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Abstract: Market convergence challenges socially sustainable supply chain management (SSSCM) due
to the increasing competition. Identifying market convergence trends allows companies to respond
quickly to market changes and improve supply chain resilience (SCR). Conventional approaches are
one-sided and biased and cannot predict market convergence trends comprehensively and accurately.
To address this issue, we propose a framework based on info2vec that solves the problem of matching
multidimensional data by using the technology layer as the focal layer and the supply chain as
the supporting layer. The framework enriches the supply chain dimension with the technology
dimension. A knowledge graph is constructed to facilitate cross-domain information connectivity by
integrating different data sources. The nodes in the knowledge graph were characterized using a
representation learning algorithm, which enhanced feature mining during supply chain and market
convergence. Changes in market demand were predicted based on link prediction experiments. Mar-
ket convergence has an impact on firm cooperation and, thus, on SCR. The framework recommends
potential technological and innovative cooperation opportunities for firms. In this way, it has been
demonstrated to improve SSSCM through network resilience experiments. This method predicts
market convergence efficiently based on the supply chain knowledge graph, which provides decision
support for enterprise development.

Keywords: supply chain management; market convergence; knowledge graph; representation learning

1. Introduction

As technology advances, the established supply chain of a company may be disrupted
by the evolving landscape of the industry and the increasing convergence of markets.
The example of Kodak illustrates this point, as the company’s reliance on traditional
film photography left it unable to keep up with the digital revolution, ultimately leading
to its decline [1]. To address this challenge, rapidly adapting and developing SCR and
continuously adjusting the supply chain structure to meet market demand and efficiently
distribute products and services [2,3] is necessary. The current methodologies fall short of
comprehensively anticipating and responding to market convergence trends. Enterprises
need to effectively utilize the vast amount of data available within supply chain systems
to anticipate and adapt to market convergence, enhancing their SCR and sustainable
supply chain management (SSCM) in the context of the rapid development of digital
technologies [4–8].

Research in the field of supply chain management (SCM) and market trend analysis
has made strides in understanding the dynamics of market changes. However, it falls short
in several aspects. Traditional methods are often biased and limited in scope, focusing on
singular aspects of the supply chain without accounting for the multidimensional nature
of market convergence. The literature suggests the existence of two market-driven con-
vergence processes: one begins with technology convergence, and the other proposes to
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start with market convergence. For technology convergence, Lee and Cho [9] analyzed
technology convergence from product and market perspectives. Zhu and Motohashi [10]
identified technology convergence through generating patent and technology keyword vec-
tors through a training graph convolutional network model, and for market convergence,
No and Park [11] used nanobiotechnology as an example to analyze technology conver-
gence mechanisms using citation network analysis. Pan et al. [12] found that technology
convergence and industry convergence enhanced the competitive advantage of manufactur-
ing companies. However, Klarin et al. [13] do not think that these two optional convergence
processes are the only ones that exist. Market convergence is a complex phenomenon that
is influenced not only by supply chain demand but also by the technology that drives de-
velopment. While some approaches have attempted to integrate various data sources, they
have not fully leveraged cross-domain connectivity, leading to gaps in predictive accuracy
and comprehensive market understanding. Therefore, both supply chain and technology
information need to be considered and the multilayer network is an efficient method to
represent them [14]. A knowledge graph [15,16] can be a valuable source of various data
to facilitate cross-domain information connectivity, and representation learning [17] can
effectively capture the characteristics of nodes and connections.

Based on the above approach, a framework is proposed to provide companies with
technology cooperation recommendations from market convergence, utilizing a supply
chain knowledge graph. Specifically, the computer numerical control (CNC) machine tool
and artificial intelligence (AI) fields are taken as examples. The process involves obtain-
ing supply chain and patent data and addressing the data matching problem using the
info2vec model [18]. The technology chain is prioritized as the focus layer, supported by
the supply chain, facilitating the aggregation of supply chain information to the technology
chain. Consequently, a knowledge graph is constructed, simplifying the recognition of
market convergence features. Link prediction experiments suggest potential technological
cooperation for firms based on the characteristics of the learning results. The effectiveness
of the framework in improving company SCR and SSCM is demonstrated through the com-
putation of market convergence and network resilience. This showcases the competence
and expertise of the framework, supporting firms’ decision-making and governmental
adjustments to supply chain structures. The framework offers a practical solution to the
challenges of adapting to market convergence trends.

