon imbalance indices, and likewise for regions with lower carbon imbalance indices,
suggesting a spatial clustering tendency.

Table 4 displays the spatial clustering results of the local Moran indices for the years
2005, 2013, and 2021. In 2005, three provinces—Hebei, Shandong, and Yunnan—were
in the “high-high” region. By 2010, Yunnan exited the “high-high” group, while Jiangsu
and Henan joined this cluster. In 2021, Henan withdrew from the “high-high” group.
The “low-low” cluster primarily includes four provinces: Hubei, Chongqing, Hunan,
and Gansu. Hubei left this group in 2013, the same year Hunan and Gansu entered,
while Chongqing consistently remained part of this cluster. Furthermore, we observed no
discernible “low-high” or “high-low” spatial distribution patterns in China’s provincial-
level carbon imbalance. This largely indicates that provincial carbon imbalances exhibit a
“prosper together, suffer together” spatial characteristic.

Table 4. Spatial clustering results of carbon imbalance in China.

Features H-H L-H L-L H-L

Location First quadrant Second quadrant Third quadrant Fourth quadrant
Correlation Positive Negative Positive Negative
Properties Homogeneity Heterogeneity Homogeneity Heterogeneity

2005 Hebei, Shandong, Yunnan None Hubei, Chongqing None
2013 Hebei, Jiangsu, Shandong, Henan None Hunan, Chongqing, Gansu None
2021 Hebei, Jiangsu, Shandong None Hunan, Chongqing None
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Figure 2. Moran scatter plot of provincial carbon imbalance.

3.3.3. Spatial Gini Coefficient and Decomposition

Table 5 presents the results of the decomposition of China’s carbon imbalance based
on the Gini coefficient. It is noticeable that after China’s entry into the World Trade
Organization, the vast market space led to vigorous economic development. The rapid
and robust economic growth brought about substantial carbon emissions. Due to regional
resource endowments and geographic disparities, different regions exhibited significant
variations in carbon emission levels. Consequently, between 2005 and 2009, there was a
continual upward trend in the overall disparity of China’s carbon imbalance.

From 2010 to 2016, China’s economic development shifted from high-speed to moder-
ately high-speed growth, marking the onset of a “new normal” in economic development.
As a result, the overall level of disparity in China’s carbon imbalance did not surge rapidly
but rather stayed elevated within the range of 0.5 to 0.52. With the deepening of the concept
of green development, China’s economy started relying more on technological advance-
ments to propel growth, thus progressing toward green and sustainable development
pathways. Consequently, between 2017 and 2021, there was a declining trend in the overall
disparity of China’s carbon imbalance. The overall disparity in carbon imbalance among
regions gradually reduced. Additionally, the intra-regional disparity in carbon imbalance
remained relatively stable at around 0.15 to 0.16, whereas the inter-regional disparity in
carbon imbalance exhibited fluctuations. Between 2005 and 2012, it showed an upward
trend, reaching its peak at 0.22 in 2012, before declining. Finally, from 2005 to 2010, intra-
regional differences played a significant role in causing China’s carbon imbalance, with the
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contribution rate of intra-regional differences being greater than that of inter-regional dif-
ferences. However, between 2011 and 2019, this relationship reversed, with inter-regional
differences becoming a crucial contributor to China’s carbon imbalance. After 2020, the
disparity in carbon imbalance between regions and within regions gradually aligned.

Table 5. Decomposition results of spatial Gini coefficients.

