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Abstract: Floods are among the most devastating disasters in terms of socio-economics and casualties.
However, these natural disasters can be managed and their effects can be minimized by flood
modeling performed before the occurrence of a flood. In this study, flood modeling was developed
for the Göksu River Basin, Mersin, Türkiye. Flood hazard and risk maps were prepared by using
GIS, HEC-RAS, and HEC-HMS. In hydraulic modeling, Manning’s n values were obtained from
2018 CORINE data, return period flow rates (Q25, Q50, Q100, Q500) were obtained from HEC-HMS,
and the application was carried out on a 5 m resolution digital surface model. In the study area, the
water depths could reach up to 10 m, and water speeds were approximately 0.7 m/s. Considering
these values and the fact that the study area is an urban area, hazard maps were obtained according
to the UK Department for Environment, Food and Rural Affairs (DEFRA) method. The results
indicated that possible flood flow rates from Q25 to Q500, from 1191.7 m3/s to 1888.3 m3/s, were
detected in the study area with HEC-HMS. Flooding also occurred under conditions of the Q25 flow
rate (from 4288 km2 to 5767 km2), and the impacted areas were classified as extremely risky by the
DEFRA method.

Keywords: HEC-HMS; HEC-RAS; Göksu River Basin; flood modeling; flood hazard

1. Introduction

Disasters can be caused by many different kinds of hazards, namely floods, landslides,
earthquakes, wildfires, and droughts. Hazards are of natural, technological, or anthro-
pogenic origin that may cause loss of life and property, damage, and harm if they occur [1].
Disaster is defined as the disruption of the existing societal order and conditions of the
living environment as a consequence of the occurrence of hazards, leading to physical,
economic, and social damages at a level beyond a society’s adaptive capacity. According to
The Emergency Events Database (EM-DAT) [2], it has been stated that 9865 hazards causing
natural disasters have been recorded on a global scale (Africa, Americas, Asia, Europe, and
Oceania) between 2000 and 2023. Additionally, 3992 (40%) of these natural disasters were
recorded as flood-related during this period.

Among disasters, floods are one of the most common and destructive phenomena
observed worldwide and are occurring more frequently due to global warming and cli-
mate change [3,4]. Population growth, urbanization, and industrialization have caused
vegetation destruction, soil loss, and increases in artificial and impermeable surfaces in
urban areas [5,6]. In addition, interfering with the natural flow in riverbeds can potentially
cause ordinary natural events to turn into flood disasters. The destructive effect of floods is
more severe in cities with inadequate permeable surfaces and scarce underground drainage
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channels [7]. Flood control and prevention strategies are desperately needed because floods
can cause massive and irreversible damage to agriculture, transportation, bridges, and
other elements of urban infrastructure [8,9]. Although it is very difficult to prevent flood
disasters in the moment, their impact can be significantly reduced if potential flood areas
are identified and adequate precautions are taken in these areas. In addition, as a result
of the climate crisis, identifying flood-prone locations and assessing the linkages between
disasters and the environment have become essential and urgent needs in urban flood risk
management. Therefore, studies that determine potential flood impact areas and disaster
damage using techniques such as geographic information systems [10], remote sensing [11],
and hydrological modeling [12] are crucial for managers and decision makers.

