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Abstract: Artificial intelligence not only changes the production methods of traditional industries but
also provides an important opportunity to decouple industrial development from environmental
degradation and promote green economic growth. In order to further explore the green value of AI,
this paper constructs an indicator of industrial robot penetration at the regional level, based on the
idea of Bartik’s instrumental variable, and measures green development efficiency using the improved
Super-SBM model. Based on a comprehensive explanation of the influence mechanism, a spatial
measurement model and mediating effect model are constructed to test the spatial spillover effect
and transmission mechanism between AI and green development. This study shows that (1) there is a
significant inverted U shape in the impact of AI on green development; (2) the heterogeneity analysis
finds that the structural dividend of AI is more obvious in capital-intensive and technology-intensive
areas, which can more fully release its empowering effect on green development; (3) AI can not only
directly affect green development but also indirectly affect green development by promoting green
technology innovation and optimizing industrial structures, etc.; (4) AI has a significant inverted
U-shaped spatial spillover effect on green development, and the development of local AI has a
radiation-driven effect on the green development performance of its spatially related areas. The
research methodology of this paper can be used for future research, and the results could provide
support for the formulation of regional AI applications and green development policies.

Keywords: artificial intelligence; green development; nonlinearity; spatial spillover; green technological
innovation; sustainable development

1. Introduction

While global economic growth has been rapidly propelled by industrialization and
urbanization, it has concurrently resulted in substantial energy inefficiency and environ-
mental degradation issues, thereby fostering an unsustainable trajectory [1]. China, despite
attaining remarkable economic success since embracing reform and opening up, grapples
with challenges that encompass environmental pollution and inefficient energy usage, given
the prevailing notion that industrialization is linked to environmental harm [2]. The Global
Environmental Performance Index Report 2022 reveals that China’s overall environmental
performance positions it 160th out of 180 participating countries and regions. This not only
underscores a considerable disparity between China’s environmental standing and that
of developed nations, but also underscores the pressing need for effective environmental
governance. Over an extended period, the primitive model of swift economic expansion
and rapid industrialization has led to inefficiencies in energy use, severe environmental
pollution, and the degradation of ecosystems. This has, to some extent, hindered the high-
quality development of China’s economy. Consequently, there is an urgent need for China
to foster new drivers for economic development and transition towards an internal model
of restructuring the economy and optimizing environmental efficiency. In response to these
challenges, promoting a fresh perspective on green development and highlighting the
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mutually beneficial coordination between economic growth and environmental protection
have emerged as crucial approaches [3]. As an embodiment of sustainable development,
green economic growth is dedicated to achieving harmony between economic advancement
and environmental preservation. The realization of green economic growth has become the
prevailing focus of economic development across various nations [4]. This shift is pivotal
for addressing the pressing issues associated with China’s previous growth model and
advancing toward a more sustainable and balanced economic trajectory.

Amidst the advent of the Industry 4.0 revolution, the influence of artificial intelligence
(AI), as an emerging technology, on the economy and society has instigated extensive
debates [5]. Functioning as a broad technology, numerous scholars have investigated the
repercussions of AI on technological advancement and productivity [6]. Within these
studies, one perspective posits that AI holds the potential to stimulate technological inno-
vation and augment productivity [7]. Conversely, an alternative viewpoint suggests that
AI might give rise to a productivity paradox, negatively impacting productivity growth [8].
Evidently, discourse on the influence of AI on technological innovation and productivity is
widespread, yet a consistent conclusion remains elusive. Despite the continuous evolution
of new technologies like AI, the global prevalence of severe environmental issues poses a
significant challenge to global sustainability. This apparent paradox underscores the need
for a balanced perspective. Conversely, inquiries into AI and sustainable development,
particularly regarding its capacity to facilitate green development and its spatial variations,
remain largely unanswered. This paper endeavors to address and bridge this existing
research gap.

This paper makes several noteworthy contributions to the field. Firstly, it employs
industry-level robotics data published by the International Federation of Robotics (IFR)
spanning 2010–2019. A regional-level industrial robot penetration index is then constructed
using the concept of “Bartik instrumental variables”. Subsequently, the improved Super-
SBM model is applied to gauge the efficiency of green development. In contrast to preceding
linear investigations [9], our findings reveal a nonlinear impact of AI on green development,
thereby augmenting contemporary discourse on AI development. Secondly, this study
delves into the heterogeneous effects of AI, considering differences in capital and technol-
ogy intensity. This exploration aims to uncover the potential green value of AI. Thirdly,
this paper contributes to existing research by examining the influence of green technology
innovation and industrial structure upgrading on the relationship between AI and GEG.
Unlike prior studies that individually focused on the impacts of digital development on
energy [10], the environment [11], and economic growth [12], this research incorporates
the crucial role of green technology innovation and industrial structure upgrading into
understanding the impact of AI development on GEG. Fourthly, this study investigates
the spatial spillover effects of the proposed impact of AI on green development. This
examination aids in comprehending the spatial effects of AI externalities on intra- and inter-
regional green development. Consequently, it offers a valuable reference for achieving the
coordinated growth of regional green economies and further advancing the establishment
of a “digital power”.

This paper is structured as follows: In Section 2, a brief overview of the literature
on AI and GEG is provided. Section 3 offers a detailed presentation of our mechanistic
analysis. The methodology and data are outlined in Section 4. Section 5 presents our
fundamental empirical results. In Section 6, a mechanism analysis is conducted. The
exploration of spatial spillovers is further examined in Section 7. Finally, conclusions and
policy implications are established in Section 8 (see Figure 1).
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2. Literature Review
2.1. Green Development

Academics have extensively examined and interpreted the meaning, measurement,
and influencing factors of GEG from various perspectives ever since its conceptualiza-
tion [13].

The inception of green development can be traced back to the 1960s, with the emer-
gence of concepts like the circular economy, followed by subsequent notions such as the
green economy, ecological economy, low-carbon economy, and sustainable development.
In response to the global financial crisis of 2008, scholars began addressing real-world
needs by holistically examining the interplay between development and sustainability. This
led to the proposition of green development in a new context, encompassing aspects like
greening, green growth, green transformation, and green development, imbuing it with
fresh significance. The New York University Global Environmental Development Program
(NYU-GEDP) delineates “greening” as the transformative process wherein companies
reevaluate, cognize, and act upon the ecological environment. Furthermore, in 2008, the
UNEP conceptualized a “green economy” as one that not only elevates human well-being
and social equity but also mitigates environmental risks and ecological scarcities. Moving
forward to 2009, the OECD defined “green development” as a developmental paradigm
that ensures sustainable resources and environmental services for human well-being, all
the while fostering economic growth.

Total factor productivity (TFP) has long been a prominent subject of research. Presently,
faced with the pressures of economic restructuring and upgrading, TFP has garnered
extensive attention from the government, the public, and academia [14]. TFP characterizes
the magnitude of the growth of “ideal output” propelled by innovation and management,
such as technological advancements and enhancements in allocative efficiency. It explicitly
excludes tangible factors like labor and capital. Over time, TFP has been widely employed
as a measure to assess the quality of economic growth and development [15]. Green TFP,
an extension of TFP, includes “undesirable outputs” such as energy and resource inputs
and pollution emissions. By accounting for environmental challenges in the process of
economic development, it aligns more closely with the contemporary notion of GEG. The
measurement methodology for green total factor productivity serves as the cornerstone
for studying GEG. In the study of GEG, Pittman [16] was among the first to employ
the Data Envelopment Analysis (DEA) method to incorporate undesirable outputs into
the TFP measurement framework for estimating Green TFP (GTFP). Chung, et al. [17]
expanded on this approach by utilizing DEA and the Malmquist Luenberger (ML) methods
to align their outcomes with the concept of GEG. Subsequently, Tone [18] introduced
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relevant improvements and proposed a more comprehensive Slacks-Based Measure (SBM)
model based on non-radial and non-angular slack variables, which effectively reduced
computational errors.

