

Correction

Correction: Bandarra et al. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. *Sustainability* 2022, 14, 10352

Beatriz S. Bandarra 1,*0, Sónia Silva 2, Joana L. Pereira 30, Rui C. Martins 10 and Margarida J. Quina 10

- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; martins@eq.uc.pt (R.C.M.); guida@eq.uc.pt (M.J.Q.)
- Teramb-Empresa Municipal de Gestão e Valorização Ambiental da Ilha da Terceira, EM, Central de Tratamento e Valorização de Resíduos da Ilha Terceira, Canada do Cidral n°55, São Bento, 9700-135 Angra do Heroísmo, Portugal; sonia.silva@teramb.pt
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; jpereira@ua.pt
- Correspondence: bsbandarra@eq.uc.pt

The authors would like to make the following corrections to the published paper [1]. The changes are as follows:

(1) Author replacements: the authors would like to make changes to the cut-off limit for the hazard statement code H410 in the Table 6, so we need to replace the original Table 6.

Table 6. Compounds that could be found in the samples considering "worst-case scenario", their concentrations, the hazard class/category code(s) and hazard statement code(s) according to the list of harmonized classification and labeling of hazardous substances (Annex VI of CLP) as well as the cut-off limits established in Regulation (EU) No 1357/2014.

Chemicals	A1 (%)	A2 (%)	A3 (%)	A4 (%)	A5 (%)	A6 (%)	НР	Hazard Class and Category Code(s)	Hazard Statement Code(s)	Cut-Off Limits
Zn (dust)	0.25	0.25	0.22	0.23	0.29	0.14	HP 3 HP 3	Water-react. 1 Pyr. Sol. 1	H260 H250	-
							HP 14	Aquatic Acute 1	H400	0.1%
Zinc oxide (ZnO)	0.31	0.31	0.28	0.28	0.37	0.18	HP 14 HP 14	Aquatic Chronic 1 Aquatic Acute 1	H410 H400	1% 0.1%
Zinc oxide (ZhO)	0.31	0.31	0.28	0.28	0.37	0.18	HP 14	Aquatic Acute 1 Aquatic Chronic 1	H410	1%
	0.61	0.62	0.55	0.56	0.72	0.35	HP 6	Acute Tox. 4	H302	1%
Zinc sulfate	0.01	0.02	0.00	0.00	0.7 =	0.00	HP 4	Eve Dam. 1	H318	1%
$(ZnSO_4)$							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	1%
Zinc chloride	0.51	0.52	0.46	0.48	0.61	0.29	HP 6	Acute Tox. 4	H302	1%
$(ZnCl_2)$							HP 8	Skin Corr. 1B	H314	1%
							HP 14 HP 14	Aquatic Acute 1 Aquatic Chronic 1	H400 H410	0.1% 1%
							111 14	Aquatic Chronic 1	11410	1 /0
Cu	0.22	0.33	0.05	0.13	0.07	0.002	-	-	-	-
Copper(II) oxide	0.27	0.41	0.07	0.16	0.09	0.002	HP 14	Aquatic Acute 1	H400	0.1%
(CuO)	0.40	0.74	0.10	0.20	0.16	0.004	HP 14	Aquatic Chronic 1	H410	1%
Copper(I) oxide	0.48	0.74	0.12	0.29	0.16	0.004	HP 6 HP 6	Acute Tox. 4 Acute Tox. 4	H332 H302	1% 1%
(Cu ₂ O)							HP 4	Eve Dam. 1	H318	1%
							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	1%
Pb	0.09	0.04	0.03	0.03	0.06	0.36		-	-	-
Lead compounds	>0.09	>0.04	>0.03	>0.03	>0.06	>0.36	HP 10	Repr. 1A	H360	-
with the							HP 6	Acute Tox. 4	H332	1%
exception of							HP 6	Acute Tox. 4	H302	1%
those specified							HP 5	STOT RE 2	H373	
elsewhere in							HP 14	Aquatic Acute 1	H400	0.1%
Annex IV of CLP							HP 14	Aquatic Chronic 1	H410	1%

With:

Citation: Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. Correction: Bandarra et al. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability 2022, 14, 10352. Sustainability 2024, 16, 1261. https://doi.org/10.3390/ su16031261

Received: 12 December 2023 Accepted: 13 December 2023 Published: 2 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Sustainability **2024**, 16, 1261 2 of 3

Table 6. Compounds that could be found in the samples in a "worst-case scenario", their concentrations, the hazard class/category code(s) and the hazard statement code(s), according to the list of harmonized classification and the labeling of hazardous substances (Annex VI of CLP), as well as the cut-off limits established in Regulation (EU) No 1357/2014.