Year Gini Inter-Regional Rate Intra-Regional Rate Transvariation Rate

2005 0.461 0.066 14.403 0.155 33.635 0.239 51.961
2006 0.461 0.091 19.680 0.153 33.247 0.217 47.073
2007 0.490 0.117 23.831 0.160 32.632 0.213 43.537
2008 0.496 0.125 25.230 0.162 32.566 0.209 42.204
2009 0.510 0.139 27.326 0.164 32.203 0.206 40.471
2010 0.508 0.190 37.485 0.158 31.149 0.159 31.366
2011 0.504 0.204 40.506 0.154 30.587 0.146 28.907
2012 0.511 0.220 43.059 0.154 30.178 0.137 26.762
2013 0.508 0.195 38.354 0.155 30.510 0.158 31.136
2014 0.503 0.193 38.394 0.154 30.579 0.156 31.028
2015 0.508 0.182 35.779 0.159 31.317 0.167 32.904
2016 0.514 0.185 36.092 0.162 31.474 0.167 32.435
2017 0.496 0.170 34.340 0.156 31.471 0.170 34.189
2018 0.500 0.182 36.462 0.157 31.345 0.161 32.193
2019 0.479 0.161 33.647 0.152 31.828 0.165 34.525
2020 0.485 0.153 31.544 0.154 31.826 0.178 36.630
2021 0.482 0.153 31.788 0.154 31.833 0.175 36.378

Figure 3 depicts the changing trends in carbon imbalance disparity across China’s
eastern, central, and western regions. The variations in carbon imbalance disparity across
different regions show distinct characteristics over different periods. Specifically, prior to
2018, the eastern region exhibited relatively lower and stable levels of carbon imbalance
disparity compared to the central and western regions. The carbon imbalance disparity in
the western and central regions displayed greater fluctuations. Overall, the western region
demonstrated a fluctuating downward trend in carbon imbalance disparity after 2009 and
became the region with the lowest carbon imbalance disparity after 2019. After 2019, due to
differences in economic development and transition among the central regions, the carbon
imbalance disparity in the central region gradually widened.
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4. Analysis of Influencing Factors of Carbon Imbalance Based on Econometric Model
4.1. Benchmark Regression Results and Comparative Analysis

Table 6 presents the parameter estimation results for the baseline regression model
(OLS) and spatial econometric models (SLM, SEM, and SDM). The results of Model (1),
the baseline regression, indicate that the effects of population size, economic growth, and
energy efficiency on carbon imbalance are significant, while the industrial structure and
electricity structure are not significant contributors to exacerbating carbon imbalance, as
their coefficients are not statistically significant. This result suggests that an increase in
population size and rapid economic development typically lead to higher energy consump-
tion and production activities, resulting in emissions that intensify carbon imbalance and
exacerbate climate change risks. However, the improvement in energy efficiency effectively
mitigates the problem of carbon imbalance. This is mainly because the pursuit of higher
energy efficiency usually stimulates technological innovation and development, leading
to the emergence and application of new energy-saving and clean energy technologies,
further reducing dependence on high-carbon energy sources.

Table 6. Econometric model regression results.

Variables
Model (1) Model (2) Model (3) Model (4)

OLS SLM SEM SDM

PS 0.324 ***
(0.083)

0.818 ***
(0.163)

0.815 ***
(0.165)

0.901 ***
(0.159)

EG 0.310 ***
(0.038)

0.210 ***
(0.044)

0.208 ***
(0.045)

0.206 ***
(0.043)

IS 0.443
(0.296)

0.620 *
(0.363)

0.592
(0.363)

1.143 ***
(0.364)

EE −0.266 ***
(0.050)

−0.464 ***
(0.065)

−0.434 ***
(0.069)

−0.292 ***
(0.077)

ES −0.261
(0.339)

0.022
(0.398)

−0.052
(0.413)

−0.551
(0.406)

ρ
0.138 ***
(0.050)

0.150 ***
(0.050)

λ
0.143 **
(0.059)

Variance sigma2_e 1694.187 ***
(106.265)

1698.752 ***
(106.614)

1590.600 ***
(99.789)

Wald test (SDM→SLM) 32.79 ***
Wald test (SDM→SEM) 39.21 ***

N 510 510 510 510
Notes: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the values in parentheses are
standard errors; λ represents the spatial lag coefficient of the error term in SEM.