With deepening research, the exploration of methods to enhance green total factor
productivity (GTFP) has become the focal point of current study. In Particular, the paths
and influencing factors for achieving GEG have garnered increasing attention among
researchers. Existing research has examined the conditions for GEG with a focus on
two categories: economic transformation and environmental factors. Under the frame-
work of economic transformation and upgrading, one line of inquiry argues that factors
such as urbanization [19], the digital economy [20], upgrading industrial structures [21],
technological innovation, and other determinants [22] facilitate the transformation and
upgrading of regional economic structures. These factors optimize the allocation of regional
resources, enhance regional economic efficiency, and ultimately foster GEG by improv-
ing regional economic efficiency. Another strand of research adopts an environmental
protection and pollution reduction perspective. According to the traditional neoclassical
school of economics, environmental regulations increase the pollution control costs for
businesses, resulting in possible negative effects on their green total factor productivity.
However, scholars with a positive outlook argue that sensible environmental regulations
can incentivize enterprises to develop green products. These regulations may partially
or even entirely offset the augmented costs associated with regulatory compliance and
consequently enhance enterprise productivity [23].

2.2. Artificial Intelligence Applications

The term “Artificial Intelligence” was initially introduced to academia at the Dart-
mouth Conference held in the United States in 1956. Since then, it has garnered significant
global attention in the 21st century [24]. This concept, often referred to as a “machine
capable of human-like thought”, has undergone over six decades of advancement, catalyz-
ing progress across diverse industries. The latest generation of AI technology has been
integrated to varying degrees within both conventional and emerging sectors, thereby
contributing to the stimulation of economic growth.

The existing academic literature on AI can be categorized into two main dimensions:
indicator measurement and effects. Regarding indicator measurement, there is a consid-
erable body of academic research dedicated to AI, with distinct indicators employed to
measure the level of AI development in quantitative studies. Borland and Coelli [25],
for instance, use the “proportion of total societal investment in information transmission,
software, and IT services relative to the GDP” as a measure to evaluate AI advancement
levels. Meanwhile, other scholars align China’s manufacturing industry sectors with the
International Federation of Robotics (IFR)’s industry classification for manufacturing. They
utilize the installed capacity of industrial robots as an indicator to measure AI [26].

The exploration of the effects of AI is conducted across micro, meso, and macro levels
with a comprehensive review of the pertinent literature, such as a study on the impact of AI
on microenterprises. In the context of the age of intelligence, the production and operation,
transaction distribution, and sales activities of enterprises are increasingly dependent on
AI. AI actively contributes to reducing the production costs of enterprises through the
realization of “synergy effects” and “efficiency effects”. Consequently, this drives a further
narrowing of enterprise boundaries [27]. Another notable impact of AI is reflected in the
alteration of the organizational structure of enterprises [28]. This transformation involves
facilitating the transition towards flattened hierarchical development. As a result, the
operational efficiency of enterprises is significantly improved [29]. These advancements
in organizational form ultimately foster the high-quality development of enterprises, pro-
viding impetus for their growth and overall success. Research on the impact of AI on
middle-level industries has garnered considerable attention. With the rapid development
of AI, it has become increasingly integrated into first, second, and third industries [30]. The
role of AI in enhancing factor productivity has been extensively explored by scholars, and
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their findings confirm its positive influence. Specifically, some researchers have observed
that AI can effectively improve factor productivity, thereby refuting the existence of a
“productivity paradox” in regional productivity enhancement [31]. However, it is worth
noting that significant variations exist between different regions, as demonstrated by the
presence of notable heterogeneity in this regard, as with research on the impact of AI on
macroeconomic development. The relationship between information technology and urban
economic development has garnered significant attention from scholars, who have devoted
considerable efforts towards exploring it both theoretically and empirically [32]. Their
findings demonstrate that AI facilitates the re-employment of laborers more effectively
than other technologies [33]. Moreover, studies have revealed significant variations in the
impact of AI on economic development across different cities. Furthermore, it is evident
that the impact of AI on economic development can also differ within the same region over
different periods. Notably, there is evidence to suggest a diminishing marginal utility of
AI, implying that the incremental benefits obtained from AI implementation may diminish
over time [34].

2.3. Artificial Intelligence and Green Development

Research exploring the nexus between AI and green development primarily bifurcates
into two distinct realms. Within the first realm, scholars investigate how AI influences
total factor productivity (TFP) as a pivotal facet of its impact on green development.
Graetz and Michaels [35] underscore TFP as a critical conduit through which intelligence
shapes economic expansion. Acemoglu and Restrepo [36] posit that AI holds promise in
mitigating demographic challenges, thereby bolstering economic growth via heightened
TFP. Contrarily, Yang [37] contends that prevailing AI advancements predominantly elevate
TFP within conventional manufacturing sectors, showing its limited influence on TFP
within certain advanced manufacturing domains. Nevertheless, the inquiry into AI’s
ramifications on green total factor productivity (GTFP) and its potential for fostering
sustainable economic growth remains nascent. A paucity of research delves into the
nuanced mechanisms by which AI systematically impacts GTFP. Transitioning to the
second domain, investigations scrutinize AI’s ramifications on ecological systems. Within
academic discussions, the influence of AI on energy and the environment generates debate.
Some scholars posit that AI’s application in industries can boost energy efficiency and
subsequently reduce related environmental contaminants [38]. Notably, the application
of deep learning and big data techniques has been demonstrated to achieve a remarkable
energy efficiency improvement of 97.86% [39]. Furthermore, Liu, et al. [40] determined
that the utilization of industrial robots yields a marginal carbon reduction effect of 5.44%.
Moreover, Zhang and Wu [41], based on an empirical analysis of inter-provincial panel data,
drew the conclusion that the application of intelligent technology significantly enhances the
green total factor productivity in the manufacturing industry, emphasizing the importance
of government attention toward the development of intelligent technology to advance the
establishment of a green and low-carbon industry. Contrary to the positive effects of AI on
energy conservation, there are also arguments suggesting that AI hinders energy-saving
efforts. One significant concern is the substantial energy consumption associated with
the repetitive data training required in AI systems [42]. Moreover, the application of AI
may improve energy efficiency and reduce the unit cost of energy, but it can lead to a
phenomenon referred to as the “rebound effect”, wherein firms are incentivized to expand
their production, ultimately offsetting the anticipated energy-saving benefits [43]. Studies
by Wang, et al. [44], encompassing 38 nations, reveal that industrial robots notably elevate
energy intensity. Further, findings from Luan, et al. [45] suggest that such robot usage may
exacerbate air pollution and climate shifts, raising environmental concerns.

