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Abstract: The disassembly of end-of-life (EoL) products is of high concern in sustainability research.
It is important to obtain reasonable disassembly depth during the disassembly process. However, the
overall safety of the disassembly process is not considered during the disassembly depth optimization
process, which leads to an inability to accurately obtain a reasonable disassembly depth. Considering
this, a multi-objective disassembly depth optimization method for EoL smartphones considering the
overall safety of the disassembly process is proposed to accurately determine a reasonable disassembly
depth in this study. The feasible disassembly depth for EoL smartphones is first determined. The
reasonable disassembly process for EoL smartphones is then established. A multi-objective function
for disassembly depth optimization for EoL smartphones is established based on the disassembly
profit per unit time, the disassembly energy consumption per unit time and the overall safety rate
of the disassembly process. In order to increase solution accuracy and avoid local optimization, an
improved teaching–learning-based optimization algorithm (ITLBO) is proposed. The overall safety of
the disassembly process, disassembly time, disassembly energy consumption and disassembly profit
are used as the criteria for the fuzzy analytic hierarchy process (AHP) to evaluate the disassembly
depth solution. A case of the ‘Xiaomi 4’ smartphone is used to verify the applicability of the proposed
method. The results show that the searchability of the non-inferior solution and the optimal solution
of the proposed method are improved. The convergence speeds of the ITLBO algorithm are 50.00%,
33.33% and 30.43% higher than those of the TLBO algorithm, and the optimal solution values of
the ITLBO algorithm are 3.91%, 5.10% and 3.45% higher than those of the TLBO algorithm in three
experiments of single objective optimization.

Keywords: disassembly depth; overall safety of disassembly process; ITLBO algorithm; Fuzzy AHP

1. Introduction

The rapid development of science and technology has accelerated the speed of product
updates and shortened the service life of products, resulting in a large number of end-of-life
(EoL) products such as televisions and personal computers [1]. According to statistics,
China produces nearly 10 million EoL smartphones every year [2] and the recycling rate for
EoL smartphones in China is less than 1% [3]. Because these EoL products have not been
properly treated, the accumulation of waste products results. The accumulation of waste
products threatens the natural environment and wastes a lot of resources [4]. Recycling,
reusing and remanufacturing EoL products not only allows the recycling of resources but
also reduces environmental pollution and increases economic benefits [5]. Disassembly
is a crucial step in the recycling and remanufacturing process and plays an irreplaceable
role in sustainable development [6]. By analyzing the existing research, it can be seen that
the partial disassembly mode is more practical than the complete disassembly mode [7].
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Therefore, the partial disassembly mode has been widely accepted and adopted by dis-
assembly enterprises [8]. However, how to reasonably secure a satisfactory disassembly
depth to improve efficiency and reduce costs has always been a concern for enterprises and
researchers.

As one of the prevalent and short-life (the average lifespan of a mobile phone is only
3.17 years) electrical and electronic equipment [9,10], the disassembly depth optimization
problem of EoL smartphones has attracted increasing attention. At present, there are multi-
ple studies focusing on electrical and electronic equipment wastes in terms of economic
benefits and environmental impact [11,12]. In the actual disassembly process, disassembly
safety is particularly important. In terms of disassembly safety, the traditional disassembly
mode only focuses on the disassembly safety of some parts with high disassembly risk. To
the best of our knowledge, the overall disassembly safety process that is more in line with
actual production is not considered during the disassembly depth optimization process,
which leads to an inability to accurately obtain a reasonable disassembly depth. Therefore,
research on the disassembly depth optimization problem of EoL smartphones, consider-
ing the overall disassembly safety process, makes sense in both theoretical and practical
aspects.

Given this background, a multi-objective disassembly depth optimization method
for EoL smartphones considering the overall safety of the disassembly process is pro-
posed in this work. In comparison with existing studies, this paper makes the following
contributions:

(1) A multi-objective function for disassembly depth optimization of EoL smartphones is
established based on disassembly profit per unit time, disassembly energy consump-
tion per unit time and overall safety rate of the disassembly process.

(2) An improved teaching–learning-based optimization algorithm (ITLBO) is proposed
with an improved teacher phase for increasing the solution accuracy and increasing
the singer chaotic map to avoid local optimization.

(3) The overall safety of the disassembly process, disassembly time, disassembly en-
ergy consumption and disassembly profit are selected as the criteria for the fuzzy
analytic hierarchy process (AHP) to obtain the optimal disassembly depth for EoL
smartphones.

The rest of this paper is organized as follows: Section 2 reviews the relevant literature.
In Section 3, a multi-objective disassembly depth optimization method for EoL smartphones
considering the overall disassembly safety process is introduced. Section 4 analyzes EoL
smartphone disassembly as an illustrative example. Section 5 concludes this paper and
indicates future research issues.

2. Literature Review

During the disassembly optimization process, the objective function is established
considering the different disassembly factors. The disassembly model is an intuitionistic
method for expressing the disassembly factors. Ren et al. [13] used disassembly profit as the
objective function for the partial disassembly line balancing problem. Mandolini et al. [14]
assessed the best disassembly time for target components using the disassembly time
model. Yang et al. [15] proposed the objective function of the disassembly line balancing
problem based on the disassembly time model, the carbon dioxide emissions model and
the recycling cost model. Time efficiency, energy efficiency and value efficiency are newly
defined by Cao et al. [16] as optimization objectives. Lu et al. [17] proposed that profit and
energy consumption should be considered as important criteria. Xu et al. [18] adopted
disassembly time, disassembly cost and disassembly difficulty to evaluate the generated
disassembly solution. Xing et al. [19] used the disassembly time model to consider execu-
tion time and preparation time to solve the asynchronous parallel disassembly sequence
planning problem. Liu et al. [20] formulated a profit model to plan the disassembly se-
quence. Liang et al. [21] proposed the energy consumption model for disassembly activities
for a two-sided disassembly line balance. In order to choose the best and most feasible
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disassembly plan, Aicha et al. [22] proposed a mathematical formulation that combines
the index of quality and the index of processing time. Zeng et al. [23] established the
energy consumption and profit-oriented multi-product disassembly line balancing model.
Wang et al. [24] constructed the comprehensive optimization objectives model that includes
minimizing the number of stations and smoothness index, maximizing disassembly profit
and minimizing disassembly energy consumption. The above researchers took disassem-
bly profit, disassembly time and environmental impacts as the disassembly optimization
objectives. However, the overall safety of the disassembly process is not reasonably con-
sidered in the existing research; therefore, a multi-objective function that quantifies the
overall safety of the disassembly process should be established to provide guidance for
disassembly depth optimization for EoL smartphones.