It is worth noting that the baseline regression model considers only the average impact
effects among variables. However, it is more realistic to acknowledge the presence of some
spatial interaction effects in carbon imbalance and economic activities among provinces.
This introduces a potential specification bias in the baseline regression model. Therefore,
this study further conducts an LM test on the baseline regression model, and the results
reject the null hypothesis of the absence of spatial lag and spatial error effects (Spatial
error (468.549 ***); Spatial lag (397.932 ***)). Based on this, the study proceeds to construct
spatial lag models (SLM), spatial error models (SEM), and spatial Durbin models (SDM)
to explore the specific impact effects of different factors on carbon imbalance. The spatial
Durbin model, serving as a general spatial model, nests both the spatial lag model and
the spatial error model. To examine the validity of the spatial Durbin model specification,
a Wald test is employed to conduct a degradation analysis. The test results significantly
reject the possibility of SDM degenerating into SLM and SEM at a 1% significance level.
Consequently, the subsequent analysis of impact effects will be based on the regression
results of model (4).
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From the estimation results of model (4), it can be observed that, except for the
non-significance of the electricity structure in carbon imbalance, all other variables are
statistically significant. This is mainly attributed to the deepening implementation of
clean and low-carbon policies. In particular, carbon capture and storage technologies are
gradually being adopted in thermal power generation, replacing higher-emission energy
sources and effectively mitigating carbon emissions from power plants. An increase in
population size, rapid economic growth, and an increase in the proportion of secondary
industry exacerbate the issue of carbon imbalance.

On one hand, with population size and economic development, large-scale land use
changes and ecosystem disruptions may occur. This may involve deforestation, land
development, and urbanization, reducing vegetation coverage and the capacity of natural
ecosystems to absorb and store carbon. On the other hand, the increase in population
size, rapid economic expansion, and the growing proportion of secondary industry has
led to a significant increase in demand for high-carbon fuels, resulting in a substantial
increase in carbon emissions. As a result, the decline in carbon sequestration capacity
and the increase in carbon emissions ultimately intensify carbon imbalance. However, the
innovation of energy-saving and emission-reduction technologies significantly improves
energy efficiency, thereby reducing energy consumption. An increase in energy efficiency
under the condition of unchanged carbon sequestration capacity will effectively alleviate
carbon imbalance. The coefficient of the spatial lag term in the spatial Durbin model is
0.150 and is significant at the 1% level, indicating that carbon imbalance in neighboring
regions exacerbates local carbon imbalance, demonstrating a clear spatial spillover effect.

4.2. Effect Decomposition Based on SDM Model

The existence of spatial feedback mechanisms in the spatial Durbin model leads to
the inaccurate reflection of the marginal impacts of relevant variables on carbon imbalance.
This study draws on the approach proposed by Lesage and Pace (2009) to decompose
the direct, indirect, and total effects of various influencing factors. Table 6 presents the
results of the effect decomposition of factors influencing carbon imbalance. The direct
effects represent the impact of variables on local carbon imbalance, while the indirect effects
reveal the influence of variables in neighboring regions on local carbon imbalance. The
decomposition of direct effects indicates that population size, economic growth, and indus-
trial structure have significant positive impacts on local carbon imbalance, with industrial
structure having the greatest influence, followed by population size, and economic growth
last. Conversely, energy efficiency exerts a significantly inhibitory effect on local carbon
imbalance (Table 7).

Table 7. Decomposition results of the impact of various factors on carbon imbalance.