The remainder of this paper is organized as follows: Section 2 briefly reviews the
previous literature on SSCM, market convergence, and representation learning. Section 3
presents the overall research framework and the related analysis steps. Section 4 provides
the analysis results, followed by a discussion of the findings. The final section summa-
rizes the major findings and concludes with an outlook on possible future research and
implications for the management.

2. Literature Review
2.1. Sustainable Supply Chain Management

SCM involves planning and controlling material, information, and logistics activities
within and outside a company to achieve sustainable competitive advantage [19,20]. Global
disruptions, such as the 2019 coronavirus pandemic, highlight the importance of resilient
supply chains. This period underscored the need for robust and SSCM systems capable
of managing such challenges. The evolution of SSCM has been profoundly influenced by
the emergence of digital technologies, especially for small- and medium-sized enterprises
(SMEs) that are struggling to establish strong supplier relationships [21,22]. Park [23]
advocates for the potential of blockchain technology to enhance supply chain sustainability,
anticipating its increasing adoption in SCM. Moreover, Reyna’s research [24] underscores
the predictive power of social sustainability orientations, while Ye et al. [25] find that
companies with extensive deployment of digital technology assets tend to achieve better
supply chain performance.
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It is important to note that not all companies utilize digital technologies. Companies
can choose suppliers and customers to achieve SSCM through various strategies and
activities [26,27]. Sánchez-Flores et al. [7] have seen a growing need to understand how
companies can work with key parties in their supply chains (SCs) to increase their focus
on sustainability. Alghababsheh and Gallear [28] have studied the role of social capital
in enhancing the relationship between SSCM practices and suppliers’ social performance.
Collaborative practices between buyers and suppliers, fostering mutual learning and
knowledge exchange, are pivotal in improving suppliers’ social performance. It is worth
investigating intelligent technology support for companies to select partners to improve
SSCM.

2.2. Market Convergence

Market convergence [29] is a phenomenon characterized by ongoing changes in mar-
ket structure and firm behavior. Initially observed in the development of the US machine
tool industry, this concept has expanded to encompass the integration of diverse industry
sectors, technologies, and markets [30]. Such integration results in transformative changes
in the competitive landscape, affecting both upstream and downstream industries in multi-
faceted ways, and it is essential for addressing economic crises and promoting sustainable
development [31]. Emerging technologies like the Internet of Things (IoT), big data, and AI
have been instrumental in driving this convergence [32].

Industry 4.0, marked by the fusion of cyber and physical realms through IoT and AI,
exemplifies this convergence. Cyber-physical systems (CPSs) can significantly enhance
market demand accuracy and influence market trends [33]. Innovation is pivotal for the
growth of venture companies, often necessitating external resources, particularly for those
with limited internal capacities. Market convergence disrupts traditional value chains,
leading to complex chain combinations that transform the industrial ecosystem and dissolve
existing business barriers. Aaldering et al. [34] explored market convergence dynamics
via merger and acquisition behaviors in companies, applying a link prediction algorithm
to forecast future patterns. This analysis demonstrates the evolution from technology to
market convergence, informed by competitive advantage theory and patent data analysis.

Despite these developments, gaps remain in the literature, particularly regarding the
practical application of market convergence in SCM. There is a pressing need for empirical
studies to explore the ways that companies can effectively integrate these convergence
trends into their supply chain strategies. The impact of market convergence on small-
and medium-sized enterprises (SMEs) and specific industry sectors also warrants further
investigation. Future research should aim to develop frameworks and models that facilitate
market convergence strategy adoption in various business contexts, enabling companies
to fully leverage this phenomenon. Liu et al. [35] proposed a novel framework using a
separated three-layer knowledge graph with multiple time slices to monitor the evolu-
tionary path of developed technologies. Zhou et al. [36,37] introduced frameworks for
measuring cluster proximity in innovation clusters and revealing the convergence process
of scientific knowledge, respectively, utilizing multi-source data and network approaches.
Chen et al. [38] proposed an integrated approach combining topic modeling, bibliomet-
rics, trend analysis, and patent analysis to systematically analyze the machine tool field’s
development. Kong et al. [39] employed a deep learning approach using graph neural
network models to identify technology convergence trajectories and examine dynamic
roles in technology subfields.