Compared to other natural disasters, many more people are directly or indirectly
affected by extreme weather events such as drought and flood. Floods are the most
devastating among these natural disasters in terms of socio-economics and deaths. If the
cross-sectional capacity is exceeded at various points along a river route, floods may cause
severe damage in basins and coastal areas. Therefore, determining how to predict flood
risk and what precautions to take is crucial. Determination of the volume of surface runoff
caused by precipitation is critical in determining the storage capacity of reservoirs and
estimating the probability of flooding. It is essential to obtain timely and reliable flood
information and accurate data about flood risks by interpreting flood maps to prevent
possible post-event disasters and reduce damages in flood areas. The first step in obtaining
various flood maps and risk maps is to perform flood modeling, such as hydrological
and hydraulic modeling [13]. Numerical models are essential in developing a hydraulic
model and applying hydraulic analysis of river beds using the HEC-RAS program, which
is a perfect choice for performing hydraulic calculations in both natural and structural
channel systems [14]. In recent years, the integrated use of geographic information systems
(GIS) with hydrological and hydraulic modeling has significantly improved numerical
flood modeling. The GIS environment can extract the hydrological variables from a digital
elevation model (DEM) with good accuracy, such as watershed shapes, path lengths,
flow directions, delineations, and slopes. The HEC-GeoRAS, a tool of HEC-RAS, uses
mathematical equations to calculate riverbed coefficients based on the river water flow rate,
the amount of drainage, and the rate at which water enters the soil. Numerical models allow
researchers to evaluate floods quantitatively and evaluate flood risks and other related
risks qualitatively. Flood modeling is a technical method for obtaining high-accuracy
information regarding important flood factors such as runoff, storage, and velocity.

The Hydrologic Engineering Center‘s Hydrologic Modeling System (HEC-HMS)
model [15], developed by the US Army Corps of Engineers, has applications in various
hydrological simulations, including urban flood analysis, flood frequency assessment, flood
warning system planning, reservoir spillway capacity evaluation, and stream restoration
planning. There are many studies conducted with HEC-HMS in different parts of the
world in urban areas [16–20], agricultural areas [21,22], wetlands [23], arid or semi-arid
regions [22,24], and tropical regions [25]. HEC-HMS enables event-based flood analysis
as well as the capability for continuous model simulations [26]. Specifically, the model
has been used in many successful studies to predict flood peak discharges and hydro-
graphs [27,28]. There have been many studies conducted using a combination of HEC-RAS
and HEC-HMS in the literature.

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and
River Analysis System (HEC-RAS) were integrated by Gül et al. to investigate the feasibility
of constructing a planned dam in Türkiye’s Bostanli basin [29]. In order to simulate floods
in the Khoshke Rudan River in the Iranian province of Fars, Hashemyan et al. merged the
HEC-HMS and HEC-RAS models in a GIS [30]. Yamani et al. evaluated the susceptibility
of flooded areas in arid sections of Ghardaia city by using HEC-HMS and HEC-RAS [31].
Mai and de Smedt integrated the hydrological and hydraulic models for flood prediction
in Vietnam [32]. Namai et al. produced inundation maps using HEC-RAS and HEC-HMS
models in Awash Bello flood plain, Upper Awash River Basin, Ethiopia [33].
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This paper focuses on the simulation of the occurrence of floods in the Göksu River
Basin, which has flooded several times in the past. In this study, HEC-HMS, HEC-RAS, and
GIS models were integrated in flood modeling and flood hazard mapping of the Göksu
River Basin. For this purpose, various return intervals from intensity–duration–frequency
(IDF) curves were used in the hydrological model: 25, 50, 100, and 500 years. Moreover,
hydraulic 2D flow modeling was performed with HEC-RAS. Manning’s “n” values, based
on CORINE data, were determined, and flood propagation scenarios of flow hydrographs
obtained from HEC-HMS were mapped. Finally, flood hazard maps were obtained by
using the flood depth–velocity and the UK Department for Environment, Food and Rural
Affairs (DEFRA) method.

2. Materials and Methods
2.1. Study Area: Göksu River Basin

The Göksu River Basin is a part of the East Mediterranean Basin as part of Türkiye’s
25 main basins (Figure 1). Göksu River flows through Antalya, Konya, Karaman, and
Mersin provinces and flows into the Mediterranean in the south of Silifke district of Mersin
province. The length of the Göksu River is 260 km, and its basin area is approximately
10,000 km2. It has two branches of approximately the same length: the northern branch
is Gökçay, and the southern branch is Gökdere, both of which originate from the Geyik
Mountains in the Taurus Mountains. After passing Karaman–Ermenek, these two branches
unite in the south of Mut and are named Göksu and then flow into the Mediterranean in
the delta known as Paradeniz, south of Silifke. The average altitude of the basin is about
1300 m, varying from sea level to 2870 m. In the study region, where the Mediterranean
climate prevails, heavy storms are observed with orographic effects, especially in the coastal
areas [34–36].
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In this study, the Göksu River Basin was modeled using HEC-HMS hydrological
processes. Then, the Silifke city area, in the region close to the basin’s outlet, was specifically
examined as a site description for flood analysis as shown in Figure 1.

