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Abstract: Sustainable electricity consumption is considered a pivotal element in the effective gover-
nance and growth of any institution. Accurate electricity demand forecasting is essential for strategic
planning and decision making. However, due to the numerous existing forecasting approaches,
many forecasters find it challenging to select the best model. Currently, there is no robust approach
for selecting the best forecasting model when considering conflicting error measures. This paper
proposes a novel methodology using a multicriteria decision making (MCDM) approach to determine
the most appropriate forecasting model for electricity demand, considering various interdependent
error measures. The Analytical Network Process (ANP) was applied to determine the weights of
evaluation criteria, while the Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) was employed to select the best forecasting model. The proposed methodology was tested and
validated with a real case study in Tunisia using the opinions of experts and stakeholders. The results
show that multiple regression and exponential smoothing are the best alternatives and outperformed
the other models. Additionally, a sensitivity analysis is presented to test the robustness of the final
ranking. This serves to assist decision makers to select the best forecasting model.

Keywords: decision making; multicriteria; electricity demand forecasting; error measures;
model selection

1. Introduction

Energy has been the major driver of economic and human development around the
world. It is of great significance for achieving the goals of sustainable development. The
security of energy supply is an inherent element of strategic energy decision making [1].
This issue is even more crucial when it comes to electrical energy because, unlike to other
energy sources, it cannot be stocked for long-term consumption. Therefore, electricity
demand forecasting is a critical process in power system operation and planning, having a
significant influence on the decisions of energy policymakers.

In recent years, forecasting electricity consumption has been the focus of extensive
research [2]. Numerous forecasting methods have been developed to precisely predict
future electricity demand [3]. Hamzaçebi et al. [4] developed four different artificial neu-
ral networks to predict the monthly electricity consumption in Turkey. They used four
performance measures to select the best one: mean absolute error (MAE), root-mean-
square error (RMSE), post-error ratio (C), and mean absolute percentage error (MAPE).
Furthermore, Son and Kim [5] suggested five forecasting models: long short-term memory
(LSTM), support vector regression (SVR), artificial neural networks (ANN), auto regressive
integrated moving average (ARIMA), and multiple linear regression (MLR), to study the
forecasting of monthly demand for residential–sector electricity. The resulting forecasting
performance was evaluated based on six performance measures including RMSE, MAE,
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MAPE, post-error ratio C, and unpaired peak accuracy (UPA). In other research by An-
gelopoulos et al. [6], the disaggregation model and MLR method were used to forecast
the annual net electricity demand in the Greek interconnected power system. They found
that the ordinal regression models performed considerably better than the MLR model in
terms of the statistical accuracy, resulting into a minimum MAPE equal to 0.74%. Yörük
et al. [7] studied a variety of forecasting models, including MLR, exponential smoothing
(ES), Winter’s method, and ARIMA methods, selecting the best model using various error
measures (RMSE, MAPE, MAE, and R2). In Korea, Shin and Woo [8] compared three
different machine learning algorithms, namely random forest (RF), XGBoost (XGB), and
LSTM models, using RMSE and MAPE as performance measures to select the most suitable
model. In [9], the authors used ANN, support vector machine (SVM), Gaussian process
regression (GPR), MLR, decision tree (DT), and gradient boosting decision trees (GBDTs) to
forecast electricity consumption in Hong Kong. They compared the performance of these
different algorithms using statistical criteria including R-square, average deviation, RMSE,
MAPE, and normalized mean bias error (NMBE).

There are many more similar studies that have been proposed in the field of electricity
demand forecasting. According to the abundant literature, electricity demand forecasting
can be classified into two main categories: conventional models (linear regression models,
econometrics, time series, etc.) and artificial intelligence (AI) models (such as ANN, SVM,
DT, and RF).