In summary, previous scholarly investigations have examined the influence of AI
on GEG from various angles. However, the existing body of research suffers from insuf-
ficient theoretical discourse and empirical validation, necessitating further exploration
and the verification of the relationship between AI and GEG. Furthermore, the potential
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of nonlinear and spatial spillover effects associated with AI has been largely overlooked.
Additionally, while many studies have described the correlation between the fundamental
aspects of AI and GEG, they have failed to uncover the underlying mechanisms driving
this relationship. Consequently, this study aims to build upon the shortcomings identified
in previous research and makes two principal contributions to the field. Initially, this
study performs an empirical analysis to assert an inverted U-curve connection between
AI and sustainable development. It also suggests that the spatial spillover impact of AI
exhibits nonlinearity when integrated within the spatial Durbin model. Subsequently, by
evaluating the effects of green technology innovation and industrial structure optimization
on sustainable development, this study aims to elucidate the direct and ancillary pathways
through which AI impacts GEG. This approach not only complements but also augments
the current body of knowledge in this domain.

3. Mechanistic Analysis
3.1. Direct Impacts

Currently, there is a limited body of literature that systematically explores the rela-
tionship between AI and China’s GEG [46]. However, based on economic reasoning and
empirical evidence, AI, as a novel technological innovation paradigm, is interconnected
with China’s GEG in several ways [47]. At the enterprise level, AI facilitates optimal
resource allocation, thereby enhancing productivity, cost savings, and sustainable devel-
opment conditions through the analysis of extensive data, the identification of emerging
technological trends, and guidance for investments in green technologies. At the industry
chain level, AI’s innovative characteristics allow for the clustering and reorganization of
innovation elements, leading to synergistic configuration with other factors and expediting
the improvement of green technology within the industry chain itself [48]. This improve-
ment not only promotes the application of green technologies but also generates spillover
effects that propel the entire industry chain in a greener and more sustainable direction [49].
Intelligent control and monitoring, enabled by AI, lead to improved precision and efficiency
in the operation of industrial chains, optimized resource utilization, and reduced energy
consumption and pollution. Consequently, these advancements not only yield economic
benefits for enterprises but also inject new impetus into the overall GEG of the industry. On
an economic level, AI promotes a transition from a resource-driven to a technology- and
innovation-driven economic growth model. By optimizing production and supply chain
management and enhancing the efficiency and competitiveness of businesses, AI stimulates
economic growth [50]. GEG gives rise to new markets and business opportunities, and the
application of AI helps companies effectively capitalize on these opportunities. Further-
more, the promotion and application of AI technology contribute to the development of
environmental industries, driving employment opportunities and facilitating economic
restructuring [11]. GEG represents a vital direction for future economic sustainability,
with AI playing a crucial role in achieving sustainable development through technological
innovation and market orientation. The application of AI fosters a win–win situation for
economic growth and environmental preservation.

Simultaneously, AI could potentially exert adverse effects on green development in
its subsequent stages. Numerous AI tasks, particularly those involving deep learning
and extensive data processing, necessitate the utilization of high-performance computing
devices like graphics processors (GPUs) and large-scale data centers. These devices typically
exhibit elevated energy consumption, potentially escalating energy demands and impeding
advancements in green development. Swift technological progress and the transience
of AI devices might contribute to a substantial accumulation of electronic waste. If not
efficiently recycled and disposed of, discarded hardware and electronic components could
detrimentally affect the environment. The fundamental trait of AI applications lies in
the processing of large-scale data. However, concerns related to personal privacy and
data security may arise during data collection, storage, and analysis. The technological
prerequisites for safeguarding data privacy and security might increase system intricacy
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and energy consumption. The widespread integration of AI could induce transformations
in traditional industries, thereby influencing the labor market. The decline of specific
industries might prompt the workforce to shift towards other sectors, potentially involving
energy-intensive start-ups and adversely impacting green development.

3.2. Indirect Impacts

In the current era of widespread AI applications, the challenge lies in harnessing
intelligent technology to empower GEG and achieve a harmonious balance between eco-
nomic and ecological benefits during the development process [51]. While existing research
acknowledges the environmentally beneficial effects of intelligent technology, there is a lack
of in-depth analysis regarding the pathways and driving mechanisms for realizing the GEG
potential of AI [52]. Hence, this paper argues that AI has the potential to unleash the GEG
effect primarily through two mechanisms: the empowerment effect of green technology
and the optimization effect on industrial structures.

First and foremost, the application of AI enhances enterprises’ awareness of and incli-
nation towards adopting green technology [53]. By leveraging AI technology, enterprises
can identify and evaluate GEG opportunities with greater accuracy. AI’s capacity for ef-
ficient information processing facilitates a shift from experience-driven organizations to
data-driven entities. This transformation enables organizations to leverage data analysis
and forecasting to inform decision making and positively influence the trajectory of green
innovation. Consequently, companies are empowered to adopt more sustainable business
strategies, mitigate environmental pressures, and foster GEG [54].

Second, the integration of AI technology engenders changes to the traditional indus-
trial structure, ultimately propelling GEG [55]. The introduction and implementation of
AI, particularly in areas such as smart manufacturing, smart transportation, and smart
cities, have the potential to enhance productivity while diminishing energy consumption
and environmental impact [56]. Leveraging the intelligent and automated characteristics
of AI, industries with high energy consumption and emissions can be transformed into
cleaner, low-carbon forms, thereby optimizing their overall industrial structure [57]. Simul-
taneously, the advancement of AI has spawned new industries within the green economy,
including distributed energy, renewable energy, environmental protection technology, and
smart city solutions. The emergence of these sectors offers new employment prospects and
fuels the growth of the green economy. AI plays a crucial role in promoting the growth of
green industries by optimizing and transforming their industrial structure. It expands the
range of choices and possibilities, facilitating the transition towards a more environmentally
friendly economy.

3.3. Spatial Spillover Effects of AI on Green Development

There are numerous constraints that impede the exchange of traditional economic
information, including factors like geographical distance, sluggish information transmis-
sion channels, and limitations associated with time and cost [58]. However, AI disrupts
these conventional barriers by enabling cost-effective knowledge and information ex-
change within shorter timeframes [59]. This facilitates the unrestricted flow of production
factors across spatial boundaries, leading to the amplified expansion of capital and tech-
nology, along with the enhanced breadth and depth of economic activities across diverse
regions [60]. Additionally, the implementation of AI diminishes the constraints imposed
by time and space, thereby facilitating the widespread dissemination of clean technology
and digital knowledge throughout various regions. This signifies that GEG is no longer
confined to localized innovation systems but extends its reach to acquire and learn from the
latest green technologies and experiences on a global scale [61]. Consequently, this spatial
spillover effect expedites the advancement of green technologies and optimizes resource
allocation and industrial structures.



Sustainability 2024, 16, 1260 8 of 23

4. Materials and Methods
4.1. Modeling

To conduct a systematic analysis of the influence of AI on GEG, a benchmark model is
designed based on the studies by Ren, et al. [62] and Hao, et al. [63].

ln GEit = α0 + α1 ln AIit + α2 ln AI2
it + α3controlit + λi + θt + εit (1)

In Equation (1), the explanatory variable ln GEit represents the GEG level of region i in
year t. The main explanatory variable deit is the level of AI application in region i in year t;
AI2

it denotes the squared term of AI, and controlit is a series of control variables. In addition,
λi denotes the region’s fixed effects, θt denotes fixed time effects, and εit is the error term.