2.3. Representation Learning

Generally, a graph is used to represent data from the networks. It can be denoted as
G = (V, E), where V is the set of vertices and E is the set of edges in the graph. Graphs
are categorized into homogeneous and heterogeneous types based on their composition.
Homogeneous graphs consist solely of one type of nodes and edges, whereas heterogeneous
graphs contain multiple types. An attributed network G = (V, E, A) is a network G endowed
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with an attribute representation A. Each node in the network has an associated feature
vector. Existing graph analysis methods suffer from high computational cost and high
spatial complexity, making it difficult to apply them to large-scale networks. Representation
learning algorithms [40] can learn the latent information of network nodes and represent
vectors in low dimensions, which can preserve the network structure, node characteristics,
and other auxiliary information. In this context, the models are divided into four categories:
random walk models, neighbor information models, neural network models, and matrix
factorization models.

Random walk models aim to generate a node sequence in graphs via random walks,
providing context vertex information for each node. The node representation is influenced
by the likelihood of these context vertices. Notable examples are DeepWalk [41] and
Node2vec [42]. DeepWalk generates a corpus on graphs and then applies a skip-gram
model for training. Node2vec introduces two hyperparameters to balance the biases of
Breadth-First Search (BFS) and Depth-First Search (DFS) walks, integrating local neighbor
and global network structure information effectively.

Neighbor information models leverage the node’s neighbor information, including
edges and connectivity, to update its representation. This process stabilizes graph in-
formation over iterations. An exemplary model, the LINE algorithm [43], utilizes first-
and second-order node proximities for embedding vector learning and introduces edge-
sampling for large-scale networks.

Neural network models, characterized by interconnected neurons exchanging infor-
mation, are versatile across various applications due to their nonlinearity. Effective models
include the graph convolution network (GCN) [44], graph auto-encoders (GAE) [45], graph
attention network (GAT) [46], and heterogeneous graph attention network (HAN) [47].
GCN integrates neighboring features into node representation using convolutional opera-
tions. GAT employs an attention mechanism to compute node hidden states, focusing on
neighbors through self-attention. GAE uses a graph convolutional network encoder and a
simple inner product decoder for unsupervised learning in graph embedding. HAN builds
on the GAT model, maintaining its attention mechanism and addressing heterogeneous
graph representation learning.

Matrix factorization models transform network representation into matrix operations,
focusing on the adjacency matrix. TADW [48] establishes the equivalence between Deep-
Walk and matrix factorization, introducing text-associated DeepWalk. TADW incorporates
text features of vertices into network representation learning within the matrix factorization
framework.

3. Methods

This section discusses the framework presented in this paper. Section 3.1 focuses on
a research framework that provides companies with technology cooperation recommen-
dations to further improve their SCR and SSCM. Section 3.2 delves into the acquisition
and pre-processing of multi-source data, which is fundamental to the aggregation network
in the framework. Section 3.3 provides an in-depth examination of the graph representa-
tion learning model, a critical element of the framework. Lastly, Section 3.4 validates the
framework’s effectiveness through link prediction exercises based on the characterization
results.

3.1. Method Framework

With the development of market convergence research, it can be used to optimize
SSSCM. Therefore, this paper proposes a framework based on multiple approaches, includ-
ing market convergence analysis, aggregation networks, knowledge graphs, and represen-
tational learning, to provide companies with technology cooperation recommendations to
further improve their SCR and SSCM, as shown in Figure 1. The framework consists of
three main steps. The first step is to collect relevant supply chain data and patents in the
field of CNC machine tools and AI, followed by extracting nodes and links from structured
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data, and node attributes from unstructured textual data, and then using these elements to
construct a heterogeneous graph of CNC machine tools and AI, with the technology layer
as the focus layer and the supply chain layer as the support layer. The second step is to
match companies in the supply chain layer and technology layer to establish connections
between the layers. The information in the supply chain layer is focused on the technology
layer using graph conversion rules, and the representation learning method is selected from
three dimensions: network node information, network structure information, and node
attribute information. In the third step, the node embedding vectors derived in the previous
step are utilized for link prediction to capture potential market convergence features based
on similarities in these vectors and recommend partners to companies accordingly.
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Figure 1. The proposed framework to identify market convergence.

The framework explores the development of technology and market convergence in
the field of intelligence and CNC machine tools by analyzing data from multiple sources
in the field. Specifically, patent data were primarily utilized to analyze the technological
convergence of the two domain pieces.

Patents are often identified with practical applications of technological develop-
ments [49]. Therefore, they are used to assess trends in the technological development of
companies. Supply chain data, representing the supply and demand relationship between
companies, are utilized to evaluate the trend of cooperation development between them.
The methods for data collection and pre-processing steps will be detailed in Section 3.2.

Specifically, the data are aggregated into an ensemble network using transformation
rules. The general attributed multiplex heterogeneous network embedding (GATNE)
representation learning method is then employed to characterize the nodes and aid in
subsequent computations. This step will be elaborated in Section 3.3.
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Finally, the characterization results are utilized for link prediction and company
cooperation recommendations to validate the effectiveness of the framework. This will be
discussed in detail in Section 3.4.