In Silifke, the present study area, there have been many flood events in the past
that caused loss of life and property [37,38]. Records of the State Hydraulic Works (DSI)
and Disaster and Emergency Management Presidency (AFAD), two institutions related
to floods in Türkiye, reveal these historical events. When the records determined by DSI
are examined, 17 different flood events can be seen in the region for Silifke alone as of
2006. The critical importance of the region in terms of floods is emphasized by the Silifke
flood on 7 March 2004, which was recorded in a study as a flood with a 500-year return
period [36]. The points a, b, c, d shown in Figure 1 indicated the locations of these flood
events. This record is listed as one of the most severe flood events in Türkiye [39] and
appears to have caused serious damage to urban and agricultural areas (Figure 2). In
addition, other historical flood events have occurred based on AFAD records. For example,
a heavy storm in Mersin’s Silifke District on 5 November 2011 led to the inundation of
numerous vehicles beneath floodwaters, caused by overflow of the stream bed.
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Figure 2. The effects of the extremely severe flood experienced in Silifke on 7 March 2004 on
(a) agriculture areas, (b) urban regions, and (c,d) hydraulic structures [36].

2.2. HEC-HMS Model Data and Base Model Setup

This study utilized geospatial and meteorological data for the HEC-HMS model setup.
The properties of all input data used are given in Table 1.

Table 1. Properties of input data used in the HEC-HMS model.

Data Data Type Source Source Link Resolution/
Time Step Intended Purpose (s)

DEM
Geospatial

SRTM
https://earthexplorer.usgs.gov/

(accessed on 9 June 2023) 30 m
Basin delineation

Definition of river network

Land use CORINE 2018 https://land.copernicus.eu/
(accessed on 9 June 2023) 100 m CN grid generation

(land-use type)

Soil type HYSOGs250m https://daac.ornl.gov/ (accessed
on 9 June 2023) 250 m CN grid generation

(hydrologic soil group)

Rainfall Meteorological TSMS https://www.mgm.gov.tr/
(accessed on 9 June 2023)

Intensity–Duration–Frequency
(IDF)

Definition of rainfall for 25,
50, 100, and 500 yr

return period

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/
https://daac.ornl.gov/
https://www.mgm.gov.tr/
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Data from the Shuttle Radar Topography Mission (SRTM)’s 30 m resolution digital ele-
vation model (DEM) [40] were employed to delineate the Göksu River Basin into subbasins
and to establish the stream network.

To facilitate the “time of concentration (Tc)” calculation for the hydrological model,
the curve number (CN) values were computed. To achieve this, an overlay of Coordination
of Information on the Environment 2018 (CORINE 2018) land-use data [41] and ORNL
DAAC (Oak Ridge National Laboratory Distributed Active Archive Center) HYSOGs250m
soil-type data [42] was performed. Land-use types and Hydrologic soil group (C and D)
are shown in Figure 3a and Figure 3b, respectively. Also, Figure 4 presents the CN grids
resulting from overlapping.
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The CN grid map was created using ArcHydro [43], an ArcGIS plugin used to combine
land-use and soil-type data in the same coordinate. In the overlapping process, CN values
were constituted for each combination of land use and soil type. Then, a CN map was
output as raster data covering the entire basin. To meet the HEC-HMS input requiring a
single average CN value for each subbasin, the next step involved calculating the average
CN values within the boundaries of each subbasin. This provided a representation of CN
values for use in hydrological modeling in the context of the basin.

Subsequently, the “lag time” for each subbasin was calculated. The final step involved
determining the time of concentration values based on the calculated CN and lag time
values. Equation (1) [44] was used to calculate the time of concentration. The average
CN values, the time of concentration (Tc), and lag time values for each subbasin based on
Equation (1) are presented in Table 2.