Further, the previous theoretical analysis suggests that AI changes China’s GEG level
through innovation drive and structural optimization. In order to identify whether this
mechanism exists, this paper constructs the following model:

ln medit = β0 + β1 ln AIit + β2 ln AI2
it + β3controlit + λi + θt + εit (2)

ln GEit = γ0 + γ1 ln AIit + γ2 ln AI2
it + γ3medit + γ4controlit + λi + θt + εit (3)

where lnmedit denotes innovation drive and structural optimization and controlit is a set of
control variables.

In addition, multiple linear regressions may have a large bias if only general panel data
are used. In order to solve this problem, LeSage and Pace [64] is linked to the Durbin model,
which is introduced into the standard regression Equation (1) and empirically investigated
to establish a spatial Dubin model with double fixed effects, which is constructed as follows:

ln GEit = α0 + ρ1
N
∑

j=1
Wijt ln GEit + β1 ln GEit + β2 ln GE2

it + β3controlit

+ρ2
N
∑
i ̸=j

Wijt ln GEit + ρ3
N
∑
i ̸=j

Wijt ln GE2
it

+ρ4
N
∑
i ̸=j

Wijtcontrolit + µi + θt + εit

(4)

where Wij is a 31 × 31 spatial weight matrix. This paper adopts two kinds of spatial
matrices for testing. First, the impact of AI on GEG is not only limited to neighboring
areas; a geographic distance it is close but not adjacent to may also have mutual influence,
so a 0–1 spatial adjacency weight matrix is adopted, taking the value of 1 if province i is
adjacent to province j, and taking the value of 0 if not [40]. Second, the spatial measurement
method is applied to introduce a geographic distance matrix to comprehensively examine
the relationship between AI and GEG.

4.2. Variable Selection
4.2.1. Explained Variables

The measurement of GEG levels in the existing literature can be broadly categorized
into two main areas: the evaluation of indicator systems and efficiency measurements.
Efficiency measurement, in turn, can be further classified into two methods: the stochastic
frontier method (SFA) and data envelopment analysis (DEA). Compared to SFA, DEA and
its derivative models offer the advantage of evaluating multiple output or input elements
simultaneously. However, the traditional DEA model predominantly adopts a radial or
angular framework, which disregards the relaxation improvement aspect. In this study,
GEG efficiency is assessed using Tone [18] enhanced Super-SBM model, derived from the
non-radial and non-angled SBM model. The selected model introduces two significant
modifications. Firstly, it eliminates the restriction of equal improvement proportions for
each element, enabling adjustments based on the real situation and data characteristics.
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Secondly, it relaxes the effective decision-making units (DMUs) ≤ 1 constraint, realizing
the comparison of effective DMUs.

Specifically, assuming the existence of n DMUs, each of which can produce s desired
outputs yg and q non-desired outputs yb, using m types of input factors X, with ρ as the
efficiency value, the constructive model takes the following form:

ρ = min

1
m

m
∑

i=1

xi
xik

1
s+q

(
s
∑

r=1

yg
r

yg
rk
+

q
∑

u=1

yb
u

yb
uk

) (5)

s.t.



x ≥ ∑n
j=1,j ̸=k xijλj, (i = 1, · · · , m)

yg ≤ ∑n
j=1,j ̸=k yg

rjλj, (r = 1, · · · , s)
yb ≤ ∑n

j=1,j ̸=k yb
ujλj, (u = 1, · · · , q)

x ≥ xj, yg ≤ yg
j , yb ≥ yb

j
λ ≥ 0, ∑n

j=1,j ̸=k λi = 1, (j = 1, · · · , n)
s−x , s+y , s−b ≥ 0

(6)

where s−x , s+y , s−b represent input factors and λ is the weight vector, which, when satisfying
the conditions of the constant, returns to scale; λ ≥ 0 and ∑n

j=1,j ̸=k λi = 1 are the conditions
under which the variable returns to scale. Under certain inputs, the larger the desired
output and the smaller the non-desired output, the higher the efficiency is, which can be
used to measure whether the city can realize high desired output at the cost of lower inputs
and less non-desired output, i.e., the GEG efficiency of the city. Specifically, distinct factor
inputs include labor inputs, which are represented by the total number of people employed
by the end of each year in each region (in tens of thousands); capital factor inputs, which
are determined by the depreciation rate computed via the perpetual inventory method and
capital stock, with 2009 serving as the reference period; and energy factor inputs, measured
in terms of regional electricity consumption (in billion kilowatt-hours). The main indicators
of desired output factors include the standard of economic development and the quality
of life for residents, with the real gross regional product and the green coverage rate of
built-up areas used as proxy variables respective to these indicators. The non-desired
outputs, meanwhile, are characterized by sulfur dioxide emissions (in tens of thousands of
tons), soot emissions (in tens of thousands of tons), and wastewater emissions (in tens of
thousands of tons) per region.

Figure 2 shows the differences in the average value of GEG in different regions. The
figure plots the annual average of the level of green development in each region. As can be
seen from Figure 2, GEG shows a fluctuating upward trend in all four regions. The eastern
region has consistently taken the lead, exhibiting significantly higher levels of development
compared to other areas. In contrast, the green development status in the western region
lags behind, generally falling below the national average.

4.2.2. Explanatory Variables

This paper uses robot stock data provided by the IFR to characterize AI applications.
Given that the robot data published by the IFR do not yet contain detailed provincial robot
stocks, and that there are large gaps in robot use in different regions, this paper refers to
Acemoglu and Restrepo [36] study and applies the Bartik instrumental variables approach
to measure robot penetration at the provincial industry level, using the differences in the
stock of robots and the differences in the distribution of employment by industry in each
province across the starting period.

AIjht =
ljht0

∑n
j=1 ljht0

× AIht
lht0

(7)
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AIjht denotes the robot penetration of industry h in province j in year t,
ljht0

∑n
j=1 ljht0

denotes

the number of people employed in industry h in province j in the base period, and AIht
lht0

denotes the robot penetration in industry h in year t.
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In order to analyze the differences in AI in different years and regions more com-
prehensively and clearly, this paper applies ArcGIS 2022 mapping software to map the
distribution of AI levels in 30 provinces in China in 2010 and 2019, as shown in Figure 3.
We found that AI has changed significantly from 2010 to 2019. Overall, the AI levels of
30 provinces in China developed considerably from 2010 to 2019.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 24 
 

  
(a) 2010 (b) 2019 

Figure 3. Spatial distribution of artificial intelligence in Chinese provinces in 2010 and 2019. 

The AI application levels across 30 provinces in the country between 2010 and 2019 
were evaluated based on the robot penetration metric computed in the previous section. 
In order to conduct a comprehensive analysis of the regional disparities in the level of AI 
application in China, this study employs the division standards provided by the National 
Bureau of Statistics (NBS) to categorize the measurement samples into the four major eco-
nomic regions: east, central, west, and northeast. A trend graph, as depicted in Figure 4, 
is constructed to facilitate a comparative assessment of the sample measurement averages 
across these regions during the study period. Upon examining the overall trend, it be-
comes evident that the level of AI application in the country has exhibited an upward 
trajectory from 2010 to 2019. However, when considering specific regions, it is noteworthy 
that the eastern region, followed by the east region and the northeast region, witnessed 
relatively higher rates of increased AI application levels. On the other hand, the western 
region experienced a slower pace of growth in comparison. 