Variables
Direct Effect Indirect Effect Total Effect

Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error

PS 0.897 *** 0.160 0.153 *** 0.059 1.051 *** 0.192
EG 0.208 *** 0.044 0.036 ** 0.015 0.244 *** 0.052
IS 1.187 *** 0.350 0.206 ** 0.100 1.394 *** 0.425
EE −0.313 *** 0.074 −0.613 *** 0.112 −0.926 *** 0.107
ES −0.438 0.379 3.560 *** 1.026 3.123 *** 1.051

Notes: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Firstly, in terms of industrial structure, the proportion of the secondary industry’s
total output value plays a significant role in promoting carbon imbalance. This is closely
related to China’s secondary industry, especially heavy industry, which is characterized
by high energy consumption and emissions. Therefore, considering constraints on energy
and carbon emissions, a larger share of the secondary industry implies a more serious
carbon imbalance. Thus, further greening of the industrial structure undoubtedly becomes
one of the key pathways to promote carbon balance. Secondly, rapid economic growth is
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accompanied by the continued concentration of the population in core urban clusters. The
increase in population size usually exhibits characteristics of rigid energy demand and
rapid growth in energy consumption. Therefore, population growth is often associated
with a resource-intensive and emission-intensive extensive economic growth model. This,
in turn, leads to the misuse of land resources, and ecological system destruction, ultimately
exacerbating local carbon imbalance.

Thirdly, when regions drive local economies through new and additional material
capital investments, repetitive investments aimed solely at expanding reproduction may
not only lead to an increase in energy consumption and carbon emissions but also result
in overcapacity and the reinforcement of outdated extensive production methods. This
hinders the improvement of carbon imbalance. Over the past decade, local governments,
in their efforts to stimulate economic growth, have vigorously carried out infrastructure
construction and attracted foreign investment, giving rise to an investment boom. This
has largely led to inefficient overinvestment and duplication of investments. Excessive
and redundant investments result in a rapid increase in energy consumption and carbon
emissions. Therefore, economic growth exacerbates local carbon imbalance. Fourthly,
the significant improvement in energy efficiency promotes the amelioration of carbon
imbalance. The enhancement of energy efficiency signifies technological progress that
reduces the energy consumption per unit of GDP. This aligns with the sustainable de-
velopment concept of promoting energy conservation and emission reduction without
sacrificing economic growth, thereby effectively alleviating carbon imbalance. Comparing
the parameter estimation results of the spatial Durbin model and the results of direct effect
decomposition in the previous sections, slight differences in the values of various variables
can be observed. For instance, in the spatial Durbin model, the direct impact coefficient of
population size on carbon imbalance is 0.324. In contrast, the direct effect obtained through
partial differentiation methods is 0.897. The difference of 0.573 between the two values
represents the magnitude of the spatial feedback effect.

According to the results of indirect effect decomposition, all explanatory variables
exhibit significant spatial spillover effects. Population size, economic growth, industrial
structure, and electricity structure have significant positive impacts on the carbon imbalance
in spatially adjacent regions, while energy efficiency has a significant negative impact on
the carbon imbalance in spatially adjacent regions. Firstly, due to the evident phenomena
of population agglomeration, industrial agglomeration, and economic interdependence
among provincial samples, there is a certain degree of convergence in population mobility,
industrial structure, and economic adjustments among regions. Therefore, population
expansion, economic growth, and the development of secondary industry exacerbate the
carbon imbalance in spatially adjacent regions. Secondly, the indirect impact of electricity
structure is highly significant, and the increase in the proportion of thermal power locally
significantly promotes the carbon imbalance in spatially adjacent regions. Energy consump-
tion is largely influenced by the endowment of energy resources, and adjacent regions
often have similar resource endowments, leading to similar energy consumption patterns
in neighboring areas. As a result, the adjustment of the electricity structure also shows
a certain degree of regional linkage. Additionally, due to the diffusion of carbon emis-
sions and regional air flow, greenhouse gases may intensify carbon imbalance in adjacent
regions due to emissions from local thermal power plants. Thirdly, the improvement in
energy efficiency affects the carbon emissions and carbon sequestration capacity in spatially
adjacent regions through the flow of production factors such as industrial connections,
regional cooperation, and labor and capital mobility. This improvement contributes to
the carbon imbalance in adjacent regions, representing positive externalities of knowledge
and technology.