Tc =
l0.8(S + 1)0.7

1140Y0.5 Lag = 0.6Tc (1)
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where L = lag [T], Tc = time of concentration [T], l = flow length [L], Y = basin slope [%],
S = maximum potential retention [L], S = (1000/CN) − 10, (0 < CN < 100).
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Table 2. Calculation table of CN, time of concentration, lag time, and subbasin characteristics.

Subbasin Reach Average
CN

Longest
Flowpath

Length (km)

Basin
Slope (m/m)

Maximum
Potential

Retention S

Basin
Slope (%)

Time of
Concentration

Tc
(h)

Lag
Time (h)

Meteorological
Station
(TSMS)

S1 79.06 55.52 0.18 2.65 17.55 8.23 4.94 Hadim
S10 R8 85.86 48.66 0.22 1.65 22.04 5.27 3.16 Anamur
S11 80.39 50.67 0.23 2.44 23.26 6.37 3.82 Gazipaşa
S12 83.15 53.51 0.25 2.03 24.55 5.92 3.55 Anamur
S13 85.24 47.36 0.24 1.73 23.80 5.08 3.05 Mut
S14 R14 84.49 14.44 0.27 1.84 27.08 1.89 1.13 Mut
S15 R16 81.44 51.10 0.23 2.28 23.17 6.21 3.73 Hadim
S16 R18 90.73 0.18 0.07 1.02 7.23 0.09 0.05 Hadim
S17 R9 83.68 39.00 0.29 1.95 29.30 4.13 2.48 Hadim
S18 87.43 22.05 0.36 1.44 35.73 2.08 1.25 Anamur
S19 R7 83.11 33.11 0.21 2.03 20.68 4.40 2.64 Anamur
S2 81.53 46.04 0.28 2.27 27.70 5.21 3.13 Hadim

S20 R10 85.20 76.79 0.31 1.74 31.32 6.53 3.92 Karaman
S21 R6 87.06 34.36 0.28 1.49 27.72 3.41 2.04 Anamur
S22 R5 87.02 13.33 0.37 1.49 36.74 1.39 0.83 Mut
S23 R4 85.95 40.73 0.26 1.63 26.02 4.20 2.52 Mut
S24 R3 85.84 19.22 0.19 1.65 18.67 2.73 1.64 Mut
S25 R11 86.39 46.31 0.24 1.58 24.14 4.75 2.85 Mut
S26 R12 85.49 27.65 0.18 1.70 18.10 3.75 2.25 Mut
S27 R13 84.99 27.82 0.13 1.77 13.47 4.45 2.67 Mut
S28 R2 84.29 59.70 0.18 1.86 18.08 7.25 4.35 Mut
S29 R1 77.24 4.76 0.07 2.95 7.43 1.87 1.12 Mut
S3 81.99 64.87 0.28 2.20 27.95 6.73 4.04 Hadim

S30 R15 84.97 34.27 0.22 1.77 21.91 4.12 2.47 Mut
S31 R17 85.52 41.22 0.29 1.69 29.30 4.06 2.43 Silifke
S32 R19 85.31 44.43 0.21 1.72 21.11 5.11 3.07 Silifke
S4 82.43 61.04 0.21 2.13 20.95 7.30 4.38 Mut
S5 85.43 105.81 0.35 1.70 34.55 7.96 4.78 Hadim
S6 83.55 87.58 0.21 1.97 21.02 9.37 5.62 Mut
S7 82.46 42.11 0.24 2.13 23.54 5.11 3.07 Hadim
S8 83.72 49.91 0.25 1.94 25.48 5.39 3.24 Hadim
S9 84.60 52.38 0.24 1.82 24.37 5.56 3.34 Mut