 
Figure 4. Trends of AI application levels in the four major regions in China, 2010–2019. 

Figure 3. Spatial distribution of artificial intelligence in Chinese provinces in 2010 and 2019.



Sustainability 2024, 16, 1260 11 of 23

The AI application levels across 30 provinces in the country between 2010 and 2019
were evaluated based on the robot penetration metric computed in the previous section.
In order to conduct a comprehensive analysis of the regional disparities in the level of AI
application in China, this study employs the division standards provided by the National
Bureau of Statistics (NBS) to categorize the measurement samples into the four major
economic regions: east, central, west, and northeast. A trend graph, as depicted in Figure 4,
is constructed to facilitate a comparative assessment of the sample measurement averages
across these regions during the study period. Upon examining the overall trend, it becomes
evident that the level of AI application in the country has exhibited an upward trajectory
from 2010 to 2019. However, when considering specific regions, it is noteworthy that the
eastern region, followed by the east region and the northeast region, witnessed relatively
higher rates of increased AI application levels. On the other hand, the western region
experienced a slower pace of growth in comparison.
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4.2.3. Mediating Variables

Green technological innovation: Green technological innovation aligns with the prin-
ciple of diminishing energy usage and enhancing the environment, thereby offsetting the
drawbacks of prior technological advancements that solely prioritized economic gains.
Innovations meeting the standards of “eco-friendliness and scientific excellence” are identi-
fied as green patents [65]. Green patent applications (GPAs) and green patents authorization
(GPG) play a vital role in the realm of green technological innovation [66]. To acquire rel-
evant data on green patent applications and approved patents, this study looked at the
International Green Patent Classification (IPC) code, which represents green patents, and
accessed the patent database of the State Intellectual Property Office. The data extraction
process was based on regional parameters and involved gathering information on the
number of green patent applications and the volume of approved green patents, using the
filing and approval dates as a reference.

Industrial structure optimization: With the rapid growth of AI in China, significant
changes have occurred in the upgrading of domestic industrial structures. To better capture
inter-provincial industrial structure optimization in China, this study proposes a refined
interpretation of industrial structure upgrading, focusing on two distinct levels: industrial
structure advancement and industrial structure rationalization. These levels are established
based on a structuralist viewpoint. Based on Wang, et al. [67], advanced industrial structure,
denoted as Ais, represents the ratio of value added in tertiary industry to the value added
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in secondary industry. On the other hand, industrial structure rationalization (Thile)
encompasses various aspects such as inter-industry coordination, the quality of industrial
structure aggregation, and resource allocation efficiency. The formula used to calculate the
industrial structure rationalization index is based on the construction methods suggested
by Fan, et al. [68].

TL =
n

∑
i=1

(
Yi
Y

)
ln
(

Yi
Li

/
Yi
L

)
(8)

4.2.4. Control Variables

Educational inputs (Edu) denote investments made in the education, training, and
practical experience of workers. Edu demonstrates creativity, and augmenting Edu can
foster innovation and the adoption of cleaner production technologies, thereby contributing
to the advancement of green economic growth [69], which can be measured by examining
the proportion of national fiscal expenditure allocated to education within the overall
budgetary outlay of local finance in each province.

Marketization (Mark): In general, a higher marketization index signifies a more
developed market economy in a given location. This metric refers to the marketization
index as evaluated by [68].

Total Import and Export (Trade): Technology diffusion and the inflow of foreign
capital have the potential to elevate the level of local green development. The ‘Pollution
Paradise’ hypothesis posits that excessive openness impedes green development due to
China’s prolonged presence at the lower end of the global value chain, which is quantified
by examining the total volume of imports and exports relative to GDP for each province.

Infrastructure Development (Inf): Enhancements in transportation infrastructure
yield a dual impact on GEG. On the one hand, improvements can substantially curtail
the transportation and transaction costs associated with production factors, fostering the
creation of urban economies of scale and industrial agglomeration, thereby leading to an
upsurge in GEG. Conversely, infrastructure upgrades might result in increased vehicular
traffic, escalating energy consumption and emissions [70]. This scenario could impede GEG.
Hence, the influence of transportation infrastructure on GEG requires further empirical
scrutiny. Our metric for infrastructure measurement involves urban road space per capita.

Urbanization level (Urb): The acceleration of populations and innovation factor move-
ments across different regions is a notable outcome of urbanization. Concurrently, the
population tends to agglomerate, creating favorable conditions for the spillover and dissem-
ination of knowledge, thereby expediting technological innovation [71]. In this research,
the chosen indicator for the urbanization level is the proportion of the population residing
in urban areas.

Energy structure (Ens): Over the course of almost a century, humanity has extensively
consumed energy resources such as coal and oil, resulting in the release of substantial
amounts of carbon dioxide and other greenhouse gases. This, in turn, contributes to the phe-
nomenon of global warming [72]. Examined through the percentage of coal consumption
in terms of overall energy consumption, energy structure plays a crucial role in under-
standing environmental impacts and potential mitigation strategies. The Table 1 provides a
systematic description of the definitions of each variable.

Table 1. Concrete definitions.

Variable Definition

Dependent variable
GEG Super-SBM model

Core independent variable
AI Bartik instrumental variables

Mediating variables
GPAs Green patent applications
GPG Green patents authorization
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Table 1. Cont.

Variable Definition

Ais The ratio of value added in the tertiary industry to the
value added in the secondary industry

Thile Thile model
Control variable

Edu The proportion of national education expenditure to local
general budget expenditure

Inf Per capita urban road area
Mark The marketization index
Urb The proportion of the population in urban areas

Ens The proportion of coal consumption to total energy
consumption

Trade The total imports and exports as a proportion of GDP

4.2.5. Data Sources and Descriptive Statistics

This study focuses on an analysis of 30 provincial administrative regions in China
spanning the period from 2010 to 2019. The data pertaining to each province have been
obtained from the China Statistical Yearbook and the specific statistical yearbooks pub-
lished for each respective province. In instances where certain data points are missing,
an interpolation method had been employed to address the gaps. Table 2 presents the
descriptive statistics of each variable.

Table 2. Descriptive statistics.