Chemicals	A1 (%)	A2 (%)	A3 (%)	A4 (%)	A5 (%)	A6 (%)	НР	Hazard Class and Category Code(s)	Hazard Statement Code(s)	Cut-Off Limits
Zn (dust)	0.25	0.25	0.22	0.23	0.29	0.14	HP 3	Water-react. 1	H260	-
							HP 3	Pyr. Sol. 1	H250	-
							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Zinc oxide (ZnO)	0.31	0.31	0.28	0.28	0.37	0.18	HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Zinc sulfate	0.61	0.62	0.55	0.56	0.72	0.35	HP 6	Acute Tox. 4	H302	1%
Zinc suifate (ZnSO ₄)							HP 4	Eye Dam. 1	H318	1%
(ZH3O4)							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Zinc chloride	0.51	0.52	0.46	0.48	0.61	0.29	HP 6	Acute Tox. 4	H302	1%
$(ZnCl_2)$							HP 8	Skin Corr. 1B	H314	1%
							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Cu	0.22	0.33	0.05	0.13	0.07	0.002	-	-	-	-
Copper(II) oxide (CuO)	0.27	0.41	0.07	0.16	0.09	0.002	HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Copper(I) oxide (Cu ₂ O)	0.48	0.74	0.12	0.29	0.16	0.004	HP 6	Acute Tox. 4	H332	1%
							HP 6	Acute Tox. 4	H302	1%
							HP 4	Eye Dam. 1	H318	1%
							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%
Pb	0.09	0.04	0.03	0.03	0.06	0.36		-	-	-
Load commous J-	>0.09	>0.04	>0.03	>0.03	>0.06	>0.36	HP 10	Repr. 1A	H360	-
Lead compounds							HP 6	Acute Tox. 4	H332	1%
with the exception							HP 6	Acute Tox. 4	H302	1%
of those specified							HP 5	STOT RE 2	H373	_
elsewhere in Annex VI of CLP							HP 14	Aquatic Acute 1	H400	0.1%
							HP 14	Aquatic Chronic 1	H410	0.1%

(2) We will also add one sentence into the Section 3.2.11. The replacement will appear as follows:

3.2.11. HP 14 "Ecotoxic"

Council Regulation (EU) 2017/997 was followed when evaluating the ecotoxicity of IBA (samples A4–A6) from a chemical point of view. According to Annex VI of CLP, Zn dust is classified into *Aquatic Acute Toxicity Category 1* and *Aquatic Chronic Toxicity Category 1*. Considering the "worst-case scenario", some of the compounds that could be found are ZnO, ZnSO₄ or zinc chloride, which are all classified as *Aquatic Acute Toxicity 1* and *Aquatic Chronic Toxicity 1*. For copper, one could find CuO and copper (I) oxide, both also classified with *Aquatic Acute Toxicity 1* and *Aquatic Chronic Toxicity 1*. Lead compounds not specified elsewhere in Annex VI of CLP are also classified as *Aquatic Acute Toxicity Category 1* and *Aquatic Chronic Toxicity Category 1*. The limit value of 25% for the sum of all the substances present in IBA classified as toxic to the aquatic environment was exceeded, according to the calculation formulas from Council Regulation (EU) 2017/997. Nevertheless, Commission Decision 2014/955/UE indicates that when a hazardous property has been assessed via a test and using the concentrations of hazardous substances, the results of the test shall prevail. The possible combined effect of the substances was verified through an ecotoxicity test with *Daphnia magna*. An EC₅₀ value > 160,000 mg/L was obtained via the

Sustainability **2024**, 16, 1261 3 of 3

test. Regulation (EC) 1272/2008 establishes that $EC_{50} < 100$ mg/L demonstrates ecotoxicity. Thus, the results of the test indicate low acute toxicity for the environment, and the waste was not classified with HP 14 for any of the samples.

Reference

1. Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. *Sustainability* **2022**, *14*, 10352. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.