Next, rainfall data were defined after the delineation process. For this, rainfall data
were gathered from observations by the Turkish State Meteorological Service (TSMS),
Republic of Türkiye Ministry of Environment, Urbanization, and Climate Change. These
data include six different meteorological stations representing the basin. The locations of
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these stations, named Mut, Karaman, Anamur, Silifke, Gazipasa, and Hadim, are shown
in Figure 5. By employing Thiessen polygons, this study was able to create discrete areas
for each subbasin, which facilitated the allocation of data and parameters specific to each
subbasin in the subsequent analysis and modeling processes. This spatial representation
helps to improve the accuracy and efficiency of the hydrological and other environmental
assessments conducted within the Göksu River Basin. The matching of the subbasins
represented by the meteorological stations is given in Table 2.
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Also, the intensity–duration–frequency (IDF) curves of 25-, 50-, 100-, and 500-year
rainfall data for the six meteorological stations are shown in Figure 6.

2.3. HEC-HMS Model Runs and Parameter Adjustment

HEC-HMS offers various approaches to simulate the rainfall runoff processes within
a basin that support parameter-based models. The model has three main components,
namely the basin model, the meteorological model, and control specifications. It allows
users to choose from a variety of different methods. In our basin model, “SCS Curve
Number” for the loss method, “Clark Unit Hydrograph” for the transform method, and
“Lag” for the routing method were preferred. The values of CN, Tc, and lag time for
each subbasin, as presented in Table 2, were employed to ascertain the parameters for the
respective methods. In a meteorological component, precipitation data as IDF curves were
inputted. The control specifications section defines the start and end times of the desired
simulation period, in our study, the duration along the flood hydrograph. In summary, the
HEC-HMS modeling process is illustrated in the flowchart in Figure 7.

Model simulations of flow rates for return periods of 500-year, 100-year, and 50-year
data were conducted, and a parameter adjustment process was performed by comparing
the results with the relevant literature. A flood management plan has been previously
developed and documented in this study area by the General Directorate of Water Manage-
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ment (SYGM) of the Republic of Türkiye Ministry of Agriculture and Forestry in 2019 [37].
The parameters used for adjustment are shown in Table 3.
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In the flood management plan, the 500-year, 100-year, and 50-year flood flow rates for
the Göksu River were calculated as 1831 m3/s, 1502 m3/s, and 1345 m3/s, respectively, by
using a stream gauge located downstream of the Göksu River Basin, as shown in Figure 1.

The calculated peak flow rates for the storm event using the HEC-HMS model and the
25-, 50-, 100-, and 500-year peak flow rates (Q25, Q50, Q100, and Q500) calculated by [37]
for the Göksu River Basin are given in results.
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Table 3. Preferred modeling methods and adjusted parameters.

Hydrological
Process Method Parameters Unit Fitting Value

Loss
Method SCS Curve Number

Initial Abstraction mm Automatic (0.2×)

CN unitless
Variable for

each subbasin
based on Table 2

Impervious % 10

Transform
Method

Clark
Unit Hydrograph

Time of concentration h
Variable for

each subbasin
based on Table 2

Storage coefficient h 80

Routing
Method Lag Lag time min

Variable for
each subbasin

based on Table 2

2.4. HEC-RAS Model Data and Runs

The HEC-RAS (Hydrological Engineering Centre River Analysis System) 5.0.7 soft-
ware, introduced by the US Army Corps, is a widely utilized tool for flood modeling in
hydrodynamic simulations and is freely accessible [45]. This model is capable of conducting
1D steady flow and 2D unsteady flow simulations for the transport of solids and water
quality modeling [46]. It performs flow analysis using geometric and hydraulic calculation
steps across a river network [47]. Users of the 2D HEC-RAS model have a choice of three
equation sets: 2D diffusion wave equations (taken into account in this work), shallow
water equations, which use the Eulerian–Lagrangian approach to solve for advection, or a
new shallow water equations solver, which uses a Eulerian approach. The Navier–Stokes
equations, which are the basis for the shallow water equations, are equations of conser-
vation of mass and conservation of linear momentum, which continue to remain true
under assumptions of shallow water breakdown, such as across a hydraulic jump [48]. The
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shallow water equations are as follows for a horizontal bed with negligible Coriolis forces,
frictional forces, and viscous forces:

∂(ρη)

∂t
+

∂(ρηu)
∂x

+
∂(ρηv)