Variables N Mean Sd Min Max

GEG 300 0.269 0.340 0.035 1.491
AI 300 2.611 3.645 0.013 26.650

GPA 300 7.808 1.358 3.434 10.800
GPG 300 7.302 1.377 2.833 10.262
Ais 300 0.033 0.412 −0.694 1.642

Thile 300 −0.800 0.745 −4.075 0.344
Edu 300 −1.822 0.163 −2.313 −1.504
Inf 300 2.673 0.361 1.396 3.266

Mark 300 2.018 0.268 1.212 2.442
Urb 300 4.022 0.208 3.521 4.495
Ens 300 4.244 0.590 0.593 5.265

Trade 300 −1.766 0.951 −4.371 0.460

5. Results
5.1. Basic Regression Results

The initial stage of the analysis involved incorporating AI into both the random effects
(RE) and fixed effects (FE) regression models. The findings from these models indicated
a positive regression coefficient for the AI variable. To further investigate the possible
nonlinearity in the association between AI and GEG, it was deemed essential to incorporate
a quadratic term for the AI variable. The outcomes presented in Table 3 revealed positive
regression coefficients for AI, while the quadratic terms displayed negative coefficients
that passed the 1% significance test. Additionally, both models exhibited significantly
higher R2 values, implying the presence of a substantial inverted U-shaped association
between AI and GEG. Following the Hausman test, the FE model was ultimately selected
as the preferred model for interpreting the regression outcomes. The regression analysis
demonstrated a significant positive relationship between AI and GEG, with a regression
coefficient of 0.030. The results imply a noteworthy contribution of AI towards fostering
GEG. Additionally, the regression analysis revealed a significant quadratic coefficient of
0.002 for AI, indicating an inverted U-shaped pattern in the influence of AI on GEG. The
confirmation of this quadratic relationship was further supported by it passing the 1%
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significance test [73]. We find that the inverted U-shaped effect of AI on GEG has been
widely explored in existing studies [74,75], implying that the nonlinear nature of the impact
of AI is, indeed, not to be ignored.

Table 3. Benchmark regression.

Variable
Re Fe

Linear Nonlinear Linear Nonlinear

AI 0.012 *** 0.054 *** 0.203 *** 0.030 ***
(0.004) (0.010) (0.036) (0.005)

AI2 −0.002 *** −0.002 ***
(0.000) (0.000)

Edu −1.396 −0.564 1.561 ** 2.597 **
(0.834) (0.824) (0.728) (1.236)

Inf 0.022 *** 0.019 *** 0.255 *** 0.125 *
(0.007) (0.007) (0.068) (0.068)

Mark 0.013 0.055 0.023 0.009
(0.140) (0.136) (0.013) (0.023)

Urb −0.010 ** −0.017 *** −2.617 *** −0.067 ***
(0.005) (0.005) (0.452) (0.015)

Ens −0.550 *** −0.509 *** −0.494 *** −0.002 ***
(0.045) (0.044) (0.039) (0.000)

Tei −0.064 −0.068 * 0.054 *** −0.565
(0.043) (0.041) (0.017) (0.347)

Cons 0.834 ** 0.860 ** 9.788 *** 1.047
(0.347) (0.335) (1.709) (0.721)

Time effect No No Yes Yes
Individual effect Yes Yes Yes Yes

Hausman 134.52
[0.000]

64.48
[0.000]

R2 0.4872 0.5453 0.6555 0.5454
N 300 300 300 300

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

5.2. Robustness Test

First, concerning the replacement of explanatory variables, the indicators for regional
green economy efficiency have been reformulated, replacing the explanatory variables in
the initial model. Drawing on the methodologies of Zhang, et al. [76], the weights assigned
to both capital and labor inputs in the non-radial direction function have been set to zero,
facilitating the assessment of inefficiencies associated with these factors. Furthermore, the
energy inputs and desired outputs, namely the actual gross regional product and the green-
ing coverage rate of built-up areas, have been weighted to be 1/3, 1/6, and 1/6, respectively.
In contrast, the non-desired outputs, sulfur dioxide industrial outputs, industrial wastewa-
ter, industrial emissions of soot and dust, and PM2.5 concentration, have been, respectively,
weighted at 1/12 each. These newly defined regional GEG indicators have been integrated
into Model (1) for the estimation of model parameters. An examination of Table 4, Column
(1) reveals that the primary parameter estimate stands at 0.051 and demonstrates significant
positivity, particularly after the substitution of the proxy indicators.

Second, instead of a regression model, this study employs the systematic GMM
method. To establish an instrumental variable, the terrain relief is chosen, following the
approach utilized by Wang, et al. [39]. Evident in Column (2), AR(1) is less than 0.1, AR(2)
is greater than 0.1, and the Sargan test is greater than 0.1, all of which do not reject the
null hypothesis, indicating that the instrumental variables in the model are valid. The
coefficients present a statistically significant positive relationship at the 5% significance
level, thereby reinforcing the robustness of the empirical outcomes.
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Table 4. Robustness test.

Variable
(1) (2) (3) (4)

GEG GEG GEG GEG

AI 0.159 ***
(0.020)

0.034 **
(0.015)

0.251 ***
(0.047)

0.107 ***
(0.037)

AI2 −0.005 ***
(0.001)

−0.023 *
(0.013)

−0.001 ***
(0.000)

−0.006 ***
(0.002)

cons −2.305 **
(1.061)

7.381 **
(3.128)

3.112 **
(1.266)

AR(1) 0.068
AR(2) 0.244

Sargan test 0.290
Controls Yes Yes Yes

Time effect Yes Yes Yes
Individual effect Yes Yes Yes

N 300 300 300 300
Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

Third, to mitigate the issue of inadequate endogeneity control attributable to the
omitted variables, the model is augmented by incorporating Foreign Direct Investment
(FDI), the Degree of Financial Development (Df), and population density (Pop) as addi-
tional control variables. Subsequent analysis confirms that the initial conclusions maintain
their robustness.

Fourth, in order to exclude the interference of outliers, this paper shrinks the 5% data
samples before and after the AI variables, and the results are robust, as seen in Table 4,
Column (4).

5.3. Heterogeneity

To examine the variations in the impact of AI, further analysis was conducted to classify
the sample types. This classification aimed to distinguish differences in the influence of
AI based on the average capital intensity and average technology intensity in each region
during the sample period. Regions with above-average figures were categorized as capital-
intensive and technology-intensive, while those with below-average values were classified
as labor-intensive and non-technology-intensive regions. The capital intensity of each
region was determined by the average capital stock of employment, while technology
intensity was characterized by the percentage of high-tech enterprises. As illustrated in
Table 5, the impact of AI on GEG is more pronounced in capital-intensive and technology-
intensive regions.

Table 5. Heterogeneity.

Variable Capital-Intensive Area Labor-Intensive Area Technology-Intensive
Area

Non-Technology-
Intensive Area

AI 1.720 **
(0.562)

0.039 ***
(0.009)

0.999 ***
(0.280)

0.099 ***
(0.015)

AI2 −0.001 ***
(0.000)

−0.002 ***
(0.000)

−0.001 ***
(0.000)

−0.008 ***
(0.002)

Cons 24.774 ***
(5.693)

−0.712 ***
(0.197)

10.681 **
(3.503)

8.011 **
(3.702)

R2 0.779 0.515 0.694 0.505
Controls Yes Yes Yes Yes

Time effect Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes

N 70 230 80 220

Standard errors in parentheses; *** p < 0.01, ** p < 0.05.
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The underlying reasons for this are as follows: Firstly, the substantial capital invest-
ment available in capital-intensive regions facilitates research and development efforts
and the promotion of AI technology, thereby accelerating the innovation of green tech-
nologies. Additionally, these regions typically possesses well-established infrastructure
and industrial chains, facilitating the widespread application of AI in energy, transporta-
tion, manufacturing, and other sectors, thereby promoting the implementation of GEG
initiatives. Additionally, technology-intensive regions can exhibit a high concentration of
research institutes, higher education institutions, and high-tech enterprises, fostering a ro-
bust capacity for technological innovation. These technology-intensive areas tend to attract
specialized technical talents and academic support, which further stimulates the research,
development, and application of green technologies. Additionally, the industrial cluster
effect observed in technology-intensive regions expedites the replication and diffusion of
AI-driven advancements across environmental protection, resource utilization, and other
domains, thus facilitating comprehensive progress in GEG.