By comparing the results of the direct and indirect effects, it is observed that the
direct effect of electricity structure is not significant, but the indirect effect is significant.
In contrast, the direct and indirect effects of population size, economic growth, energy
efficiency, and industrial structure are both significant and in the same direction. Therefore,
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coordinating regional industrial and economic policies with neighboring provinces and
cities, and enhancing the exchange and cooperation of technological research and develop-
ment activities, will be conducive to indirectly promoting the governance of local carbon
imbalance. The direct and indirect effects of energy efficiency are both negative, with the
indirect effect being greater than the direct effect. This result suggests that improvements
in local energy efficiency and technological innovation may impact the carbon imbalance
in other regions through mechanisms such as technological spillover. The efforts made
by local areas in technology research and development and improving energy efficiency
will strengthen the motivation for learning, imitation, and technological improvement in
spatially adjacent regions, thereby exerting a greater positive impact on the governance
of carbon imbalance in those regions. Moreover, all variables show significant indirect
effects, emphasizing the necessity of studying spatial spillover effects in the context of
carbon neutrality. The implication is that local governments should avoid unilateral efforts
in carbon imbalance governance and, instead, focus on a regional integrated perspective.
Based on the concept of a community of shared future, strategic deployments for carbon
imbalance governance should be coordinated with neighboring provinces and cities.

4.3. Robustness Test
4.3.1. Eliminate the Influence of Outliers

The presence of extreme values can significantly impact regression results, potentially
leading to biased parameter estimates and affecting the accuracy and stability of model
estimation. To mitigate the influence of outliers, we conducted a winsorization procedure
on the dataset [35]. Extreme values were treated at the 1st and 99th percentiles, with values
below 1% set to the 1% value and values above 99% set to the 99% value. Based on the
newly processed dataset, a re-estimation was performed using the SDM model. Table 8
reports the new parameter estimates and effect decomposition results. It is observed that
the estimated coefficients and impact effects of each factor show no significant differences
from the baseline results. This indicates that the baseline regression results are robust
under the condition of the entire dataset, even after addressing the influence of outliers
through winsorization.

Table 8. Estimation results after winsorization.

PS EG IS EE ES CII

X 0.901 ***
(0.159)

0.206 ***
(0.043)

1.143 ***
(0.364)

−0.292 ***
(0.077)

−0.551
(0.406)

WY 0.150 ***
(0.050)

Direct effect 0.897 ***
(0.160)

0.208 ***
(0.044)

1.187 ***
(0.350)

−0.313 ***
(0.074)

−0.438
(0.379)

Indirect effect 0.153 ***
(0.059)

0.036 **
(0.015)

0.206 **
(0.100)

−0.613 ***
(0.112)

3.560 ***
(1.026)

Total effect 1.051 ***
(0.192)

0.244 ***
(0.052)

1.394 ***
(0.425)

−0.926 ***
(0.107)

3.123 ***
(1.051)

Variance sigma2_e Province Year Wald
SLM Wald SEM R2 N

1590.600 ***
(99.789) FE FE 32.79 *** 39.21 *** 0.385 510

Notes: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the values in parentheses are
standard errors.

4.3.2. Replace the Spatial Weight Matrix

Considering that the specification of the spatial weight matrix can influence the
parameter regression results of the model, we conducted a robustness test using different
spatial weight matrices. Given the strong spatial correlation between carbon emissions
and the ecological capacity for carbon sequestration [6,36], we employed the widely used
spatial weight matrix Wd in spatial econometric analysis for the robustness test. The
elements of Wd were set as the reciprocal of the squared geographical distances between
provincial capitals. The parameter estimates and effect decomposition results based on Wd
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are presented in Table 9. Firstly, the coefficient of the spatial lag term WY is significantly
positive, reaffirming the spatial clustering characteristics of carbon imbalance indices
among neighboring provinces. Secondly, the Wald test results reject the possibility of model
degeneracy in the SDM model, indicating the validity of the spatial Durbin model set in
the earlier sections. Thirdly, comparing the effect decomposition results of the robustness
test with the baseline model, it is observed that the impact directions of various factors
on carbon imbalance are consistent, and the differences in significance are minor. This
suggests that the baseline model results are robust.