∂y
= 0 (2)

∂(ρηu)
∂t

+
∂

∂x

(
ρη2 +

1
2

ρgη2
)
+

∂(ρηuv)
∂y

= 0 (3)

∂(ρηv)
∂t

+
∂(ρηuv)

∂x
+

∂

∂y

(
ρηv2 +

1
2

ρgη2
)
= 0 (4)

The “η” symbol here represents the total fluid column height (the instantaneous fluid
depth as a function of x, y, and t), and the 2D vector (u, v) represents the fluid’s average
horizontal flow velocity across the vertical column. Further, g stands for gravitational
acceleration and for fluid density [49].

The first stage of hydraulic modeling with HEC-RAS involves high-resolution DEM
data. The DEM data used in this study have a resolution of 5 m and were obtained using
remote sensing techniques. The data were obtained from the Turkish General Directorate of
Mapping. In hydraulic modeling, the DEM was cut to include the Silifke province of Mersin,
which is the urban region in the basin, and the application area boundaries were determined.
In the second stage, the calculation mesh dimensions were selected as 5 m to be compatible
with the DEM. In the study, surface Manning “n” values were determined using CORINE
data from 2018 and the coefficients are defined for these surfaces in the literature [50].
Unsteady flow data were obtained from the HEC-HMS model as detailed in the previous
subsection. Then, the river slope was determined in the GIS environment (0.0017) and
the model was run with the boundary conditions defined as the inflow hydrograph and
normal depth. Figure 8 shows the flowchart of HEC-RAS modeling.

2.5. Generation of the Flood Hazard Maps

People’s unconscious behaviors are the most common cause of injury or death dur-
ing floods. People are typically unaware of the power of flowing water and endanger
themselves and the people around them by unconsciously crossing current paths. Flood
hazard levels are defined by the UK Department for Environment, Food and Rural Affairs,
DEFRA [51], in its “Risk to People” guidance, which describes what people should and
should not do in flood situations. The human guide recommends the hazard rating method
in Equation (5) for determining the flood hazard level.

HR = d(v + n) + DF (5)

where HR is hazard rating; d is flood depth (m); v is flow velocity (m/s); DF is the debris
factor; and n is a constant of 0.5 [51,52]. Table 4 lists appropriate debris factors for different
flood depths and velocities and the dominant land use and the level of flood hazard are
determined according to the intervals in Table 5 [51].

Table 4. Debris factor selection [51].

Depth and Velocity Pasture/Arable Woodland Urban

0.00–0.25 m 0 0 0
0.25–0.75 m 0 0.5 1

d > 0.75 m and/or v > 2 0.5 1 1

The four classes in Table 5 are obtained by determining the debris factor selected from
Table 4 depending on the speed and/or depth change and writing the value of this factor
into Equation (5). The flood velocity (v) and flood depth (d) expressions in Equation (5) must
be defined for each element (pixel) on the surface where hydraulic modeling is performed.
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Thus, HR values are determined for each element and the HR map is obtained by repeating
the same process for all elements.
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Table 5. Determination of the flood hazard levels [51].

Thresholds for Flood Hazard Rating
(HR = d × (v + 0.5) + DF) Flood Hazard Level Woodland

<0.75 Low Caution—“Flood zone with shallow flowing water or
deep standing water”

0.75–1.25 Moderate Dangerous for some (e.g., children)—“Danger: flood
zone with deep or fast flowing water”

1.25–2.00 Significant Dangerous for most people—“Danger: flood zone
with fast flowing water”

>2 Extreme Dangerous for all—“Extreme danger: flood zone with
deep, fast flowing water”
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3. Results

The HEC-HMS model was run using rainfall data with return intervals of 25, 50, 100,
and 500 years. The peak flow rates obtained are given in Table 6 with values sourced
from the literature and the HEC-HMS model. Additionally, hydrographs of the model
simulations at the point where the stream gauge is located (Figure 1) are shown in Figure 9.

Table 6. Peak discharge for 25-, 50-, 100-, and 500-year return periods.