A consensus has developed around the forecasting of electricity demand, particularly
regarding the selection of forecasting models that use several error measures to support the
selection of the best forecasting model. Although it is recommended to use different error
measures to evaluate forecast models, these measures can often yield contradictory results.
For example, a forecasting model might perform well according to one error measure but
poorly according to another, leading to conflicting outcomes in model evaluation. As a
result, many researchers have introduced additional methods for model selection, such as
Akaike Information Criterion (AIC) [10,11] and Schwartz’s Bayesian Criterion (SBC) [2,12],
as the most popular methods for selecting the best model among a finite set of models.
Nevertheless, these approaches are limited to evaluating models within the same class and
cannot effectively choose a forecasting model from different classes.

The state-of-the-art literature highlights significant advancements in electricity de-
mand forecasting models in recent years [13]. Although numerous models are available,
policymakers frequently encounter challenges in selecting the most appropriate one for
their specific demand projections. Current methodologies offer various approaches to
model selection, often relying on error measures and information criteria, such as AIC and
SBC, for evaluation. However, a gap remains in the literature, as no existing study has
proposed a comprehensive approach to evaluating multiclass electricity demand forecast-
ing models using multiple interdependent error measures. This gap emphasizes the need
for a robust framework that aids the selection of electricity forecasting methods, which is
precisely what this paper seeks to address.

When faced with the challenge of making a decision after considering numerous
opposing evaluation criteria, a MCDM is employed [14]. From this perspective, MCDM
appears to be the most appropriate tool to support those involved in the decision-making
process. In the literature, many research studies have applied the MCDM approach to
various fields, including energy [15,16], manufacturing systems [17,18], supply chain
issues [19,20], and business management [21,22], with this trend steadily increasing over
the past several years. However, up to the present moment, no study has delved into the
application of MCDM for selecting electricity forecasting models. Therefore, this paper
aims to develop a MCDM methodology for selecting the best forecasting model, taking
into account various criteria (error measures). Based on two stages of MCDM, ANP is
employed to determine the weight of the measures. Thereafter, TOPSIS method is applied to
conduct the ranking of six alternatives: autoregressive integrated moving average (ARIMA),
seasonal autoregressive integrated moving average (SARIMA), exponential smoothing (ES),
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multiple linear regression (MLR), decision tree (DT), and random forest (RF). To test the
robustness of final ranking, a sensitivity analysis is carried out.

In summary, the main contributions of this study are twofold. First, it aims to examine
the relationship between annual electricity demand and influential factors. Second, this
paper proposes a novel procedure of MCDM to select the best-performing model for robust
long-term electricity demand forecasting, considering multiple evaluation criteria. This
research serves to assist Tunisian electricity policymakers and decision makers in planning
and managing energy.

The rest of this paper is organized as follows: Section 2 describes the proposed
research methodology and verifies the effectiveness of the proposed framework with a
Tunisian case study. Section 3 outlines the results obtained from the application, along
with a related discussion. The final section (Section 4) provides our conclusions and future
research directions.

2. Materials and Methods

This section proposes a framework consisting of three main parts: electricity demand
forecasting, MCDM, and robustness analysis to evaluate and select the best available
alternatives from the set of forecasting models. The principal structure and the main
stages of the proposed methodology for forecasting robust long-term electricity demand
are described below (Figure 1).
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Figure 1. Framework of the proposed methodology.

The forecasting part of the study starts with obtaining electricity consumption data and
defining the main influencing factors. These variables are used as inputs to the forecasting
models. In the second step, the hybrid MCDM procedure (ANP–TOPSIS) is applied to
select the best forecasting model from a set of alternatives. Finally, a robustness analysis is
conducted via validation of ranking and sensitivity analysis. Each of the aforementioned
methodological steps is detailed in the following subsections.

2.1. Data Collection

The first step is to collect the annual electricity demand and the factors that could
affect electricity consumption by reviewing the scientific literature.