3.2. Data Collection and Pre-Processing

Aaldering et al. [34] suggest that technology convergence drives structural and func-
tional market changes while they use M and A data to analyze market convergence. Giudice
et al. [50] explore the impact of technology convergence on the international growth of
SMEs. Network analysis based on patent data is also widely used to identify technology
convergence [10,51,52]. However, market convergence is a broad concept and using only
one dimension of data is not sufficient.

This study aims to explore the relationship between supply chain and technology
in the realms of AI and CNC machine tools. For this purpose, patent data from 2000
to 2022 were collected from the Derwent World Patent Index, encompassing key details
such as patent number, filing date, international patent classification (IPC), applicant, and
others. Additionally, data on organizational affiliations were extracted and analyzed for
similarities to compile a list of relevant companies, with each company’s domain being
determined by its patent portfolio. We collected the supply chain data of listed Chinese
companies from 2001 to 2022. Supply chain data were sourced from a specialized company
search website. The acquisition process, as illustrated in Figure 2, involves obtaining
corresponding company supply chain data based on the list of companies.
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To obtain the supply chain data of listed Chinese companies, it is necessary to unify
all company names in English. Because the company names extracted from the patents are
in English, it can be considered that the English company names in the patents can be used
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first to match with the English list of listed companies, and the remaining ones that cannot
be matched can be directly translated to obtain the Chinese names of the information of the
publishing units in the papers, but there are the following two problems:

(1) Due to different databases, most of the English names of the same company in the
English list of patents and companies are not the same, and there are difficulties
in calculating the similarity between the English names, as well as in selecting the
threshold value;

(2) There are many companies in the patent publication unit, and the export field often
contains abbreviations. There may be non-directly translated names, so the accuracy
of direct translation is difficult to ensure.

Based on the above two problems, this paper designs the data match process based
on edit distance, as shown in Figure 3, to minimize the time cost under the premise of
ensuring accuracy. The edit distance, i.e., Levenshtein Distance [53], between strings S1
and S2, is calculated as in Equation (1), where i denotes the subscript of string S1 and j
denotes the subscript of string S2. The idea of the algorithm is that a minimum number
of conversions are required to convert string S1 to string S2, with deletion, insertion, and
substitution noted as one. The algorithm can calculate the similarity of strings of unequal
length, and the effect is better than the cosine similarity and other traditional similarity
calculation methods.

levs1,s2(i, j) =


max(i, j) · · · min(i, j) = 0

min


levs1,s2(i − 1, j) + 1
levs1,s2(i, j − 1) + 1

levs1,s2(i − 1, j − 1) + 1(s1i ̸=s2j)

· · · otherwise
(1)

The network was constructed by extracting nodes and links from the record table,
as depicted in Figure 2. Specifically, each record in the table represents a node and the
relationships in the table form edges. Nodes and edges can be easily extracted from
structured tables using Python 3.6 programs.

According to the process shown in Figure 3, for Chinese companies in the supply
chain:

(1) First, the names are matched with the comparison table of Chinese and English names
of listed companies, and a total of 5551 companies’ names can be matched in the table;

(2) For the 287,173 Chinese company names that are not in the cross-reference table, they
are matched again after using the Xunfei translation API;

(3) Then, obtain the curve of the threshold, match out companies, and choose the target
threshold. Calculate the editing distance with the list of companies obtained from the
patent, which is larger than the threshold value to record the English names in the
control table;

(4) Manually check the matching results and correct 30 incorrect translation results.

After converting all published units in the supply chain into English, de-emphasize
them, and finally obtain 341 corporate organizations entities in China’s CNC machine tool
and manufacturing-related AI industry, and construct the English and Chinese control table
of the corporate organizations for the extraction of the subsequent cooperative relationship.
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3.3. Graph Conversion and Representation Learning

Considering the interdependence between links in different layers, Yang et al. [18]
argue that two nodes in the focal layer are more likely to interact closely if they have
common neighbors or are connected to an edge in the support layer. Specifically, for two
nodes that were not originally connected in the focus layer, a new link should be created
between them in the aggregation layer. In the following case, a new connection should be
established between them in the aggregation network, as shown in Figure 4.
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After aggregating the network, there is rich information in the network and we need
to consider models related to node information, network structure, and node attributes
simultaneously. Therefore, the GATNE model [54] is chosen for representation learning.
This model is selected for representation learning based on the aggregated network fea-
tures. The GATNE model, known for its effectiveness in learning node representations in a
multi-relational graph, utilizes attention mechanisms to weigh the importance of different
neighbors of a node. This feature is particularly beneficial in context, where nodes can
have diverse types of relationships and roles within the network. By leveraging these
attention mechanisms, the GATNE model dynamically adjusts the influence of each neigh-
boring node, leading to a more accurate and representative embedding of each node in the
200-dimensional vector space.