Peak Flow Rate Calculated
by Using

Stream Flow Rate for Various Return Periods

Q25
(m3/s)

Q50
(m3/s)

Q100
(m3/s)

Q500
(m3/s)

HEC-HMS Model 1191.7 1321.2 1466.8 1888.3
Literature * - 1345.0 1502.0 1831.0

* SYGM (General Directorate of Water Management, in Turkish: Su Yönetimi Genel Müdürlüğü), (2019).
“Doğu Akdeniz Basin Flood Management Plan” Report by Republic of Türkiye Ministry of Agriculture and
Forestry—General Directorate of Water Management, Ankara, Türkiye, 1–827.
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Flood propagation maps in the study area belonging to the flow hydrographs obtained
in Figure 9 are shown in Figure 10. In Figure 10, the flood propagation map shows that the
flows in the return periods cannot fit into the river section and exceed the right and left
banks, creating a hazard in the urban area. The right side of the study area is more affected
by possible scenarios. The reasons for this are both the lower elevations of the regions
on the right slopes and the fact that after the second bend of the river meanders on the
upstream side, the river waters reach the right slope due to the centrifugal effect. Although
water levels of up to 10 m were observed in some low-elevation areas in the middle section
of the river in the study area, it was determined that the average water levels in the flood
propagation area increased from 1.868, 1.916, and 1.928 m to 1.966 m from Q25 to Q500.
While the average water velocities at these heights are 0.647 m/s in Q25, it increases to
0.725 m/s in Q500. While the speed values corresponding to the maximum depth are
approximately 6 m/s, the speeds are quite low in areas where water spreads. This is due to
the low slope of the area where the water spreads (up to 6 degrees on average, Figure 8).
Table 7 shows flood propagation areas. The temporal changes of flood propagations can be
followed in detail with the link in the “Supplementary Materials” section.
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Table 7 shows that a large part of the study area (4.288 km2) was affected by floods
starting from the Q25 flow rate. In addition, an area of 4.29% of the flood extent of the
Q25 flow rate is seen in Q50. Similarly, an area of 10.3% of Q25 is seen in Q100, and an
area of 34.5% is seen in Q500. Unfortunately, verification of the hydraulic model could not
be conducted because there were no recorded data. However, considering the past flood
points in Figure 1, it is seen that the model results give water distributions at similar points.
This situation shows that the past floods of the region can be seen in return periods and
the water distributions show the consistency of the results of the model. The hazard levels
posed by these areas in the region were investigated using the DEFRA method. Figure 11
shows the hazard maps of the DEFRA method based on the relationship between flood
depth and flow rates.
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Raster data of water depth values and water velocities obtained after flood modeling
with HEC-RAS were converted into debris factors using the Spatial Analysis
Tools—Reclassify command in the ArcGIS 10.8.2 software. Then, Equation (5) was ap-
plied to these raster data with the help of the Spatial Analysis Tools—Raster Calculator
command and hazard maps were obtained according to hazard classes according to the
limit values in Table 5. When a large part of the study area is an urban area and high
velocities due to slope are multiplied by high water levels, it can be seen that a large part of
the area where the city center is located is classified as an extreme hazard. The lower right
parts of the study area appear to be in low or medium danger due to the agricultural area
and lower velocities and water levels.

4. Discussion

There are many studies in both national and international bodies of literature with the
combination of HEC-RAS and HEC-HMS applied in the Göksu River Basin [29,33]. The
HEC-HMS model is fully automated; therefore, it has been frequently used in the literature
in recent years [28]. Since the HEC-HMS model mainly simulates flow and compares it
with measured data, it fills a significant gap in hydrological–hydraulic modeling studies.
In this study, HEC-HMS results were found to be consistent with observed measurements.