Sustainability 2024, 16, 9219 4 of 15

• Electricity demand evolution in Tunisia

In recent years, Tunisia has faced an electricity supply issue. The electricity demand in
Tunisia is rapidly increasing. Therefore, it is eager to provide the best procedures, plans,
and resources for balancing electricity supply and demand. As a result, implementing an
electricity demand forecasting model becomes crucial for sustainable energy planning in
Tunisia. In this study, annual electricity consumption data and relevant variables that could
influence electricity demand from 1995 to 2021 were collected from published statistics by
the World Bank Group, the National Institute of Meteorology, and the UN Arab Region
Data and Policy Support Hub (Appendix A). The evolution of the annual total net electricity
demand in Tunisia for the period 1995–2021, is plotted in Figure 2. According to the data,
consumption has been considerably increasing and exhibits linear growth. This is due to
several influencing factors that affect electricity consumption.
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Figure 2. Annual electricity consumption from 1995 to 2021.

• Feature extraction

Selecting the appropriate input variables for demand forecasting is a crucial aspect
of the forecasting process [18]. Nevertheless, most of previous studies have focused on
a limited set of climatic and social variables as influencing factors. In some cases, the
selected variables may lead to forecasting errors. These factors were often selected based
on human intuition, without a method to identify the most suitable influencing factors for
reliable electricity demand forecasting. Therefore, in this study, we identified influencing
factors for our forecasting models through an extensive literature review. To refine our
selection process, we conducted interviews with national energy experts. These interviews
provided valuable industry insights, helping us confirm and refine the selected factors
to ensure they are practical and relevant to real-world situations. Following this, we
analyzed the correlation matrix between these variables and electricity demand, which
further highlighted the interconnections between key factors and their impact on energy
consumption. The correlation matrix shows the relationship between independent and
dependent variables, with values ranging from −1 to 1. Values close to 1 indicate a strong
positive linear relationship, values close to −1 indicate a strong inverse relationship, and
values close to 0 indicate no linear relationship [23].

In this study, long-term electricity demand in Tunisia can be influenced by various
factors, including meteorological, socio-economic, and technological variables. Based on
data availability and local context, we included three climate variables (average tempera-
ture, average maximum temperature, and precipitation), four socio- economic variables
(GDP per capita, inflation, population, and urbanization), and one technological variable
(internet users). We anticipate that these variables will have a significant influence on
Tunisian electricity demand.

As illustrated in Figure 3, there is a strong positive correlation between electricity
demand and both overall population and urban population in Tunisia, with each correla-
tion reaching a value of 0.99. This indicates that as Tunisia’s population grows and more
people move to cities, electricity demand will rise due to the higher energy needs of urban
areas. The strong correlation between “internet users” (0.97) and electricity demand high-
lights the growing importance of digitalization in Tunisia, with more internet-connected
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households and businesses driving up electricity consumption. Additionally, “GDP per
capita” correlates significantly with electricity demand at 0.83, suggesting that economic
growth and rising living standards are closely linked to higher energy consumption. These
factors—demographic growth, urbanization, digitalization, and economic growth—should
be considered when forecasting future electricity demand in Tunisia.
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2.2. Selection of Forecasting Model Alternatives and Define the Final Main Performance Measures

Our MCDM study starts by defining alternatives and their corresponding evaluation
criteria. We include Tunisian electricity experts from different institutions and organizations:
Tunisian Company of Electricity and Gas (STEG), National Agency for Energy Management
(ANME), and Green Power Energy (GPE). Their contributions have been indispensable
during the initial stages of the current research. Additionally, this team of experts will also
be involved in evaluating and approving the final ranking results.

• Forecasting models alternatives

Selecting too many alternatives is not advised because it makes conducting pairwise
comparisons challenging, especially with a large number of alternatives and criteria. A
widely accepted rule of thumb suggests selecting between five and nine alternatives to
enhance the effectiveness of judgment-based decision making. Based on interviews with
key experts, decision-makers affirmed that six alternatives are the most representative and
suitable for forecasting electricity demand in Tunisia.