These embeddings are crucial for the link prediction task as they encapsulate the
essential features and relational dynamics of the nodes within the network. Converting
nodes into high-dimensional vectors enhances the model’s ability to discern potential
connections and predict new links more precisely. The uncovering of hidden patterns and
potential collaborations within the network, which might not be immediately apparent in
the raw graph data, is fundamentally enabled by this process, aligning with the central aim
of our study.

3.4. Link Prediction

Link prediction is a critical task in both academic and industrial settings. Predicting
the likelihood of creating a link between two nodes in a network that have not yet created
a connecting edge, by using known information about the network nodes as well as the
network structure, is defined as a link prediction problem [55,56]. Link prediction tasks
are used in a variety of domains, such as the identification of missing links in criminal
networks [57], as well as the prediction of investor behavior [58]. Many economic and
social phenomena can be used as network inputs, and similarly, link prediction can be used
to predict possible market convergence. As supply chain and technology networks are
dynamic and evolve rapidly, predicting future changes is increasingly essential.

Link prediction is a classification problem that neural networks can solve through
training. By mining node features after representational learning, the network can accu-
rately predict the appearance or disappearance of a specific link. To predict the market
convergence of CNC and AI, a deep learning model is trained to output the embedded
vector links of two nodes by inputting vector representations of the two nodes. The model
assigns a value of 1 to real and existing links, and a value of 0 to non-existent links.

Network resilience [59,60] refers to the ability of a network to maintain adequate
service levels by resisting or quickly recovering from significant network disturbances that
impact the user experience. Enhancing network resilience improves SCR and enhances
SSCM [61,62]. The calculation of the network robustness before and after the addition of
the predicted links proves it.

4. Results and Discussions

In this study, a comprehensive dataset containing supply chain and patent information
specific to the field of CNC machine tools and intelligent technologies was used. This data
formed the basis for building a detailed knowledge graph of the supply chain, as illus-
trated in Figure 5. The knowledge graph helps companies make technology collaboration
recommendations driven by market convergence.

The main function of our framework is to facilitate a comprehensive and detailed
characterization of the nodes in a knowledge graph. This characterization process involves
analyzing each node based on its attributes, relationships, and broader context within the
network. This approach allows for a meaningful in-depth analysis of each company’s
market position, technological capabilities, and innovation potential. This is particularly
important for analyzing a company’s potential technological direction of development. In
addition, the framework helps to provide personalized decision support to companies in the
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CNC machine tool industry. This personalized approach ensures that the recommendations
are relevant and actionable, thereby improving the company’s SCR and SSCM, helping
the organization make informed decisions, and reconciling economic goals with social
outcomes, as technological advances are closely linked to supply chain dynamics.

Figure 5. Supply chain knowledge graph.

4.1. Descriptive Analysis

The construction of a convergence network for AI and CNC machine tools involved
analyzing diverse sources, including patents and supply chain data. The methodology is
initiated with the extraction of pertinent technology terms from the existing literature on AI
and CNC machines, leading to the development of a comprehensive set of search queries
(see Appendix A). These queries facilitated the retrieval of 141,052 patents in CNC machine
tools and 108,117 in AI from the Derwent Innovation Index. Each patent record comprised
details such as title, publication number, organization, abstract, citations, and publication
year. The latest data in these datasets were recorded up to December 2023.

The development of CNC machine tools technology and AI technology is shown in
Figure 6. The timeline shows a relatively steady increase in patents for CNC machine tools
technology, with a notable increase that has become more pronounced in recent years. In
contrast, AI technology shows a more exponential growth pattern, with a sharp increase
in patent applications, particularly in the last few years shown. This surge in AI-related
innovation coincides with significant advances in computing power and data analysis
capabilities. The intersection of CNC machine tools and AI technology is indicative of a
growing interest in integrating intelligent automation into manufacturing processes. The
accelerated growth in AI patent applications suggests an increasingly important role for AI
in enhancing the precision, efficiency, and capabilities of CNC machine tools [63,64].