Table 9. Regression results after replacing the spatial matrix (Wd).

PS EG IS EE ES CII

X 0.890 ***
(0.160)

0.178 ***
(0.045)

0.791 **
(0.374)

−0.376 ***
(0.081)

−0.145
(0.396)

WY 0.256 ***
(0.077)

Direct effect 0.893 ***
(0.163)

0.182 ***
(0.046)

0.840 **
(0.361)

−0.395 ***
(0.077)

−0.021
(0.379)

Indirect effect 0.300 **
(0.129)

0.059 **
(0.025)

0.278 *
(0.159)

−0.496 **
(0.193)

3.417 **
(1.552)

Total effect 1.193 ***
(0.255)

0.241 ***
(0.060)

1.118 **
(0.489)

−0.891 ***
(0.175)

3.396 **
(1.645)

Variance sigma2_e Province Year Wald
SLM Wald SEM R2 N

1647.184 ***
(103.839) FE FE 7.19 ** 9.98 *** 0.361 510

Notes: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the values in parentheses are
standard errors.

4.3.3. Change Parameter Estimation Method

If the number of spatial units is not sufficiently large, employing the Maximum Like-
lihood Estimation (MLE) method to estimate a spatial panel model with both individual
and time-fixed effects may result in inconsistent parameter estimates [37]. To address these
issues, the study in [38] proposed the Quasi-Maximum Likelihood Estimation (QMLE)
method, providing an operational tool for testing the robustness of our model. This method
eliminates individual and time effects, mitigating the adverse interference of the aforemen-
tioned problems on parameter estimation, and thereby obtaining consistent estimates for
all relevant coefficients. Table 10 reports the SDM estimates and decomposition results
using the QMLE method. Both the estimated parameters and effect decomposition results
show little difference from the baseline regression results. Moreover, all model tests are
statistically significant, reaffirming the robustness of the earlier baseline regression results.

Table 10. Regression results after changing the estimation method (QMLE).

PS EG IS EE ES CII

X 0.901 ***
(0.164)

0.206 ***
(0.044)

1.143 ***
(0.375)

−0.292 ***
(0.079)

−0.551
(0.418)

WY 0.150 ***
(0.051)

Direct effect 0.897 ***
(0.165)

0.209 ***
(0.045)

1.189 ***
(0.361)

−0.314 ***
(0.076)

−0.437
(0.395)

Indirect effect 0.154 **
(0.069)

0.036 **
(0.016)

0.209 *
(0.115)

−0.622 ***
(0.123)

3.594 ***
(1.006)

Total effect 1.051 ***
(0.202)

0.244 ***
(0.054)

1.397 ***
(0.445)

−0.935 ***
(0.117)

3.157 ***
(1.048)

Variance sigma2_e Province Year Wald
SLM Wald SEM R2 N

1689.611 ***
(109.250) FE FE 30.87 *** 36.92 *** 0.416 480

Notes: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the values in parentheses are
standard errors.
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5. Conclusions and Policy Implications

We created a Carbon Imbalance Index for Chinese provinces by combining data on
how much carbon dioxide they emit and absorb. We analyzed this data over time and
across different regions to understand how carbon imbalance varies both temporally and
spatially. Our approach was based on the IPAT framework, and used data from 2005 to
2021 for 30 provinces to achieve this. We developed a spatial Durbin model to investigate
what factors influence carbon imbalance. This model helped us examine how the size of
the population, the rate of economic growth, the type of industries prevalent, the energy
efficiency, and the sources of electricity affect how much carbon imbalance there is in a
province. Our main findings are concerning. First, the imbalance between carbon emissions
and absorption in Chinese provinces is getting worse over time. Second, this imbalance
is not random. Third, the way this imbalance contributes to regional inequality in carbon
emissions changes over time. And fourth, factors like increasing population, economic
development, growth in secondary industries like manufacturing, and the use of coal for
power are making this imbalance worse. However, we also found that improving energy
efficiency can help reduce it. Based on these findings, we recommend several strategies for
Chinese provinces to address this growing carbon imbalance.