In the existing literature, research on the disassembly optimization problem for EoL
products mainly focuses on the solution methods. During the process of handling EoL
products, Yeh et al. [25] proposed the use of the modified simplified swarm optimization
algorithm to seek the optimal disassembly sequence. Xia et al. [26] presented a simpli-
fied teaching–learning-based optimization algorithm for solving disassembly sequence
planning problems effectively. As the complexity of products increases, Tseng et al. [27]
presented a block-based genetic algorithm for disassembly sequence planning to improve
the solution quality. As the size of components increases, Xie et al. [28] proposed a modified
grey wolf optimizer to obtain the optimal disassembly sequence. Tseng et al. [29,30] used a
Flatworm algorithm and an improved particle swarm optimization algorithm to optimize
the disassembly sequence. Lou et al. [31] proposed an improved multi-objective hybrid
grey wolf optimization algorithm to obtain Pareto optimal disassembly plans. Kalayci
et al. [32] proposed a hybrid genetic algorithm for the sequence-dependent disassem-
bly line balancing problem. Considering the disassembly precedence relationships and
sequence-dependent parts removal time increments, Liu et al. [33] presented an improved
discrete artificial bee colony algorithm for solving the sequence-dependent disassembly
line balancing problem. Liu et al. [34] designed an improved multi-objective discrete bee
algorithm to solve the problem of robot disassembly line balancing. Xia et al. [35] proposed
an improved adaptive simulated annealing genetic algorithm to balance the disassembly
line. Xu et al. [36] proposed the improved discrete bee algorithm to obtain the optimal
solution for the human–robot collaborative disassembly line balancing problem. Liang
et al. [37] devised a multi-objective group teaching optimization algorithm to solve the
disassembly line balancing problem. In order to improve the ease of disassembly, Giu-
dice et al. [38] introduced a structured method for the analysis and reconfiguration of the
disassembly depth. Achillas et al. [39] presented a mathematical formulation based on
the cost–benefit analysis concept to determine the optimal disassembly depth for a given
product. Smith et al. [40] used life cycle impact assessment tools (Simapro Eco-indicator
99) to perform cost–benefit analyses to find an optimized disassembly depth. At present,
heuristic optimization algorithms with excellent performance are used for disassembly
optimization by a majority of researchers. However, heuristic optimization algorithms
are almost not used in the study of the disassembly depth optimization problem. This
leads to difficulties in obtaining an accurate optimal disassembly depth for EoL products.
Therefore, heuristic optimization algorithms with excellent performance are important for
the disassembly depth optimization process.

The selection of the optimal scheme from many non-inferior schemes is difficult. As
a method with reliable performance, the fuzzy AHP was used in a related study [41].
Because different products have different features, the criteria for the fuzzy AHP are also
different [42]. Heo et al. [43] proposed five criteria (technological, market-related, economic,
environmental and policy-related) for evaluating the renewable energy dissemination
program. In order to evaluate the disassembly line balancing schemes, the task time, part
demand, revenue generated, part hazardous, state of material and fragility were taken into
consideration by Avikal et al. [44]. Yang et al. [15] proposed five criteria for the disassembly
line balance problem as follows: workstation number, smoothness index, disassembly time,
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CO2 saving rate and recycling cost. Considering the selection of the fast charging station for
the electric vehicle, ten related criteria (population density, shopping malls, roads, income
rates, transportation stations, petrol stations, park areas, green areas, slope and land values)
were proposed by Guler et al. [45]. In order to determine the optimal copper removal
process, Zhou et al. [46] proposed four criteria (the total cost, stability, reaction rate and
reliability) for evaluating copper removal schemes. Economic, technical, environmental
and social factors were used by Sherif et al. [47] for the selection of battery recycling plant
locations in sustainable environments. Tuo et al. [48] used AHP to evaluate the retention
attributes of tasks based on the problem characteristics and the high-value attributes
of the task (appearance and mechanical and electrical components). Disassembly time,
disassembly energy consumption and disassembly profit were used by many researchers as
the criteria for selecting the optimal disassembly depth for EoL smartphones. However, the
overall safety of the disassembly process of EoL smartphones has been neglected. Therefore,
the overall safety of the disassembly process should also be used as an important criterion
for selecting the optimal disassembly depth for EoL smartphones.

The above research results have laid the foundation for research on disassembly depth
optimization for EoL smartphones. However, the overall safety of the disassembly process
for each disassembly depth was seldom mentioned in the above literature, which leads to
an inability to accurately obtain a reasonable disassembly depth during the disassembly
depth optimization process. Therefore, a multi-objective disassembly depth optimization
method for EoL smartphones, considering the overall safety of the disassembly process, is
proposed in this paper. We introduce this proposed method in the next section.

3. The Proposed Method

In this section, a multi-objective disassembly depth optimization method for EoL
smartphones considering the overall safety of the disassembly process is proposed. The
flow chart of the proposed method is shown in Figure 1.
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In the first step, the feasible disassembly depth of the EoL smartphones is determined
based on the precedence graph and disassembly rules. The second step is to establish a
reasonable disassembly process. In the third step, a multi-objective function is established
based on the disassembly profit per unit time, the disassembly energy consumption per
unit time and the overall safety rate of the disassembly process. In the fourth step, the
ITLBO algorithm is proposed to optimize the disassembly depth. The fifth step assesses
the disassembly depth in the pareto solution set using fuzzy AHP.

3.1. Determination of the Feasible Disassembly Depth

A precedence diagram is commonly used to represent the relationships between parts
of the EoL product. For example, Figure 2 shows the precedence relationship between
EoL smartphone parts. The precedence constraint between two parts is connected by a
unidirectional edge. The precedence matrix is obtained based on the precedence graph. For
instance, part 1 is the predecessor of part 2; thus, part 1 is disassembled before part 2, and
D12 = 1. Part 4 is not the predecessor of part 1; thus, part 4 is not disassembled before part
1, and D41 = 0.
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The disassembly rules are used to obtain some optimized disassembly plans. The
decision order of disassembly rules is rotated during disassembly sequence planning. The
specific content of disassembly rules is as follows: (1) remove the part that has the highest
economic benefit first; (2) remove the parts that can be removed in the same disassembly
direction first; (3) remove the parts that use the same tool first; (4) remove the parts that
change the small disassembly directions first.

The disassembly sequences are generated based on the precedence graph, the prece-
dence matrix and the disassembly rules. Then, the feasible disassembly depth is obtained
by dividing the disassembly stopping points of the above disassembly sequences. The
specific process for determining the feasible disassembly depth is shown in Figure 3.
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3.2. Establishment of the Disassembly Process

A reasonable disassembly process can improve the accuracy of the optimization model.
Thus, it is important to establish a reasonable disassembly process. In this section, the
disassembly process is built by analyzing the actual disassembly experiment for EoL
smartphones. The specific disassembly process for EoL smartphones is shown in Figure 4.
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The EoL smartphone is divided into recyclable materials, recyclable parts and remain-
ing parts. Recyclable materials are divided into plastic materials, metal materials and
mixing materials. The recyclable parts are divided into damaged parts and qualified parts.
The damaged parts are treated as mixing materials. When the current disassembly depth
is not the optimal disassembly depth, the remaining parts are disassembled continuously.
When the current disassembly depth is the optimal disassembly depth, the remaining parts
are not disassembled. The remaining parts of the optimal disassembly depth are treated as
mixing materials.

3.3. Establishment of Objective Function

The main factors influencing the disassembly depth are environmental impact and
economic benefits. As one of the most prevalent electronic devices, the overall disassembly
safety process is also a key factor in EoL smartphones. Therefore, the disassembly profit
per unit time, the disassembly energy consumption per unit time and the overall safety
rate of the disassembly process are selected as the objectives for evaluating the disassembly
depth of EoL smartphones. For the convenience of the research, the disassembly process
should meet the following assumptions: (1) The research object is an EoL smartphone (the
representative of the EoL equipment) in the disassembly table. (2) Only one main part
can be disassembled at each time. (3) The disassembly is in an ideal state; the parts are
not damaged during the disassembly process. (4) All parts of the EoL smartphone can be
recycled.
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The disassembly time model for EoL smartphones mainly considers five factors as
follows: the basic disassembly time (the time of the necessary disassembly action), the tool
changing time, the tool positioning time, the detection time and the tidying time.

The tool changing time for disassembling part i (ui) is determined as follows:

ui = Niv (1)

where v is the time required to change the disassembly tool once and Ni is the number of
changing tools when part i is disassembled.

The tool positioning time for disassembling part i (hi) is determined as follows:

hi = zim (2)

where zi is the constraint number for part I and m is the tool positioning time for removing
a constraint.

The total disassembly time for disassembling an EoL smartphone (T) is determined as
follows:

T =
n

∑
i=1

( fi + Niv + zim + C + J) (3)

where fi is the basic disassembly time for part i, C is the tidying time for disassembling a
part, J is the detection time for a part and n is the number of EoL smartphone parts.