The steep upward trajectory of AI also reflects broader trends in digital transformation
and Industry 4.0, where AI is a key driver of change across various industries [65,66].
Given the critical role of AI in enabling smart manufacturing, the data from Figure 6
underscores the strategic importance of investing in AI research and development to
maintain a competitive advantage in the field of advanced manufacturing.
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Figure 6. Trends in CNC machine tools and artificial intelligence.

To extract the corporate entities and technology cooperation relationships in the field
of CNC machine tools and AI in China, this paper extracts the names of all the corporate
organizations from the “Patentee” field of the patents, with a total of 69,989 entries after
de-emphasis, and a total of 292,724 companies in the entire supply chain, as shown in
Table 1.

Table 1. Description of networks.

Dataset Network Node Link Node Type

Supply Chain Supply Chain 292,724 564,484 3
Patent Technology 69,989 4644 3

The study focused on the evolutionary trend between the number of companies and
the Levenshtein distance threshold. The data matching procedure mentioned in Section 3.2
facilitated this study. Figure 7 illustrates the selection of thresholds, which was critical to
ensuring the integrity and reliability of the name matching process, as it directly affected
the quality of the data aggregation and subsequent analysis. A key conclusion from the
analysis is that there is a significant saturation of matching accuracy when the Levenstein
distance threshold reaches 0.8 shown as dashed red line in Figure 7, and above this value,
while the match rate is higher, the number of companies matched is lower. Therefore,
0.8 has been chosen as the threshold that provides the most reliable matching performance
while minimizing false positives.

A two-layer network model was constructed to extract data related to the list of
companies accurately matched in the previous analysis across two key networks (the
supply chain network and the patent collaboration network). As shown in Figure 8, the
model visualizes the interconnections and collaborative relationships between companies in
each industry, which informs the recommendation of technology collaboration companies.

The constructed network model consists of two distinct layers: the top layer represents
the technology collaboration and the bottom layer symbolizes the supply chain interaction.
In this model, nodes are color coded to clearly distinguish between different sectors.
Specifically, blue nodes represent companies in the CNC machine tool industry, illustrating
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their location and linkages in both the technological and supply chain dimensions. Red
nodes represent companies operating in the smart sector, highlighting their role and
influence in shaping technological collaboration and supply chain dynamics. Yellow nodes
represent companies from other different sectors, highlighting the cross-sectoral interactions
that exist in these networks.
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This color-coded, two-layer network visualization provides a comprehensive and
intuitive picture of the complex interactions between technology collaborations and supply
chain relationships. It can be used to provide insights into how companies in different
industries, particularly the CNC machine tool and intelligence sectors, interact within
and across these networks. Mapping these relationships provides valuable insights into
structural patterns and collaboration trends in these industries. Such findings are criti-
cal for identifying actors in the networks, potential opportunities for collaboration, and
strategic tries.



Sustainability 2024, 16, 1696 13 of 20

Figure 9 presents a refined network visualization, focusing exclusively on companies
that have established cooperative relationships.
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A striking observation from Figure 9 is the apparent concentration and intensity of
technology cooperation among companies compared to market cooperation. The density
and clustering of nodes in the technology layer visually represents this disparity. The
nodes in this layer are more closely knit and numerous, indicating a higher degree of
collaboration and interconnectedness in technology. This can be attributed to the increasing
importance of technological innovation and development in driving competitive advantage
and strategic partnerships in modern industries.

In contrast, while still significant, the supply chain layer shows a comparatively sparse
and less clustered arrangement of nodes. This suggests that while market cooperation
is prevalent, it tends to be more dispersed and possibly involves a wider variety of less
intensive partnerships.

The visual comparison of these two layers in Figure 9 provides critical insights into the
dynamics of corporate cooperation. It highlights the current trend where technology-driven
partnerships are becoming more central to business strategies than traditional market
collaborations. This tendency underscores the evolving nature of corporate relationships in
the digital age, where technological prowess and innovation are key drivers of business
success and industry leadership.

4.2. Graph Conversion

Data from the supply chain layer are integrated into the technology layer through
graph transformation rules. As shown in Figure 10, this process is a critical step in under-
standing the potential intersections and synergies between technological partnerships and
supply chain collaborations.