6. Mechanism Analysis

To further examine the impact of AI on GEG in China, this study builds upon the
preceding theoretical analysis and investigates the mechanism through which AI-driven
green technological innovation and optimization of the industrial structure contribute
to GEG.

Scholarly investigations often focus on evaluating the extent of green technological
innovation by primarily considering the number of patent applications or authorizations
related to environmentally friendly practices. Recognizing the potential limitations of
this single-indicator approach, this study undertakes a comprehensive examination of
the mechanisms driving green technological innovation. We introduce two intermediary
indicators, namely GPA and GPG, to shed light on the intricate facets of green technological
innovation. The findings in columns (1) and (3) reveal a statistically significant impact
of AI on green technological innovation at a 1% confidence level. The initial coefficient
reveals a significant positive correlation, whereas the subsequent coefficient exhibits a
significant negative relationship, indicating an inverted U-shaped association between AI
and the advancement of green technological innovation. The outcomes in columns (2) and
(4) demonstrate that the coefficients of the number of GPAs and GPG on GEG are 0.056 and
0.133. Consequently, this establishes the mechanism through which AI enhances GEG; via
its impact on green technology innovation. Artificial intelligence supports the development
of environmentally friendly incentives that allow companies to identify and capitalize on
GEG opportunities. Wang, et al. [39] also report that green technology innovations reduce
environmental pressures and promote cleaner production through artificial intelligence.

Moreover, the statistical analysis in columns (5) and (7) of Table 6 demonstrates a
significant influence of AI on the optimization of industrial structures, with a confidence
level of 1%. The first term’s coefficient exhibits a significant positive effect, while the second
term’s coefficient displays a significant negative impact, indicating an inverted U-shaped
relationship between AI and industrial structure optimization. The outcomes in columns
(6) and (8) reveal that the coefficients of the influence of advanced industrial structure (Ais)
and rationalized industrial structure (Thile) on GEG are 0.183 and 0.049, respectively. These
coefficients provide additional evidence supporting the mechanism by which AI improves
GEG through industrial structure optimization. Nonetheless, an additional discovery by
Chen and Wu [75] suggests a substantial enhancement in the environmental performance
of manufacturing firms due to artificial intelligence. This implies that AI, as a high-tech
industry, might exert a more favorable influence on green development by shaping the
internal structure of secondary and tertiary industries.
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Table 6. Results of the intermediary effect model.

(1) (2) (3) (4) (5) (6) (7) (8)
GPA GEG GPG GEG Ais GEG Thile GEG

GPA 0.056 ***
(0.014)

GPG 0.133 ***
(0.027)

Ais 0.183 **
(0.075)

Thile 0.049 ***
(0.016)

AI 0.039 ***
(0.004)

0.059 ***
(0.005)

0.040 ***
(0.003)

0.084 ***
(0.007)

0.432 ***
(0.106)

0.020 **
(0.008)

0.410 ***
(0.040)

0.020 ***
(0.005)

AI2 −0.054 ***
(0.005)

−0.002 ***
(0.000)

−0.064 ***
(0.006)

−0.003 ***
(0.000)

−0.000 ***
(0.000)

−0.001 ***
(0.000)

−0.001 ***
(0.000)

−0.001 ***
(0.000)

Cons 1.103
(0.677)

5.145 ***
(1.302)

2.054
(1.34)

4.837 **
(1.742)

3.108 ***
(0.497)

8.333 ***
(2.682)

−0.862
(1.543)

−0.166
(0.216)

R2 0.927 0.563 0.944 0.325 0.856 0.664 0.604 0.503
Controls Yes Yes Yes Yes Yes Yes Yes Yes

Time effect Yes Yes Yes Yes Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes Yes Yes Yes Yes

N 300 300 300 300 300 300 300 300

Standard errors in parentheses; *** p < 0.01, ** p < 0.05.

In this study, we incorporated green technology innovation, industrial structure opti-
mization, and AI into our model to examine their impact on GEG. As indicated in Table 6,
the promotion of GEG is positively influenced by green technology innovation and indus-
trial structure optimization, while AI continues to display an inverted U-shaped effect.
Notably, the inflection point at which AI impacts the promotion of GEG is pushed back,
implying that green technology innovation and industrial structure optimization serve
as partial mediators. In other words, AI indirectly enhances GEG by influencing green
technology innovation and industrial structure optimization.

7. Further Study: Space Overflow

To evaluate the spatial spillover effect of AI, we utilized Moran’s test. The results
presented in Table 7 demonstrate that the global Moran’s index exceeds 0. In addition, GEG
and AI strongly reject the original hypothesis of no spatial correlation at the 10% and 5%
significance levels, respectively. These findings indicate a significant spatial autocorrelation
between China’s AI and the progress of its GEG, which is characterized by a positive spatial
aggregation. Therefore, employing a spatial panel model would be appropriate for further
investigation of the spatial spillover effect.

Table 7. Moran index, 2010–2019.

Year
AI GEG

Moran’s I Z-Statistic p Value Moran’s I Z-Statistic p Value

2010 0.124 1.413 0.079 0.246 2.664 0.004
2011 0.136 1.524 0.064 0.232 2.516 0.006
2012 0.130 1.470 0.071 0.223 2.419 0.008
2013 0.129 1.453 0.073 0.216 2.344 0.010
2014 0.121 1.381 0.084 0.207 2.274 0.011
2015 0.116 1.340 0.090 0.202 2.228 0.013
2016 0.116 1.338 0.091 0.199 2.203 0.014
2017 0.129 1.446 0.074 0.194 2.162 0.015
2018 0.114 1.298 0.097 0.188 2.113 0.017
2019 0.116 1.319 0.094 0.184 2.076 0.019

Given the potential for biases arising from individual differences and time effects, we
employed a two-way fixed effects spatial Durbin model (SDM) to estimate the parameters.
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Table 8 presents the results, which indicate the following patterns under the two spatial
weight matrices: Firstly, sigma2_e significantly indicates that the spatial Durbin model
fits the data well. Secondly, the coefficient of AI is positively significant at the 1% level,
while the quadratic term associated with AI exhibits a negative coefficient, aligning with
the previous empirical findings reported by other researchers. Additionally, the coefficient
of Wx is positively significant, whereas the coefficient of Wx2 is negatively significant, both
passing the significance test. The results indicate a nonlinear spatial spillover effect of AI
on the GEG of adjacent regions, displaying an inverted U-shaped distribution. To gain a
deeper understanding of the spatial impact of AI, we disassemble it into two components:
the direct effect on local GEG and the indirect effect, reflecting the spatial spillover into
neighboring areas. Intriguingly, in both spatial weight matrices, the direct effect, indirect
effect, and overall effect all demonstrate inverted U-shaped curves. Consequently, these
results demonstrate the stable and sustainable spatial impact of AI on GEG. Expanding
the current exploration of AI’s influence on energy consumption and sustainability, this
discovery aligns with the research conducted by Kopka and Grashof [77]. As per their
findings, the efficacy of AI in diminishing energy consumption and fostering sustainability
is contingent upon its geographical placement, with a more pronounced effect observed
in central areas. The impact of AI on energy consumption decreases as its distance from
the center region increases. In contrast, this paper directly examines the spatial impact of
AI on green development and concludes that AI can contribute to green development in
neighboring cities.