The disassembly profit is affected by the disassembly benefit and the disassembly cost.
The disassembly benefit mainly considers the benefits of recyclable materials and recyclable
parts. The disassembly cost mainly considers the following factors: the procurement cost,
the employee cost, the workshop rental cost, the electricity cost and the tool damaging cost.

The disassembly benefit of the recyclable parts of an EoL smartphone (B1) is deter-
mined as follows:

B1 =
n

∑
i=1

(ri × p) (4)

where ri is the price of recyclable part i and p is the quality rate of recyclable parts.
The disassembly benefit of recyclable materials in an EoL smartphone (B2) is deter-

mined as follows:
B2 = Z1D1 + Z2D2 + Z3D3 (5)

where Z1 is the weight of the plastic materials, Z2 is the weight of the metal materials, Z3 is
the weight of the mixing materials, D1 is the unit price for the plastic materials, D2 is the
unit price for the metal materials and D3 is the unit price for the mixing materials.

The employee cost of disassembling an EoL smartphone (C2) is determined as follows:

C2 = T × k1

3600
(6)

where k1 is the employee cost for an hour.
The workshop rental cost for disassembling an EoL smartphone (C3) is determined as

follows:
C3 =

k2

d × h × 3600
× T

a
(7)

where k2 is the workshop rental cost for a month, a is the number of disassembly tables in a
workshop, d is the number of working days in a month and h is the daily working time.

The electricity cost of disassembling an EoL smartphone (C4) is determined as follows:

C4 =
(P1 × t1 + P2 × t2 + P3 × t3 + P4 × t4)

3.6 × 106 × c (8)

where P1 is the power of the hot air gun, P2 is the power of the electric screwdriver, P3 is
the power of the detector, P4 is the power of the lamp, t1 is the working time of the hot air
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gun, t2 is the working time of the electric screwdriver, t3 is the working time of the detector,
t4 is the working time of the lamp and c is the price per kilowatt-hour of electricity. The
units for P1, P2, P3 and P4 is watt.

The tool damaging cost of disassembling an EoL smartphone (C5) is determined as
follows:

C5 =
q

∑
l=1

(ul × gl) (9)

where q is the number of tools, ul is the time spent using the tool l and gl is the tool damage
cost of using tool l once.

The total profit of disassembling an EoL smartphone (L) is determined as follows:

L = B1 + B2 − C1 − C2 − C3 − C4 − C5 (10)

where C1 is the procurement cost.
The disassembly profit per unit time of disassembling an EoL smartphone (L1) is

determined as follow:
L1 =

L
T

(11)

Through the actual disassembly experiment and by analyzing the disassembly of
EoL smartphones, we think that disassembly energy consumption mainly comes from the
following five aspects: using the suction cups, moving tools and parts, disassembling the
board to board (BTB) connectors, disassembling the buckle and using the electric equip-
ment. Therefore, the disassembly energy consumption model is constructed based on the
following aspects: energy consumption when using the suction cups, energy consumption
by moving tools and parts, energy consumption when disassembling the BTB connectors,
energy consumption for disassembling the buckle, and energy consumption when using
the electric equipment.

The suction cup is only used to remove the back cover. The energy consumed when
using the suction cups (M1) is determined as follows:

M1 = F1 × H1 (12)

where F1 is the traction generated using the suction cup and H1 is the distance of moving
the suction cup. The unit of measurement of F1 is Newton.

The energy consumed by moving tools and parts (M2) is determined as follows:

M2 =
m2

∑
k=1

F2k × H2k (13)

where F2k is the force of moving tools and parts k, H2k is the distance of moving tools and
parts k, m2 is the number of tools and parts and m2 is the sum of the number of tools (q)
and the number of parts (n). The unit of measurement of F2k is Newton.

The energy consumption during disassembling of the BTB connectors (M3) is deter-
mined as follows:

M3 =
m3

∑
e=1

EcH3et1e
3H2

4e
8H3

5e
(14)

where m3 is the number of BTB connectors, Ec is the elastic modulus, H3e is the connection
position width of the BTB connector e, t1e is the connection position thickness of the BTB
connector e, H4e is the height of the BTB connector e and H5e is the length of the connector e.

The energy consumption during disassembling of the buckle (M4) is determined as
follows:

M4 =
m4

∑
f=1

F6 f × H6 f (15)
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where m4 is the number of buckle f, F6f is the force of disassembling buckle f and H6f is the
distance of disassembling buckle f. The unit of measurement of F6f is Newton.

The energy consumption when using the electric equipment (M5) is determined as
follows:

M5 = P1 × t1 + P2 × t2 + P3 × t3 + P4 × t4 (16)

The total disassembly energy consumption when disassembling an EoL smartphone
(M) is determined as follows:

M = M1 + M2 + M3 + M4 + M5 (17)

The disassembly energy consumption per unit time of disassembling an EoL smart-
phone (M6) is determined as follows:

M6 =
M
T

(18)

By analyzing the disassembly process of EoL smartphones, we found that the tem-
perature of the disassembly environment, the accuracy of the tool positioning, the heat
dissipation performance of the disassembly tool and the risky degree of parts are the main
factors influencing the disassembly safety of each part. Therefore, the model for the overall
safety of the disassembly process for disassembling an EoL smartphone is constructed
considering the above four factors. Four factors influencing disassembly are defined as
follows: (1) The disassembly process is considered risky when the temperature of the disas-
sembly environment is higher than 60 ◦C. (2) The disassembly process is considered risky
when the positioning of the tool is biased. (3) The disassembly process is considered risky
when the temperature of the disassembly tool is higher than 55 ◦C. (4) The disassembly
process is considered risky when the operator is injured by the parts. The rate of risk of
disassembling each part is determined using the disassembly experiment. Three operators
with a similar disassembly experience are divided into three groups. The operator of
every group disassembles the same part and repeats this W times. The number of risky
disassembly experiments in every group is recorded.

The rate of risk of disassembling part i (Ai) is determined as follows:

Ai =

(w1i
W + w2i

W + w3i
W
)

3
× 100% (19)

where w1i is the risky number of disassembling part i in the first disassembly experiment
group, w2i is the risky number of disassembling part i in the second disassembly experi-
ment group and w3i is the risky number of disassembling part i in the third disassembly
experiment group.

The overall safety rate of the disassembly process when disassembling an EoL smart-
phone (O) is determined as follows:

O =
m5

∏
i=1

(1 − Ai)× 100% (20)

where m5 is the number of disassembling parts at each disassembly depth.
The disassembly profit per unit time, the disassembly energy consumption per unit

time and the overall safety rate of the disassembly process are selected as the optimization
objectives. The objective function (f (x)) is constructed as follows:

min f (x) = min
[

1
O

,
1
L1

, M6

]
(21)
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3.4. Optimization of Disassembly Depth

The TLBO algorithm is proposed based on inspiration from the teaching and learning
process. Teacher and learners are the two vital components of the algorithm and describe
the two basic modes of learning through the teacher phase and the learner phase. Because
the TLBO algorithm is only needed to set the initial parameters and the solution process of
the TLBO algorithm is simple, the TLBO algorithm is widely used. Therefore, the ITLBO
algorithm is proposed for solving the multi-objective disassembly depth optimization
problem of EoL smartphones in this section. In order to avoid falling into the local optimum,
the Singer chaotic map is used in the population initialization of the ITLBO algorithm.
In the teacher phase of the ITLBO algorithm, the nonlinear convergence factor is used to
increase the searchability and solution accuracy. The pareto solution set is used to obtain
the disassembly depth that can consider multiple objectives of the EoL smartphones. The
flow chart of the ITLBO algorithm is shown in Figure 5.
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The content of the ITLBO algorithm is specifically explained based on the disassembly
depth optimization problem of the EoL smartphones. The best solution (the optimal disas-
sembly depth) is considered the teacher. All feasible disassembly depths are considered
as the learners. The decision variables are the three factors in the objective function in
Section 3.3. The search space is the value range of the above three factors. By analyzing
the actual disassembly requirements of EoL smartphones, the range of the search space
for disassembly profit per unit time should be greater than 0 and the range of the search
space for the overall disassembly safety process rate should be greater than 70%. The
implementation steps of the ITLBO are summarized as follows.