The ARIMA model is a time series forecasting method introduced in 1976 by Box
and Jenkins [24]. ARIMA is defined by ARIMA (p, d, q), where ‘p’ signifies the count of
autoregressive components, ‘d’ indicates the number of non-seasonal differences required
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to achieve model stationarity, and ‘q’ denotes the quantity of lags considered in the forecast
error equation. ARIMA is renowned for its forecasting accuracy and ability to adapt
to various time series situations [25]. While the ARIMA model is highly effective for
analyzing time series data, it is limited to one variable. Therefore, it is necessary to develop
a multivariate ARIMAX (Auto Regressive Integrated Moving Average with Exogenous
Variables) model that can include other variables related to the target series as input
variables to improve prediction accuracy [26].

Electricity consumption highlights periodic fluctuations resulting from seasonal
changes, which can be addressed using the SARIMA model. The general form of the
SARIMA model is expressed as (p, d, q) ∗ (P, D, Q). In this mathematical expression, ‘p’ de-
notes the autoregressive order, ‘P’ designates the seasonal autoregressive order, ‘d’ indicates
the order of differencing, ‘D’ conveys the seasonal differencing, and ‘q’ and ‘Q’ correspond
to the order of the moving average (MA) and seasonal moving average (SMA), respectively.
‘S’ characterizes the seasonality [27]. Similar to ARIMAX, we propose SARIMA with exoge-
nous influencing factors (SARIMAX: Seasonal Auto Regressive Integrated Moving Average
with Exogenous Variables) to reduce the error values and enhance model accuracy.

The Holt–Winters exponential smoothing method is a highly regarded approach for
forecasting seasonal time series data. Exponential smoothing methods are extensively
adopted due to their robustness and precision in applications requiring automated proce-
dures. However, exponential smoothing, with its single component, is not well-suited for
data exhibiting consistent trends. Double exponential smoothing (DES) introduces a second
component, the trend, to better capture and forecast data with linear or exponential trends.

Regression models enable predictions about future events using information from past
or present events [28]. They investigate the relationship between the endogenous variable
(dependent variable) and several exogenous variables (independent variables) [29].

Decision trees (DT) are widely utilized for classification and prediction [30]. They
provide visual and interpretable solutions for complex decision making processes by
optimizing the attribute splits at each node.

The random forest (RF) is an ensemble learning algorithm that utilizes decision trees
as base learners. It is prevalent in both classification and regression tasks [31] due to its
robustness and ease of hyperparameter adjustment. RF combines the Bagging algorithm
and the Random Subspace algorithm to construct multiple decision trees and determine
the best feature splits [32].

• Performance Evaluation Metrics

The accuracy of the employed forecasting models is evaluated by extracting pertinent
statistical performance indicators. Six evaluation measures were used: ME, MPE, RMSE,
MAPE, MAE, and R2. These criteria were finalized through expert surveys and categorized
into four groups: absolute error, quadratic error, relative error, and overall quality. The
mathematical representation of the evaluation measures is provided in Equations (1)–(6).

ME =
∑ Fi − Oi

N
(1)

MPE =
∑ Fi − Oi/Oi

N
∗ 100 (2)

RMSE =

√
∑ (F i − Oi)

2

N
(3)

MAPE =
∑
∣∣∣ (F i−Oi)

Oi

∣∣∣
N

(4)

MAE =
∑| (F i − Oi)|

N
(5)
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R2 = 1 − ∑(Oi − Fi)
2

∑
(
Oi − O

)2 (6)

In the above formula, N is the size of the dataset, Oi is the actual value, and Fi is the
forecasted value [25].

2.3. MCDM Procedure for Selection Forecasting Model

Once alternatives and criteria are defined, the MCDM framework is introduced.
MCDM consists of two main phases: calculating criteria weights and ranking alternatives.
The hierarchical structure of the MCDM problem is built with different levels (goal, main
criteria, sub-criteria, and alternatives), as portrayed in Figure 4. This research proposes a
hybrid MCDM to select the best electricity forecasting model.
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Over the past three decades, a multitude of methods and tools have been employed
within the field of MCDM [33]. Our review of the MCDM literature reveals that the
combined ANP–TOPSIS approach is popular and widely applied in several fields [34]. The
ANP method is used to determine the weight of the criteria, while the TOPSIS method aims
to rank the forecasting models.