Firstly, our research has found a regional disparity in carbon balance across China.
The northeastern and western provinces generally have a carbon surplus due to their lower
levels of economic development and a smaller gap between their carbon emissions and
the natural carbon sequestration capacity of their ecosystems. This situation results in
less pressure for these regions to reduce carbon dioxide emissions. Consequently, these
less developed areas can focus on a development model that simultaneously considers
economic growth and emission reduction. In contrast, the central and eastern regions of
China, which are more economically developed, face greater challenges with carbon deficits,
primarily due to higher carbon emissions exceeding their ecosystems’ absorption capacities.
For these regions, a different approach is needed. They should adopt strategies that focus on
stabilizing their economies while aggressively pursuing emission reduction. This involves
integrating sustainable practices into their economic growth models to address the pressing
need for environmental responsibility. Therefore, our recommendation is for regional
government authorities to devise development strategies that are tailored to their unique
environmental and economic contexts, emphasizing green and sustainable development
while considering the distinct characteristics of each region.

Secondly, we reveal a significant spatial positive correlation in carbon imbalance
across Chinese provinces, which essentially means that regions tend to experience similar
trends in carbon imbalance. When one region prospers or struggles in terms of carbon
balance, neighboring regions tend to follow a similar pattern. This discovery highlights
the importance of considering regional interactions when addressing carbon imbalance
issues. To effectively tackle this challenge at the provincial level in China, a comprehensive,
nationwide approach is essential. It is important to recognize and address the intercon-
nected nature of carbon imbalances across different regions, making use of the ‘spatial
spillover effects’ where actions in one region can impact others. This approach requires
breaking down regional barriers, fostering cooperation across provinces, and establishing a
coordinated strategy for both reducing carbon emissions and enhancing ecological quality.
Additionally, the strategy should focus on implementing and executing a development
philosophy centered on ecological civilization, which involves creating a cohesive plan for
regional carbon reduction and ecosystem protection. Moreover, it is crucial to address the
spatial inequalities in carbon imbalance and work towards minimizing the disparities in
carbon balance across different regions. This approach calls for a balanced combination of
local and national efforts to ensure a harmonious and sustainable environmental future.

Finally, after evaluating the factors contributing to carbon imbalance and their spatial
effects, we propose several policy recommendations to tackle this complex issue. (1) To
address the carbon emissions and environmental challenges stemming from population
growth, we suggest enhancing public awareness about energy conservation and emission
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reduction. Encouraging people to adopt a green, low-carbon lifestyle is essential. (2) We
recommend the promotion of green taxation and subsidy policies. These policies could
incentivize businesses to embrace more eco-friendly and sustainable production practices.
We also advocate for the advancement of a circular economy by increasing the recycling
and reuse of resources, which would help in reducing waste. (3) It is crucial to use
policy support, funding, and technological innovation to transform industries with high
carbon footprints into low-carbon and clean operations. (4) Establishing and enforcing
more stringent energy efficiency standards could stimulate businesses to invest in green
technology research and development. This approach should include promoting the
regional use and spread of green patents and encouraging both businesses and households
to use more energy-efficient technologies and equipment. (5) We recommend a gradual shift
in the electricity sector from traditional, high-carbon energy sources to cleaner alternatives
like solar, wind, and hydropower. Taken together, these recommendations aim to address
various aspects of carbon imbalance through a range of strategies, each contributing to a
comprehensive approach to mitigate this pressing environmental challenge.
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