(1) The parameter initialization. In order to avoid falling into local optimum, the singer
chaotic map is used. The equation for the singer chaotic map [49] is determined as
follows:

xk+1 = u
(

7.86xk − 23.31xk
2 + 28.75xk

3 − 13.302875xk
4
)

, u ∈ (0.9, 1.08) (22)

where xk is the value of the kth singer chaotic map and u is the coefficient of the singer
chaotic map.
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(2) The teacher phase. In this phase, learners learn through a teacher. In order to increase
searchability and solution accuracy, the nonlinear convergence factor is used. The
equation for the nonlinear convergence factor is determined as follows:

Xi
new = Xi

old + K(Xteacher − TF · Mean) (23)

TF =
2

lg2
× lg

(
2 −

(
t

tmax

)2
)

(24)

where Xi
new is the result of the ith learner after learning, Xi

old is the result of the ith
student before learning, Xteacher is the result of the teacher, Mean is the mean of all
learners, TF is the teaching factor, K is the random number in the range [0, 1], t is the
current number of iterations and tmax is the maximum number of iterations.

(3) The learner phase. The learners increase their knowledge by interacting with each
other. A learner interacts randomly with others to enhance their knowledge. The
principle [50] is determined as follows:

Xi
N =

{
Xi + K(Xi − X j), T(X j) < T(Xi)
Xi + K(X j − Xi), T(Xi) < T(X j)

(25)

where Xi is the result for learner i, Xj is the result for learner j, Xi
N is the new result

for learner i after the learner phase, T(Xi) is the fitness value of Xi and T(Xj) is the
fitness value of Xj.

(4) The pareto solution set. All non-inferior solutions of the disassembly depth are output.
The pareto solution set can provide solutions for the multi-objective disassembly
depth optimization problem of EoL smartphones.

3.5. The Assessment of Disassembly Depth

It is difficult to compare the advantages and disadvantages of the pareto solution in the
solution set. For the disassembly problem, we should select the optimal disassembly depth.
Fuzzy AHP is widely applied to address the uncertainty of decision-making and has been
applied in many fields. Fuzzy AHP has obvious advantages in computational time, simplicity
and stability. Therefore, fuzzy AHP is selected for assessment of the disassembly depth.

During the actual disassembling process, the disassembly time and the disassembly
profit are considered to be the most important factors. The disassembly energy consumption
is concerned with environmental protection issues. Moreover, the overall disassembly
safety process should also be taken seriously. Therefore, disassembly time, disassembly
energy consumption, disassembly profit and the overall safety of the disassembly process
are selected as the criteria. The structural hierarchy of multi-objective disassembly depth
decisions for EoL smartphones is shown in Figure 6. The fuzzy judgment matrix Q of the
standard layers can be obtained as shown in Equation (26).

Q =


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

 (26)

The elements of the fuzzy judgment matrix Q are determined based on the scale of the
fuzzy AHP value. The 0.1–0.9 nine-level scale method is the maximum number of grades
that people can accept. Thus, the 0.1–0.9 nine-level scale method is applied to the scale
of the fuzzy AHP value. The weights of the criteria are determined based on the fuzzy
judgment matrix Q and the specific steps are as follows.
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Firstly, the fuzzy judgment matrix Q is summed by rows; the formula for its calculation
is:

Qy =
m6

∑
k=1

qyk (27)

where Qy is the sum of row y of the fuzzy judgment matrix Q and m6 is the number of the
criterion.

Then, the weight coefficient is calculated based on the following equation:

Xy =
Qy − 2 − m6

m6(m6 − 1)
(28)

where Xy is the weight coefficient of row y.
Finally, the determinant of the weight coefficient ri is determined as follows:

ri =
[
X1, X2, · · · Xm6

]
(29)

In order to verify whether the obtained weight is reliable, the fuzzy consistent matrix
G is obtained. The specific treatment method is determined as follows:

Gyk =
(m6 − 1)

(
Xy − Xk

)
2

+ 0.5 (30)

CI is calculated using the following equation. When CI < 0.1, it means that the data
meets the requirements for fuzzy consistency. The average index for randomly generated
weights R is set to 0.9 [15].

CI =

m6
∑

y=1

m6
∑

k=1

∣∣∣Gyk − qyk

∣∣∣
m62R

(31)
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4. Experiment and Discussion
4.1. Fundamental Data

The EoL smartphone, namely ‘Xiaomi 4’, was selected as an example to verify the
applicability of the proposed method. The relevant information for ‘Xiaomi 4’ was obtained
using the disassembly experiment. The disassembly parts graph for ‘Xiaomi 4’ is shown in
Figure 7, and contains 11 main parts of ‘Xiaomi 4’ and their numbers. The precedence graph
of ‘Xiaomi 4’, which shows the precedence constraint relationship between the 11 main
parts of ‘Xiaomi 4’, is shown in Figure 8. In addition, the basic information for ‘Xiaomi
4’ is shown in Table 1. The disassembly tool information is shown in Table 2. In Table 1,
the weight of the parts is measured using the electronic scale, and the recycling price for
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parts is obtained through market research; the price of the parts may fluctuate. Because
relative comparison is used in this study, the results of the study will not be affected by the
recycling price of parts. In Table 2, the weight of the disassembly tool is measured using
the electronic scale and the tool damage cost is estimated using the wholesale purchase
prices and service life statistics. The wholesale purchase price and service life statistics
are obtained through market research. The feasible disassembly depth of ‘Xiaomi 4’ is
determined based on the precedence graph for ‘Xiaomi 4’, the basic information for ‘Xiaomi
4’ and the disassembly rules.
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Table 1. The basic information for ‘Xiaomi 4’.

Part
No. Part Name

The
Disassembly

Direction

Constraint/
Quantity

The Disassembly
Tool Weight (g)

The Basic
Disassembly

Time (s)
The Price (¥)

1 SIM card tray +X Buckle/1 Retrieve card pin 0.9 2.00 0.01
2 Back cover +Z Buckle/1 Stick–suction cups 11.2 15.50 0.80

3 Middle frame +Z Screws/10,
buckle/1

Electric screwdriver–
stick–tweezer 10.6 45.00 0.20

4 Flashlight −Z Screws/3 Electric screwdriver–
tweezer 0.7 12.50 3.50

5 Front-facing
camera +Z BTB/1 Stick–tweezer 0.3 6.00 15.00

6 Battery +Z BTB/1,
sealant/1

Heating
gun–stick–tweezer 46.0 65.00 11.50

7 Motherboard +Z Buckle/2 Stick–tweezer 14.1 16.00 45.00
8 Back camera −Z BTB/1 Stick–tweezer 0.7 8.00 22.00
9 Receiver +Z Buckle/1 Stick–tweezer 0.7 6.40 1.20

10 Tail plate +Z Sealant/1,
screws/3

Electric screwdriver–
Heating

gun–tweezer
2.8 35.70 25.00

11 Screen −Z Sealant/1 Heating
gun–tweezer–stick 62.6 80.00 1.30

Table 2. Disassembly tool information.