The high similarity in the calculation of many error measures leads to their inter-
dependence. In this line, the ANP approach offers the advantage of incorporating the
interdependence among evaluation criteria, including error measures, in the calculation
of criteria weights. Therefore, we propose ANP as a well-known multicriteria decision
making method capable of improving prediction accuracy with better priority calculations
in cases of networks with dependent criteria [35].

In our implementation, the team proceeds to compare these criteria using Saaty’s scale
to determine the relative significance of one criterion in comparison to another [36]. The
pairwise comparison matrix of evaluation criteria (error measures) is presented in Table 1.

Table 1. Criteria priorities.

Criteria ME MAE RMSE MPE RMSPE MAPE R2

ME 1 1/5 1/4 1/3 1/5 1/5 1
MAE 5 1 1/3 1 1/3 1/3 1
RMSE 4 3 1 3 1 1/3 1
MPE 3 1 0 1 1/3 1/5 1

RMSPE 5 3 1 3 1 1/3 1
MAPE 5 3 3 5 3 1 1

R2 1 1 1 1 1 1 1

In Table 2, the supermatrix of the network is computed, where each column represents
the normalized eigenvectors calculated for each criterion. The final column, denoted as



Sustainability 2024, 16, 9219 8 of 15

the normalized weight vector ωANP, is derived by multiplying the supermatrix with the
priority weight vector w.

Table 2. Normalized interdependences and weights.

Criteria ME MAE RMSE MPE RMSPE MAPE R2 Weight (w)

ME 1 0 0.106 0 0 0 0 0.064
MAE 0 1 0.100 0 0 0 0 0.184
RMSE 0 0 0.745 0 0.138 0 0 0.148
MPE 0 0 0 1 0.172 0.200 0 0.171

RMSPE 0 0 0 0 0.690 0 0 0.119
MAPE 0 0 0 0 0 0.600 0 0.185

R2 0 0 0 0 0 0 1 0.129

To check the coherence of the matrix of comparisons, Saaty proposed the calculation
of the coherence index consistency ratio (CR). This measure is based on a comparison of the
consistency index (CI) to the random consistency index (RI). In ANP, pairwise comparisons
of a judgment matrix are considered sufficiently consistent if the CR is less than 10%. The
CR is given by CI/RI. The CI is calculated using Equation (7).

CI =
λmax − n

n − 1
(7)

where λmax refers to the maximum eigenvalue of the supermatrix. The present study has
CR = 0.0935 which is within the acceptable range.

After obtaining the weight vector of criteria by the ANP process, we proceed to
implementing the steps of TOPSIS to evaluate the forecasting models. The TOPSIS method,
first introduced by Hwang and Yoon in 1981 [37], is one of the most well-known MCDM
methods and it is applied to many decision making problems [38]. The concept of TOPSIS
is to find the alternative with the shortest distance from the positive ideal solution as
well as the longest distance from the negative ideal solution. It has been selected for this
study because it simultaneously considers both the ideal solution and the worst possible
non-ideal solution.

Figure 5 shows comparisons of the actual and predicted values from different algo-
rithms (ARIMA, SARIMA, MLR, DT, RF, and ES).

After executing the discussed models, we have generated the decision matrix
D = (xij)m∗n with m alternatives and n criteria, as presented in Table 3. This matrix
comprehensively encompasses the error measures for each of the alternative forecasts.

Table 3. Decision matrix: evaluation criteria per forecasting models.