The underlying premise of the approach is based on the hypothesis that supply part-
nerships between firms can indicate potential technological cooperation opportunities.
This assumption is rooted in the observation that companies engaged in technological
collaborations often share compatible goals, resources, and capabilities, which could be
leveraged in supply chain contexts. Graph transformation rules were applied to opera-
tionalize this concept, enabling the inference of potential supply chain relationships from
existing technological partnerships.
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Figure 10 demonstrates the integration’s manifestation within the network structure.
When two firms are connected in the supply chain network, this relationship is transposed
into the technology network, suggesting a potential avenue for technology cooperation.
This methodology enables us to create a more enriched and interconnected network model,
where the lines between technology and supply chain interactions are blurred, reflecting
the multidimensional nature of modern business relationships.

This approach has significant implications for strategic planning and decision-making
in businesses. Through identifying potential technological cooperation opportunities from
supply partnerships, companies can explore new avenues for collaboration, enhance SCR,
optimize their SCM, and potentially gain a competitive advantage. It also provides insights
into the evolving nature of business ecosystems, where technology and supply chains are
increasingly interlinked, driving innovation and efficiency.

4.3. Graph Representation Learning

In preparation for the link prediction task within the study, the GATNE model was set
as the default parameter setting. This approach was instrumental in converting the nodes
of the graph into 200-dimensional vectors. The selection of 200 dimensions for the vector
representations was based on a balance between computational efficiency and the capacity
to capture the complex relationships and attributes inherent in the network’s nodes.

The representation learning models are divided into four groups. The inputs for each
model were created from the network in a suitable form. Subsequently, the embedding
results were collected, and the classification performance of each model was evaluated
using a logistic regression classifier. For the DeepWalk and Node2vec models, the walk
length was set to 40, the number of walks to 10, and the window size to 5. The number
of training epochs for the neural network models was 200, with a learning rate of 0.001.
The output dimension for all models was established at 128. The DeepWalk, LINE, and
Node2vec models were built using the TensorFlow 1.14 framework, the GATNE model was
constructed using PyTorch, and the metrics were developed using the sklearn package in
PyCharm. The performance of each model on each dataset is described in Table 2.

A fine-grained breakdown of the performance metrics of the various models within
the aggregated network framework is provided in Table 2, with particular emphasis placed
on comparative analysis. The empirical results derived from the research clearly show that
the GATNE model exhibits a superior performance in terms of both accuracy and efficiency.
This finding is crucial as it validates the effectiveness of the proposed framework, especially
in the characterization of nodes within the network. The GATNE model, with its advanced
architecture, excels in capturing the complex relationships and attributes of the nodes, thus
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providing a more detailed and accurate characterization of the network. This ability is
attributed to its ability to incorporate node- and edge-specific information for enhanced
learning dynamically.

Table 2. The performance of models on the aggregation network.

Network Model Accuracy Precision F1 AUC

Aggregation
network

DeepWalk 0.52724 0.43748 0.29269 0.54342
Node2vec 0.51697 0.42134 0.28077 0.54798

LINE 0.51215 0.42830 0.26468 0.50672
GATNE 0.98972 0.56800 0.35368 0.57948

4.4. Link Prediction

To improve the company’s SCR and SSCM, we use link prediction to identify defining
characteristics, anticipate market convergence, and provide actionable recommendations.
Its purpose is to evaluate the effectiveness of a proposed framework that involves training
on a residual graph by concealing a set of edges/non-edges. This is achieved by passing
through the original network. The dataset is divided into training, testing, and validation
sets based on 75%, 15%, and 15%, respectively. The training set randomly selects 5% of
positive edges, while the testing set selects 10%. An equal number of opposing edges
are chosen randomly for each edge type. The validation set is utilized to fine-tune the
hyperparameters and for early stopping. The test set is used for performance evaluation
and only runs once with the tuned hyperparameters. The framework’s link prediction
accuracy is 98%.

Based on the predictive analysis of the link prediction model, we have identified
several prospective technological partnerships between firms, as shown in Table 3. These
link predictions highlight the possibility of enhanced technological synergies and reflect
the dynamic nature of industry partnerships in a rapidly evolving corporate landscape.

Table 3. Technological cooperation of potential companies.

Number Cooperative Companies A Cooperative Companies B

1 Suzhou Newway Valve Co., Ltd. China Oilfield Services Limited
2 Guangdong Tongfa Laser Technology Co., Ltd. Zhuhai Gree Electric Appliance Co., Ltd.
3 Sichuan Baijixin Petroleum Technology Co., Ltd. China Oilfield Services Limited
4 Nanjing Yuzhong Automation Equipment Co., Ltd. Anhui Jianghuai Automobile Group Co., Ltd.
5 Beijing Jingwei Hengrun Technology Co., Ltd. Anhui Jianghuai Automobile Group Co., Ltd.