Tool Name Weight (g) Power (W) The Tool Damage Cost for
Each Use (¥)

Retrieve card pin 0.2 — 0.005
Electric screwdriver 248.1 50 0.01

Heating gun 210.6 300 0.01
Stick 18.6 — 0.01

Tweezer 12.8 — 0.002
Suction cups 2.1 — 0.005

Detector — 5 —
Lamp — 15 —

The disassembly time, the disassembly energy consumption, the disassembly profit
and the overall safety of the disassembly process for each disassembly depth are calculated
based on the established model. In order to improve the accuracy of the calculation, the
quantitative parameters for ‘Xiaomi 4’ are shown in Table 3. The quantitative parameters
for ‘Xiaomi 4’ are determined using the disassembly experiments and market research.
Three operators with similar disassembly experiences are divided into groups A, B and C.
The operator of every group disassembles the same part and repeats this 20 times (there
are 20 experiments in each group). The number of risky disassembly experiments in every
group is recorded. The risky disassembly probability for each part of ‘Xiaomi 4’ is shown
in Table 4.
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Table 3. The quantitative parameters of ‘Xiaomi 4’.

The Quantitative Parameters Value Unit Data Source

The disassembly time for disassembling a screw 2.00 (s)

Disassembly
experiments

The time required to change the disassembly tool once 3.00 (s)
The tool positioning time 1.50 (s)

The detection time for a part 7.00 (s)
The tidying time for disassembling a part 4.50 (s)

The heating time for disassembling the tail plate 15.00 (s)
The heating time for disassembling the battery 45.00 (s)
The heating time for disassembling the screen 55.00 (s)

The weight of a screw 0.15 (g)
The quality rate of recyclable parts 95.00% —

Market research

The recycling price of metal materials 4500.00 (¥·t−1)
The recycling price of mixing materials 4000.00 (¥·t−1)
The recycling price of plastic materials 2200.00 (¥·t−1)

The purchase cost of EoL ‘Xiaomi 4’ 35.00 (¥)
The employee cost 32.00 (¥·h−1)

The employee’s working time 8.00, 22.00 (h·d−1, d·m−1)
The workshop rental cost 4000.00 (¥·m−1)

The number of disassembly tables 10 —
The price per kilowatt-hour of electricity 1.00 (¥·(kw·h) −1)

The disassembly energy consumption for disassembling a screw 0.01 (J)

Disassembly
experiments

The disassembly energy consumption for disassembling a BTB 0.03 (J)
The disassembly energy consumption for disassembling a back cover 0.42 (J)

Energy consumption for moving a part 11.50 (J)
Energy consumption for moving a tool 15.00 (J)

The disassembly energy consumption for disassembling a SIM card tray 0.03 (J)
The disassembly energy consumption for disassembling a buckle 0.20 (J)

Table 4. The risky disassembly probability of each part of ‘Xiaomi 4’.

Part
No.

Group A Group B Group C
The Risky

Disassembly
Probability

The Number
of Risky

Disassembly
Experiments

The Number
of

Disassembly
Experiments

The Number
of Risky

Disassembly
Experiments

The Number
of

Disassembly
Experiments

The Number
of Risky

Disassembly
Experiments

The Number
of

Disassembly
Experiments

1 1 20 0 20 1 20 3.33%
2 0 20 1 20 1 20 3.33%
3 1 20 1 20 1 20 5.00%
4 0 20 1 20 0 20 1.67%
5 0 20 0 20 1 20 1.67%
6 1 20 2 20 1 20 6.67%
7 1 20 0 20 1 20 3.33%
8 0 20 1 20 0 20 1.67%
9 1 20 1 20 0 20 3.33%

10 1 20 1 20 1 20 5.00%
11 2 20 2 20 1 20 8.33%

4.2. Results

The program is developed using Matlab2019b and its running environment is Intel®

coreli7@2.3GHZ, RAM16.00Gn, win7 system. Based on the practicability of disassembly,
the population size is set to 15 and the iteration number is set to 100. The disassembly
depth non-inferior solution set for ‘Xiaomi 4’ is obtained as shown in Table 5. In order to
show the results in Table 5 intuitively, the spatial distribution of the non-inferior solution
is shown in Figure 9. The number in Figure 9 corresponds to the number of disassembly
depths in Table 5.
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Table 5. The disassembly depth non-inferior solution set for ‘Xiaomi 4’.

Disassembly Depth
No. Disassembly Depth Disassembly Profit per

unit Time (¥·t−1)

Disassembly Energy
Consumption per Unit

Time (J·t−1)

The Overall
Disassembly Safety

Process Rate

1 1-2-3-5-6-10-4-7-8 0.1854 63.3579 72.3439%
2 1-2-3-5-4-7 0.1024 22.3968 82.9795%
3 1-2-3-5-4-7-8 0.1688 21.8929 81.5937%
4 1-2-3-5-4-7-8-9 0.1565 21.5224 78.8767%
5 1-2-3-5-4-7-9-8 0.1565 21.5224 78.8767%
6 1-2-3-4-5-7 0.1024 22.3968 82.9795%
7 1-2-3-4-5-7-8 0.1688 21.8929 81.5937%
8 1-2-3-4-5-7-8-9 0.1565 21.5224 78.8767%
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Based on the four criteria, the fuzzy judgment matrix Q of the standard layers can be
obtained as shown in Table 6. The method used to obtain the values in Table 6 is as follows:
three researchers with disassembly experience compared the importance of all evaluation
indexes at the same level and got consistent results. The values in Table 6 were then assigned
according to the assignment criteria of the 0.1–0.9 nine-level scale method. The results of
the weight coefficients and the CI are shown in Table 7. Due to the degree of inconsistency
within the allowable range (CI = 0.09805 < 0.1), the result of this decision is credible. The
weights of the impact of each criterion on each scheme are synthesized and the relevant
information on data processing is shown in Table 8. By analyzing the comprehensive
sort of Table 8, the optimal disassembly depth for ‘Xiaomi 4’ is disassembly depth 3 (SIM
card tray–Back cover–Middle frame–Front-facing camera–Flashlight–Motherboard–Back
camera) and disassembly depth 7 (SIM card tray–Back cover–Middle frame–Flashlight–
Front-facing camera–Motherboard–Back camera).
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Table 6. The fuzzy judgment matrix Q of the standard layers.

Criteria E1 E2 E3 E4

E1 0.5 0.2 0.6 0.3
E2 0.8 0.5 0.7 0.6
E3 0.4 0.3 0.5 0.4
E4 0.7 0.4 0.6 0.5

Table 7. The results of the weight coefficient and the CI.

Criteria Weights

E1 0.2167

CI = 0.09805
E2 0.3
E3 0.2167
E4 0.2667

Table 8. The weighted decision data.

Criteria E1 E2 E3 E4 Comprehensive
SortWeight 0.2167 0.3 0.2167 0.2667

Pareto
solution

Disassembly depth 1 0.1018 0.0929 0.15 0.1018 0.1095
Disassembly depth 2 0.15 0.1125 0.1071 0.1446 0.1280
Disassembly depth 3 0.1304 0.1268 0.1357 0.1304 0.1305
Disassembly depth 4 0.1125 0.1429 0.1214 0.1161 0.1245
Disassembly depth 5 0.1125 0.1429 0.1214 0.1161 0.1245
Disassembly depth 6 0.15 0.1125 0.1071 0.1446 0.1280
Disassembly depth 7 0.1304 0.1268 0.1357 0.1304 0.1305
Disassembly depth 8 0.1089 0.1429 0.1214 0.1161 0.1237

4.3. Analysis of Results and Discussion

In order to verify the applicability of the method proposed in this paper, the existing
disassembly depth optimization methods in [39,40] were selected for comparison. In the
experiment, the disassembly depth optimization method in [39] (select the disassembly
depth with the maximum total disassembly profit in all disassembly depths) is set as group
A. The disassembly depth optimization method in [40] (select the disassembly depth with
a maximum total disassembly profit of more than 85% and maximum total disassembly
energy consumption of less than 70% in all disassembly depths) is set as group B. The
disassembly depth optimization method proposed in this paper is set as group C. The
disassembly depth optimization results of ‘Xiaomi 4’ are shown in Table 9.