Recent studies showed that DEM resolution is the parameter that directly determines
the operating sensitivity in flood modeling [50]. For this purpose, 5 m high-resolution
digital elevation model data were used in this study. In addition, processing surface details
of buildings, riverbeds, etc., on DEM causes the study application area to turn into detailed
topography. For this purpose, a digital surface model obtained by including layers such
as buildings on a 5 m DEM was used in the study. The fact that this digital surface model
was obtained by remote sensing techniques provides speed and economy and expresses
the most up-to-date status of the topography. However, there are pixels with no height
value at a few points of the river. These points were neglected in the modeling. Another
critical issue pertains to Manning’s “n” values. The CORINE data used for this purpose
(Figure 8) are the latest and most up to date, and roughness assignments are based on the
literature [45,50]. Additionally, if Manning’s coefficients were selected manually (0.06), a
3.62% smaller area (4.31 km2) was determined by modeling the Q50 flow rate. This may
sometimes have a positive or occasionally negative effect, but the error percentage is a size
that should be considered. The use of the HEC-HMS structure in this study hybridizes it.
In this respect, it is valuable and practical. Flood hydrograph peak flow rates obtained by
HEC-HMS are compatible with studies in the literature. The peak flow difference between
the HEC-HMS model and the report by the General Directorate of Water Management
(SYGM) in the literature is presented in Table 6. It can be seen that the HEC-HMS results
coincide with the results in the report. Therefore, these results indicate that the HEC-HMS
model is a reliable and applicable model for flood modeling and flood hazard mapping. As
a result of modeling, using the DEFRA method is vital in flood management studies before
and in times of crisis and in prioritizing access to disaster victims (search and rescue) after
floods [53].

Floods appear to be caused by the dimensional inadequacy of river sections to pass
incoming flow rather than by structures or parameters affecting water flow hydrology.
Water exceeding its cross section spreads rapidly in urban areas because the permeability
of the channels or ground surfaces to be drained is very low. There are five bridges in
the study area, including two pedestrian bridges. Model results show that bridge sec-
tions can pass incoming flood flows. Still, river sections are insufficient in regions where
section narrowing occurs and inundates the left slope from upstream to downstream
in the study area. Section-editing (cleaning) work needs to be performed, especially in
narrow cross sections. To make the region resistant to flood danger, additional drainage
channels can be built on the right slope of the river, and flow rates and velocities can be
managed by reducing the base slope. In addition, meandering areas should be consid-
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ered for the development of parks and gardens for recreational purposes and kept from
construction plans.

5. Conclusions

In this study, flood propagation and flood hazard mapping of Göksu River Basin,
Mersin, Türkiye, according to the DEFRA method were examined using GIS, HEC-HMS,
and HEC-RAS. Maps were obtained for Q25, Q50, Q100, and Q500 floods, whose return
periods represent standard recurrence periods. Flood maps showed that most of the area
was highly affected by flood events during the 25-year return period (Q25).

The results of the modeling scenarios showed that the average water levels in the
study area increased from 1.8 m to 2 m on average and the levels spread over an area from
4.28 km2 to 5.76 km2. In addition, considering that the average velocity in the region was
up to 0.7 m/s and the area studied was an urban area, in this case, the debris factor is equal
to 1. It was determined that the majority of the flood-affected areas had an “Extreme” level
of hazard (please see Table 5). This study is the first contribution to the literature regarding
coupled hydrological and hydraulic modeling of the Göksu River Basin. The results can
be used in basin management plans. Combining the hydrologic and hydraulic models
used in this study can be applied to different flood-prone areas to generalize and check the
reliability. To reduce the loss of goods and prevent possible damage caused by inundation,
the models can be used to manage flood control and simulate inundation in real time. It is
envisaged that flood effects in this region can be prevented by cleaning the river bottom
and opening side channels. In addition, a large part of this floodplain should be forested
and kept as agricultural land and/or parkland.

Supplementary Materials: HEC-RAS model videos: Flood inundated model for Q25: https://www.
youtube.com/watch?v=dhHkYgVg1uw&t=36s; Flood inundated model for Q50: https://www.
youtube.com/watch?v=tPw96k4CqxE; Flood inundated model for Q100: https://www.youtube.
com/watch?v=vynlK50epzk; Flood inundated model for Q500: https://www.youtube.com/watch?
v=8I_51DY2V3o (accessed on 16 January 2024).
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