The results of link prediction were evaluated by calculating the network resilience,
as demonstrated in Figure 11. This is a conventional measure of network toughness. In
Figure 11, the x-axis represents the number of removed nodes, and the y-axis represents the
maximum number of connections. The results demonstrate that the inclusion of predicted
links enhances network resilience, which is a crucial discovery for network analysis.

Building on the insights gained from the link prediction results, it can offer informed
recommendations to organizations aiming to enhance their SCR and SSCM. These recom-
mendations are predicted on the understanding that the strategic insertion of predicted
links can substantially reinforce the supply chain network, thereby mitigating risks and
vulnerabilities. This approach is particularly relevant in an era where supply chains are
increasingly complex and interdependent. By leveraging the findings from our framework,
organizations can identify potential weak links in their supply chains and proactively
strengthen these areas, ultimately leading to more resilient and sustainable supply chain
practices. Moreover, our analysis underscores the importance of adopting advanced analyt-
ical tools in SCM, enabling organizations to navigate the challenges of today’s dynamic
business environment more effectively.
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5. Conclusions

This article introduces a framework based on multi-source data and graph represen-
tation learning methods, utilizing AI technologies to improve SSSCM within the context
of market convergence, thereby enhancing SCR. To demonstrate the practical application
of this framework, we constructed a detailed knowledge graph focusing on China’s CNC
machine tool industry. The graph is tailored for convergent innovation decision support
and provides a comprehensive picture of industry characteristics and the potential for
technological advancement. We conducted link prediction experiments to validate the
model’s accuracy in predicting collaborative entities in the supply chain. The results of
these experiments confirm the framework’s effectiveness in practical applications and
provide valuable insights. The proposed framework is variable and applicable to a wide
range of domains and is a valuable tool for industries seeking technological cooperation to
achieve SSCM.

Despite its contribution, this study has several limitations that invite further research
efforts. On the one hand, it relies only on data from listed companies in China, which
may only partially represent global supply chain management practices. However, future
researchers can expand on this framework if they collect enough data. On the other
hand, the reliance on company-specific dictionaries may limit the breadth of the research
findings. In addition, the nature of database access and search queries may also affect
the research results. Future research could build on this work by incorporating more
diverse data sources and exploring different research streams. These advances will improve
the reliability of the findings and provide a more comprehensive understanding of the
application of AI in industry-specific supply chain management and SSCM.
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Appendix A

Search query of CNC Machine Tools patents in DI database:
ALLD = ((machin* tool*) OR (machin* cent*) OR (milling cent*) OR (grinding cent*)

OR (NC machin*) OR (numerical control machin*) OR (numerical control) OR (computer
numerical control) OR (NC system) OR (numerical control system) OR (NC technology)
OR (numerical control technology)) AND ALLD = ((open loop) OR (closed loop) OR ((semi-
closed loop) OR (half closed loop)) OR (fieldbus OR profibus) OR (motion control card) OR
(((pulse string) OR (pulse train)) AND control) OR software OR ((man-machine interaction)
OR (human–computer interaction) OR HMI OR HCI) OR (Intelligent servo) OR (Data
validation) OR (linear grating) OR (on-machine test) OR (on machine verification) OR
OMV OR (PLC AND ((power supply) OR (CPU OR (Central Process Unit)) OR (storage OR
memorized OR storer) OR (input unit) OR (output unit)) OR GPU OR NPU) OR (Spindle
motor) OR (Feed shaft motor) OR (feed motor) OR (sensor* OR transduc* OR transmitter*
OR element* OR transformer* OR synchronizer* OR control* OR motion*) OR (optical-
electricity encoder) OR (optical encoder) OR SQP OR (approach switch) OR (proximity
switch) OR ecvt OR dapt OR presductors OR (liquid level sensor) OR (level sensing device)
OR inducton OR (velocity pickup) OR (MCA-BTA) OR (fieldbus AND protocols) OR ((3-
axis) OR (three-axis)) OR ((5-axis) OR (five-axis)) OR (edge AND (intelligent module)) OR
((NI Motion) OR (process monitoring) OR (process management))) AND AD < = (20221230)
AND AD > = (20010101) ACB = ((CN) OR (TW) OR (HK) OR (MO))

Search query of artificial intelligence patents in DI database:
ALLD = ((artificial ADJ intelligence) OR (machine ADJ learning) OR (deep ADJ

learning) OR (rein-forcement ADJ learning) OR (Transfer ADJ learning)) AND AD < =
(20221230) AND AD > = (20010101) AND ACB = ((CN) OR (TW) OR (HK) OR (MO))
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