The number of non-inferior solutions is increased by eight in group C compared with
the results in group A. The number of optimal solutions is increased by two in group C
compared with the results in group A. The results of the comparison demonstrate that the
searchability of the non-inferior solution and the optimal solution is improved in group C
compared with the results in group A. Compared with the results in group B, the number
of non-inferior solutions is increased by seven in group C. Compared with the results in
group B, the number of optimal solutions is increased by two in group C. The results of
the comparison show that group C is better than group B at improving the searchability
of the non-inferior solution and the optimal solution. In summary, the searchability of the
non-inferior solution and the optimal solution of the method proposed in this paper is
superior to the methods in [39,40].

In order to verify the applicability of the ITLBO algorithm in this paper, the existing
TLBO algorithm is selected for comparison. The EoL smartphone ‘Xiaomi 4’ is selected as
the case. The parameters of the ITLBO algorithm and the TLBO algorithm are set to the
same value (the population size is set to 15 and the iteration number is set to 100). The
disassembly profit per unit time, the disassembly energy consumption per unit time and the
overall safety rate of the disassembly process are selected as optimization objectives. Each
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algorithm is iterated 10 times. Figure 10 shows the relationship between the average value
of the minimum disassembly energy consumption per unit time and the iteration number of
the program. Figure 11 shows the relationship between the average value of the maximum
disassembly profit per unit of time and the iteration number of the program. Figure 12
shows the relationship between the average value of the maximum overall disassembly
safety rate and the iteration number of the program.

Table 9. The disassembly depth optimization results for ‘Xiaomi 4’.

Group The Disassembly
Depth

The
non-Inferior

Solution

The Optimal
Solution

Disassembly
Profit per Unit

Time (¥·t−1)

Disassembly
Energy

Consumption
per unit Time

(J·t−1)

The overall
Disassembly

Safety Process
Rate

A 1-2-3-5-6-10-4-7-8-9 × × 0.1764 60.6200 69.94%

B

1-2-3-5-6-10-4-7-8
√

× 0.1854 63.3579 72.3439%
1-2-3-5-6-10-4-7-8-9 × × 0.1764 60.6200 69.94%
1-2-3-5-6-10-4-7-9-8 × × 0.1764 60.6200 69.94%
1-2-3-5-4-7-8-9-6-10 × × 0.1764 60.6200 69.94%
1-2-3-5-4-7-9-8-6-10 × × 0.1764 60.6200 69.94%
1-2-3-4-5-7-8-9-6-10 × × 0.1764 60.6200 69.94%

C

1-2-3-5-6-10-4-7-8
√

× 0.1854 63.3579 72.3439%
1-2-3-5-4-7

√
× 0.1024 22.3968 82.9795%

1-2-3-5-4-7-8
√ √

0.1688 21.8929 81.5937%
1-2-3-5-4-7-8-9

√
× 0.1565 21.5224 78.8767%

1-2-3-5-4-7-9-8
√

× 0.1565 21.5224 78.8767%
1-2-3-4-5-7

√
× 0.1024 22.3968 82.9795%

1-2-3-4-5-7-8
√ √

0.1688 21.8929 81.5937%
1-2-3-4-5-7-8-9

√
× 0.1565 21.5224 78.8767%
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During the process of searching for the optimal disassembly energy consumption per
unit time, it can be seen from Figure 10 that the ITLBO algorithm tends to converge in
the 35th generation, while the TLBO algorithm tends to converge in the 70th generation.
Compared with the TLBO algorithm, the convergence speed of the ITLBO algorithm is
increased by 50.00%. Moreover, it can be seen from Figure 10 that the minimum disassembly
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energy consumption per unit time obtained by the TLBO algorithm is 22.3968 J·t−1, while
the minimum disassembly energy consumption per unit time obtained by the ITLBO
algorithm is 21.5224 J·t−1. Compared with the TLBO algorithm, the minimum disassembly
energy consumption per unit time by the ITLBO algorithm is reduced by 3.91%.

In the process of searching for the optimal disassembly profit per unit time, it can be
seen from Figure 11 that the ITLBO algorithm tends to converge in the 40th generation,
while the TLBO algorithm tends to converge in the 60th generation. Compared with the
TLBO algorithm, the convergence speed of the ITLBO algorithm increased by 33.33%.
Moreover, it can be seen from Figure 11 that the maximum disassembly profit per unit
time obtained by the TLBO algorithm is 0.1764 ¥·t−1, while the maximum disassembly
profit per unit time obtained by the ITLBO algorithm is 0.1854 ¥·t−1. Compared with the
TLBO algorithm, the maximum disassembly profit per unit of time obtained by the ITLBO
algorithm increased by 5.10%.

In the process of searching for the optimal overall safety rate of the disassembly
process, it can be seen from Figure 12 that the ITLBO algorithm tends to converge in
the 32nd generation, while the TLBO algorithm tends to converge in the 46th generation.
Compared with the TLBO algorithm, the convergence speed of the ITLBO algorithm
increased by 30.43%. Moreover, it can be seen from Figure 12 that the maximum overall
disassembly safety rate obtained by the TLBO algorithm is 93.45%, while the maximum
overall disassembly safety rate obtained by the ITLBO algorithm is 96.67%. Compared with
the TLBO algorithm, the maximum overall disassembly safety rate of the ITLBO algorithm
increased by 3.45%. In summary, the convergence speed and solution accuracy of the
ITLBO algorithm are superior to those of the TLBO algorithm.

From the case study and the above analysis, the proposed method can effectively
determine the optimal disassembly depth of EoL smartphones. Although we have suc-
cessfully applied the proposed method to EoL smartphones, there are some limitations to
this proposed method. Firstly, we assume that the disassembly is in an ideal state and the
parts are not damaged during the disassembly process. In order to obtain more accurate
results, it is important to reasonably consider the damage rate during the disassembly
process. Then, it is important to choose a more reasonable criterion for fuzzy AHP for
the EoL smartphones. Moreover, an EoL smartphone, namely ‘Xiaomi 4’, was selected
as an example of multiple waste electronic products in this paper. In order to prove the
effectiveness and high utilization rate of the method, it is important to study other old
equipment to determine the application range for the proposed method.

5. Conclusions

With the explosion in the number of waste electrical and electronic equipment, it is
particularly important to reduce the influence of electrical and electronic equipment waste
via disassembly planning. One of the most crucial domains within disassembly research
is the intricate challenge of securing a satisfactory disassembly depth. Unfortunately, the
overall disassembly safety process is not considered in the disassembly depth optimization
process, which leads to an inability to accurately obtain a reasonable disassembly depth.
Therefore, a multi-objective disassembly depth optimization method for EoL smartphones,
considering the overall safety of the disassembly process, is proposed. In this study, a multi-
objective function for disassembly depth optimization of EoL smartphones is established
based on disassembly profit per unit time, disassembly energy consumption per unit time
and overall disassembly safety process rate. In order to increase the solution accuracy and
avoid local optimization, an improved teaching–learning-based optimization algorithm is
proposed. The overall disassembly safety process, disassembly time, disassembly energy
consumption and disassembly profit are selected as the criteria for fuzzy AHP to obtain
the optimal disassembly depth for EoL smartphones. A case of the ‘Xiaomi 4’ is studied to
verify the applicability of the proposed method. The key observations obtained from the
results of the experiments can be summarized as follows.
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(a) The numbers of non-inferior solutions and optimal solutions obtained using the
method proposed in this paper are superior to the methods in [39,40]. The searchability
of the non-inferior solution and the optimal solution of the method proposed in this
paper is significant.