Table 8. Regression results of SDM.

Model
W1 W2

Ind Both Ind Both

AI

Main 0.061 ***
(0.011)

0.219 **
(0.098)

0.043 ***
(0.012)

0.288 ***
(0.099)

Wx 0.070 ***
(0.023)

0.110 **
(0.051)

0.200 ***
(0.059)

2.795 ***
(0.677)

Direct 0.064 ***
(0.012)

0.221 **
(0.101)

0.042 ***
(0.012)

0.239 **
(0.101)

Indirect 0.087 ***
(0.025)

0.094 **
(0.045)

0.194 ***
(0.052)

1.960 ***
(0.575)

Total 0.150 ***
(0.031)

0.315 ***
(0.103)

0.237 ***
(0.058)

2.199 ***
(0.593)

AI2

Main −0.002 ***
(0.000)

−0.000 ***
(0.000)

−0.002 ***
(0.000)

−0.001 ***
(0.000)

Wx −0.003 ***
(0.001)

−0.001 ***
(0.000)

−0.008 ***
(0.002)

−0.002 **
(0.001)

Direct −0.002 ***
(0.000)

−0.000 ***
(0.000)

−0.002 ***
(0.000)

−0.001 ***
(0.000)

Indirect −0.004 ***
(0.001)

−0.001 **
(0.000)

−0.007 ***
(0.002)

−0.001 *
(0.000)

Total −0.006 ***
(0.001)

−0.001 ***
(0.000)

−0.009 ***
(0.002)

−0.001 **
(0.001)

Controls Yes Yes Yes Yes

sigma2_e 0.021 ***
(0.000)

0.012 ***
(0.001)

0.018 ***
(0.001)

0.012 ***
(0.001)

Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

8. Discussion, Conclusions, and Policy Implications

In the context of transitioning economies, AI technology has emerged as a compelling
tool for guiding China’s economic growth momentum and achieving the mutually ben-
eficial objectives of sustainable development and environmental protection. This study
evaluates the level of AI application and its impact on GEG by utilizing panel data span-
ning 30 provinces in China from 2010 to 2019. The investigation analyzes the nonlinear
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relationship between AI and GEG through the implementation of a benchmark model,
mediating effect model, and the SDM. Additionally, mediation analysis is conducted from
the perspectives of green technological innovation and industrial structure optimization.
The key findings are summarized as follows: Firstly, our analysis reveals a significant
inverted U-shaped relationship between AI and the level of GEG. Secondly, AI is a key
factor in the development of a green economy in capital-intensive and technology-intensive
areas. Thirdly, AI exhibits both direct and indirect impacts on GEG. The indirect effects
are achieved by shaping green technological innovation and optimizing industrial struc-
tures. This highlights the importance of AI in influencing and promoting advancements in
green technologies and facilitating the restructuring of industries towards environmentally
friendly practices. This study reveals a nonlinear spatial spillover effect of AI on the GEG
of neighboring cities, exhibiting an inverted U-shaped pattern. In summary, these findings
enhance our comprehension of the intricate connection between AI and GEG. They illu-
minate the potential pathways through which AI technology can facilitate the sustainable
transformation of economies, supporting simultaneous economic growth, environmental
protection, and sustainable development.

As the largest developing country, China faces the challenge of the simultaneous
development of industrialization, urbanization, and environmental protection, and the
emergence of artificial intelligence has become a new way for China to balance economic
development and environmental protection. The positive effects of AI in promoting green
development are observed in this study, but an in-depth analysis of its potential negative
effects should not be ignored. First, the inverted U-shaped relationship between AI and
GEG suggests that the development of AI to a certain stage may lead to diminishing
marginal efficiency or negative impacts on the environment. For example, the operation
of AI requires the consumption of a large amount of energy, and in the later stages of
development there may be a problem with the excessive construction of data centers and
increased energy consumption, leading to increased environmental pressure, especially in
areas that rely on non-renewable energy sources, where it may have a more serious impact.
Second, labor-intensive and non-technology-intensive regions may see further increases
in interregional economic and technological disparities due to AI’s lack of a sufficient
technological base and capital investment. Finally, the overdevelopment of AI may lead
to the accelerated substitution of labor in labor-intensive regions, leading to a decrease in
employment opportunities and thus triggering changes in the socioeconomic structure.

In summary, the findings of this study are important for understanding the role of AI in
green development and providing a key perspective for the formulation of relevant policies
in China and globally. Specifically, the inverted U-shaped relationship between AI and GEG
implies that an over-reliance on AI does not bring sustainable benefits to green development
and that the government needs to carefully consider the appropriateness and efficiency of
AI inputs in designing relevant policies, focusing on the relationship between technological
innovation and sustainable development, and strengthening the development of AI at
the initial stage, while avoiding the excessive resource consumption and environmental
burdens that may be caused by over-investment in AI at the later stage. At the later
stage, the excessive resource consumption and environmental burden caused by excessive
investment can be avoided. Second, given that AI has a more significant impact on GEG in
capital-intensive and technology-intensive zones and a relatively smaller impact in labor-
intensive and non-technology-intensive zones, the government should formulate different
strategies for the characteristics and needs of different regions when formulating relevant
policies. For capital-intensive and technology-intensive zones, the government should
continue to encourage and support the research and development of AI and other green-
related technologies to further promote the upgrading of industrial structures and to ensure
that AI plays the most effective role it can in promoting green development. For labor-
intensive and non-technology-intensive areas, infrastructure should be strengthened to
promote AI applications suitable for local industries, and corresponding adaptive measures
should also be formulated to ensure that the technological transformation does not cause
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large-scale unemployment in labor-intensive areas. Again, AI has an indirect impact on
green development by influencing green technological innovation and industrial structure
optimization, implying that the government should accelerate the promotion of eco-friendly
industrial upgrading and technological innovation through financial support, tax incentives,
and the establishment of cooperative platforms, as well as supporting the transfer and
sharing of green technologies on a global scale. Finally, the spatial spillover effects found
in this study emphasize the importance of interregional cooperation, which can promote
the sharing of new technologies through AI, promote interregional environmental policy
coordination, and jointly promote interregional green development. In the global context,
the conclusions and policy recommendations of this study provide important references
and insights for cooperation between different countries, through AI, to jointly solve
transboundary environmental problems.

In response to the conclusions and research limitations drawn from this study, future
research can be conducted in the following ways: First, given that there is a spatial spillover
effect of the impact of AI on the level of green development, and thus AI may have the
potential to enable synergistic cooperation between different regions, future research can
start by exploring how AI can promote interregional environmental policy coordination
and other aspects of AI, and exploring how interregional environmental policies can be
coordinated through AI to carry out cross-regional cooperation to achieve further harmo-
nization of the environment and development among regions. Second, future research
could delve into the impact of specific applications of AI within different industries (e.g.,
renewable energy, green transportation, and low-carbon office sectors) on the promotion of
higher levels of green development and assess the environmental footprint of AI applica-
tions throughout their life cycles. Finally, future research should more comprehensively
consider the multidimensional impact of AI on green development, including issues such
as input efficiency, regional development imbalances, and economic and social structural
changes, to better understand the important role of AI in sustainable development.
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