(b) In the process of searching for the optimal objective, the convergence speeds for the
ITLBO algorithm were 50.00%, 33.33% and 30.43% higher than for the TLBO algorithm.
This shows that the ITLBO algorithm is more effective than the TLBO algorithm at
improving the convergence speed when searching for the optimal objective.

(c) In the process of searching for the optimal objective, the optimal solution values of the
ITLBO algorithm were 3.91%, 5.10% and 3.45% higher than for the TLBO algorithm.
This shows that the ITLBO algorithm is more effective than the TLBO algorithm at
improving the solution accuracy of searching for the optimal objective.

This paper is only a preliminary exploration of multi-objective disassembly depth
optimization problems for EoL smartphones, considering the overall safety of the disassem-
bly process. Further research is needed on carbon dioxide emissions and the disassembly
damage rate of the disassembly process. Optimizing the disassembly depth based on the
disassembly workshop is a future research direction.

Author Contributions: Conceptualization, Z.C., L.L. and X.C.; methodology, Z.C. and L.L.; software,
Z.C.; validation, Z.C.; formal analysis, L.L., F.Y. and H.L.; investigation, L.L., X.C., F.Y. and H.L.;
resources, X.C. and F.Y.; data curation, L.L., X.C., F.Y. and H.L.; writing—original draft preparation,
Z.C.; writing—review and editing, L.L. and F.Y.; supervision, L.L. and F.Y.; project administration,
L.L. and F.Y.; funding acquisition, L.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (grant number 2020YFB1713001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Acknowledgments: The authors would like to express their sincere gratitude to the anonymous
reviewers for their many valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zeng, Y.; Zhang, Z.; Yin, T.; Zheng, H. Robotic disassembly line balancing and sequencing problem considering energy-saving

and high-profit for waste household appliances. J. Clean. Prod. 2022, 381, 135209. [CrossRef]
2. He, P.; Wang, C.; Zuo, L. The present and future availability of high-tech minerals in waste mobile phones: Evidence from China.

J. Clean. Prod. 2018, 192, 940–949. [CrossRef]
3. Li, J.; Ge, Z.; Liang, C.; An, N. Present status of recycling waste mobile phones in China: A review. Environ. Sci. Pollut. Res. 2017,

24, 16578–16591. [CrossRef] [PubMed]
4. Ren, Y.; Jin, H.; Zhao, F.; Qu, T.; Meng, L.; Zhang, C.; Zhang, B.; Wang, G.; Sutherland, J.W. A multi-objective disassembly

planning for value recovery and energy conservation from end-of-life products. IEEE Trans. Autom. Sci. Eng. 2021, 18, 791–803.
[CrossRef]

5. Nowakowski, P. A novel, cost efficient identification method for disassembly planning of waste electrical and electronic equipment.
J. Clean. Prod. 2018, 172, 2695–2707. [CrossRef]

6. Paterson, D.A.P.; Ijomah, W.L.; Windmill, J.F.C. End-of-life decision tool with emphasis on remanufacturing. J. Clean. Prod. 2017,
148, 653–664. [CrossRef]

7. Wang, K.; Li, X.; Gao, L. Modeling and optimization of multi-objective partial disassembly line balancing problem considering
hazard and profit. J. Clean. Prod. 2019, 211, 115–133. [CrossRef]

8. Bentaha, M.L.; Dolgui, A.; Battaia, O.; Riggs, R.J.; Hu, J. Profit-oriented partial disassembly line design: Dealing with hazardous
parts and task processing times uncertainty. Int. J. Prod. Res. 2018, 56, 7220–7242. [CrossRef]

https://doi.org/10.1016/j.jclepro.2022.135209
https://doi.org/10.1016/j.jclepro.2018.04.222
https://doi.org/10.1007/s11356-017-9089-z
https://www.ncbi.nlm.nih.gov/pubmed/28555392
https://doi.org/10.1109/TASE.2020.2987391
https://doi.org/10.1016/j.jclepro.2017.11.142
https://doi.org/10.1016/j.jclepro.2017.02.011
https://doi.org/10.1016/j.jclepro.2018.11.114
https://doi.org/10.1080/00207543.2017.1418987


Sustainability 2024, 16, 1114 22 of 23

9. Cordella, M.; Alfieri, F.; Clemm, C.; Berwald, A. Durability of smartphones: A technical analysis of reliability and repairability
aspects. J. Clean. Prod. 2021, 286, 125388. [CrossRef]

10. Islam, M.T.; Dias, P.R.; Huda, N. Waste mobile phones: A survey and analysis of the awareness, consumption and disposal
behavior of consumers in Australia. J. Environ. Manage. 2020, 275, 111111. [CrossRef]

11. Ren, Y.; Zhang, C.; Zhao, F.; Tian, G.; Lin, W.; Meng, L.; Li, H. Disassembly line balancing problem using interdependent
weights-based multi-criteria decision making and 2-Optimal algorithm. J. Clean. Prod. 2018, 174, 1475–1486. [CrossRef]

12. Liu, J.; Zhou, Z.; Pham, D.T.; Xu, W.; Ji, C.; Liu, Q. Collaborative optimization of robotic disassembly sequence planning and
robotic disassembly line balancing problem using improved discrete Bees algorithm in remanufacturing. Robot. Comput. Integr.
Manuf. 2020, 61, 101829. [CrossRef]

13. Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial
disassembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [CrossRef]

14. Mandolini, M.; Favi, C.; Germani, M.; Marconi, M. Time-based disassembly method: How to assess the best disassembly sequence
and time of target components in complex products. Int. J. Adv. Manuf. Technol. 2018, 95, 409–430. [CrossRef]

15. Yang, Y.; Yuan, G.; Zhuang, Q.; Tian, G. Multi-objective low-carbon disassembly line balancing for agricultural machinery using
MDFOA and fuzzy AHP. J. Clean. Prod. 2019, 233, 1465–1474. [CrossRef]

16. Cao, J.; Xia, X.; Wang, L.; Zhang, Z.; Liu, X. A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing
Problem. Sustainability 2019, 11, 6969. [CrossRef]

17. Lu, Q.; Ren, Y.; Jin, H.; Meng, L.; Li, L.; Zhang, C.; Sutherland, J.W. A hybrid metaheuristic algorithm for a profit-oriented and
energy-efficient disassembly sequencing problem. Robot. Comput. Integr. Manuf. 2020, 61, 101828. [CrossRef]

18. Xu, W.; Tang, Q.; Liu, J.; Liu, Z.; Zhou, Z.; Pham, D.T. Disassembly sequence planning using discrete Bees algorithm for
human-robot collaboration in remanufacturing. Robot. Comput. Integr. Manuf. 2020, 62, 101860. [CrossRef]

19. Xing, Y.; Wu, D.; Qu, L. Parallel disassembly sequence planning using improved ant colony algorithm. Int. J. Adv. Manuf. Technol.
2021, 113, 2327–2342. [CrossRef]

20. Liu, H.; Zhang, L. Optimizing a disassembly sequence planning with success rates of disassembly operations via a variable
neighborhood search algorithm. IEEE Access 2021, 9, 157540–157549. [CrossRef]

21. Liang, J.; Guo, S.; Zhang, Y.; Liu, W.; Zhou, S. Energy-efficient optimization of two-sided disassembly line balance considering
parallel operation and uncertain using multiobjective flatworm algorithm. Sustainability 2021, 13, 3358. [CrossRef]

22. Aicha, M.; Belhadj, I.; Hammadi, M.; Aifaoui, N. A mathematical formulation for processing time computing in disassembly lines
and its optimization. Comput. Ind. Eng. 2022, 165, 107933. [CrossRef]

23. Zeng, Y.; Zhang, Z.; Liang, W.; Zhang, Y. Balancing optimization for disassembly line of mixed homogeneous products with
hybrid disassembly mode. Comput. Ind. Eng. 2023, 185, 109646. [CrossRef]

24. Wang, K.; Guo, J.; Du, B.; Li, Y.; Tang, H.; Li, X.; Gao, L. A novel MILP model and an improved genetic algorithm for disassembly
line balancing and sequence planning with partial destructive mode. Comput. Ind. Eng. 2023, 186, 109704. [CrossRef]

25. Yeh, W.C. Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization.
IEEE Trans. Syst. Man. Cybern.-Part. A Syst. Hum. 2011, 42, 250–261. [CrossRef]

26. Xia, K.; Gao, L.; Li, W.; Chao, K. Disassembly sequence planning using a simplified teaching-learning-based optimization
algorithm. Adv. Eng. Inform. 2014, 28, 518–527. [CrossRef]

27. Tseng, H.E.; Chang, C.C.; Lee, S.C.; Huang, Y.M. A block-based genetic algorithm for disassembly sequence planning. Expert.
Syst. Appl. 2018, 96, 492–505. [CrossRef]

28. Xie, J.; Li, X.; Gao, L. Disassembly sequence planning based on a modified grey wolf optimizer. Int. J. Adv. Manuf. Technol. 2021,
116, 3731–3750. [CrossRef]

29. Tseng, H.E.; Huang, Y.M.; Chang, C.C.; Lee, S.C. Disassembly sequence planning using a Flatworm algorithm. J. Manuf. Syst.
2020, 57, 416–428. [CrossRef]

30. Tseng, H.E.; Chang, C.C.; Chung, T.W. Applying improved particle swarm optimization to asynchronous parallel disassembly
planning. IEEE Access 2022, 10, 80555–80564. [CrossRef]

31. Lou, S.; Zhang, Y.; Tan, R.; Lv, C. A human-cyber-physical system enabled sequential disassembly planning approach for a
human-robot collaboration cell in Industry 5.0. Robot. Comput. Integr. Manuf. 2024, 87, 102706. [CrossRef]

32. Kalayci, C.B.; Polat, O.; Gupta, S.M. A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem.
Ann. Oper. Res. 2016, 242, 321–354. [CrossRef]

33. Liu, J.; Wang, S. Balancing disassembly line in product recovery to promote the coordinated development of economy and
environment. Sustainability 2017, 9, 309. [CrossRef]

34. Liu, J.; Sang, H.; Han, Y.; Wang, C.; Gao, K. Efficient multi-objective optimization algorithm for hybrid flow shop scheduling
problems with setup energy consumptions. J. Clean. Prod. 2018, 181, 584–598. [CrossRef]

35. Xia, X.; Liu, W.; Zhang, Z.; Wang, L.; Cao, J.; Liu, X. A Balancing Method of Mixed-model Disassembly Line in Random Working
Environment. Sustainability 2019, 11, 2304. [CrossRef]

36. Xu, W.; Cui, J.; Liu, B.; Liu, J.; Yao, B.; Zhou, Z. Human-robot collaborative disassembly line balancing considering the safe
strategy in remanufacturing. J. Clean. Prod. 2021, 324, 129158. [CrossRef]

37. Liang, P.; Fu, Y.; Gao, K. Multi-product disassembly line balancing optimization method for high disassembly profit and low
energy consumption with noise pollution constraints. Eng. Appl. Artif. Intell. 2024, 130, 107721. [CrossRef]

https://doi.org/10.1016/j.jclepro.2020.125388
https://doi.org/10.1016/j.jenvman.2020.111111
https://doi.org/10.1016/j.jclepro.2017.10.308
https://doi.org/10.1016/j.rcim.2019.101829
https://doi.org/10.1080/00207543.2017.1341066
https://doi.org/10.1007/s00170-017-1201-5
https://doi.org/10.1016/j.jclepro.2019.06.035
https://doi.org/10.3390/su11246969
https://doi.org/10.1016/j.rcim.2019.101828
https://doi.org/10.1016/j.rcim.2019.101860
https://doi.org/10.1007/s00170-021-06753-9
https://doi.org/10.1109/ACCESS.2021.3101221
https://doi.org/10.3390/su13063358
https://doi.org/10.1016/j.cie.2022.107933
https://doi.org/10.1016/j.cie.2023.109646
https://doi.org/10.1016/j.cie.2023.109704
https://doi.org/10.1109/TSMCA.2011.2157135
https://doi.org/10.1016/j.aei.2014.07.006
https://doi.org/10.1016/j.eswa.2017.11.004
https://doi.org/10.1007/s00170-021-07696-x
https://doi.org/10.1016/j.jmsy.2020.10.014
https://doi.org/10.1109/ACCESS.2022.3195863
https://doi.org/10.1016/j.rcim.2023.102706
https://doi.org/10.1007/s10479-014-1641-3
https://doi.org/10.3390/su9020309
https://doi.org/10.1016/j.jclepro.2018.02.004
https://doi.org/10.3390/su11082304
https://doi.org/10.1016/j.jclepro.2021.129158
https://doi.org/10.1016/j.engappai.2023.107721


Sustainability 2024, 16, 1114 23 of 23

38. Giudice, F.; Kassem, M. End-of-life impact reduction through analysis and redistribution of disassembly depth: A case study in
electronic device redesign. Comput. Ind. Eng. 2009, 57, 677–690. [CrossRef]

39. Achillas, C.; Aidonis, D.; Vlachokostas, C.; Karagiannidis, A.; Moussiopoulos, N.; Loulos, V. Depth of manual dismantling
analysis: A cost–benefit approach. Waste Manag. 2013, 33, 948–956. [CrossRef] [PubMed]

40. Smith, S.; Hsu, L.; Smith, G.C. Partial disassembly sequence planning based on cost-benefit analysis. J. Clean. Prod. 2016, 139,
729–739. [CrossRef]

41. Kubler, S.; Robert, J.; Derigent, W.; Voisin, A.; Traon, Y.L. A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications.
Expert. Syst. Appl. 2016, 65, 398–422.

42. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert. Syst. Appl.
2020, 161, 113738. [CrossRef]

43. Heo, E.; Kim, J.; Boo, K.J. Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy
AHP. Renew. Sust. Energ. Rev. 2010, 14, 2214–2220. [CrossRef]

44. Avikal, S.; Jain, R.; Mishra, P.K. A Kano model, AHP and M-TOPSIS method-based technique for disassembly line balancing
under fuzzy environment. Appl. Soft Comput. 2014, 25, 519–529. [CrossRef]

45. Guler, D.; Yomralioglu, T. Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP
methods using GIS. Ann. GIS 2020, 26, 169–189. [CrossRef]

46. Zhou, X.; Sun, Y.; Huang, Z.; Yang, C.; Yen, G.G. Dynamic multi-objective optimization and fuzzy AHP for copper removal
process of zinc hydrometallurgy. Appl. Soft Comput. 2022, 129, 109613. [CrossRef]

47. Sherif, S.U.; Asokan, P.; Sasikumar, P.; Mathiyazhagan, K.; Jerald, J. An integrated decision making approach for the selection of
battery recycling plant location under sustainable environment. J. Clean. Prod. 2022, 330, 129784. [CrossRef]

48. Tuo, Y.; Zhang, Z.; Wu, T.; Zeng, Y.; Zhang, Y.; Junqi, L. Multimanned disassembly line balancing optimization considering
walking workers and task evaluation indicators. J. Manuf. Syst. 2024, 72, 263–286. [CrossRef]

49. Oliva, D.; Abd El Aziz, M.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale
optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]
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