ARIMA SARIMA Regression DT RF ES

ME −159.845 183.664 −280.687 −476.428 −687.403 167.768
MAE 399.492 521.4334 463.583 696.428 950.479 444.221
RMSE 523.081 668.185 555.395 807.334 1316.559 614.910
MPE −0.96% 1.38% 1.8% −5.207% −10.421% 0.97%

RMSPE 3.2% 4.51% 3.4% 9.1% 19.7% 3.9%
MAPE 2.503% 3.568% 2.942% 7.639% 12.065% 2.905%

R2 0.569 0.808 0.514 0.934 0.869 0.837

Then, we calculate the normalized decision matrix to obtain R =
(
rij
)

m∗n using the
following equation.

rij =
xij√

∑m
j=1

(
xij

)2
, i = 1, . . . , n et j = 1, . . . , m (8)
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Thereafter, the normalized matrix R was integrated to determine the weighted nor-
malized decision matrix V = R * W (see Table 4) using the weights calculated by ANP.
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Table 4. The weighted normalized decision matrix.

ARIMA SARIMA Regression DT RF ES

ME −0.011 0.013 −0.019 −0.033 −0.047 0.012
MAE 0.049 0.064 0.057 0.086 0.117 0.055
RMSE 0.040 0.020 0.026 −0.075 −0.149 0.014
MPE 0.014 0.020 0.026 −0.075 −0.149 0.014

RMSPE 0.017 0.023 0.018 0.047 0.102 0.020
MAPE 0.030 0.043 0.035 0.091 0.144 0.035

R2 0.039 0.055 0.035 0.064 0.059 0.057

After computing the weighted normalized decision matrix, we proceed to calculate the
positive and negative ideal solutions (FPIS and FNIS) denoted as A+ and A−, respectively,
using the following equations.

A+ =
(
v+1 , v+2 , v+i , . . . ., v+m

)
=

{{
max

j
vij

∣∣∣∣iC·P},
{

min
j

vij

∣∣∣∣iC·N}}
(9)
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A− =
(
v−1 , v−2 , v−i , . . . ., v−m

)
=

{{
min

j
vij

∣∣∣∣iC·P},
{

min
j

vij

∣∣∣∣iC·N}}
(10)

where P represents the positive criteria and N represents the negative criteria.
In our case, the creation of the positive ideal solution vector (designated as A+) involves

identifying the minimum values among the cost-based criteria, where lower error results are
considered superior (e.g., ME, MAE, RMSE, MPE, RMSPE, and MAPE), and the maximum
values among the benefit criteria, which emphasize higher values, as exemplified in the
case of R2. Conversely, in establishing the negative ideal solution vector (A−), we select
the maximum values for the cost-based criteria and the minimum values for the benefit
criteria. Table 5 presents the positive and negative ideal solutions.

Table 5. Positive and negative ideal solution for each criterion.

ME MAE RMSE MPE RMSPE MAPE R2

A+ 0.047 0.049 0.040 0.149 0.017 0.030 0.064
A− 0.013 0.117 0.1 0.026 0.102 0.144 0.035

Furthermore, the distances, d+j and d−j , which represent the ratings of each forecasting
model concerning A+ and A-, are determined in accordance with the calculations provided
in Equations (11) and (12).

d+j =

√
m

∑
i=1

(A+
i − vij)2 , j = 1, . . . , n (11)

d−j =

√
m

∑
i=1

(A−
i − vij)2 , j = 1, . . . , n (12)

The final ranking of the forecasting models is calculated from the closeness coefficient
CCi. The forecasting model with the highest CCi represents the best model and the most
suitable choice for accurately predicting the Tunisian electricity demand (Table 6).

CCi =
d−i

d−i + d+i
, i = 1, . . . , m (13)

Table 6. Ranking of forecasting models.

CCi Rank

ARIMA 0.501 3
SARIMA 0.522 2
MLR 0.534 1
DT 0.367 4
RF 0.344 5
ES 0.534 1

2.4. Robustness Analysis

In this phase, we perform a robustness analysis to test the stability of the forecasting
model. Therefore, we suggest carrying out a validation and sensitivity study.

Validation of ranking with VIKOR method

As discussed in the previous section, it is challenging to determine the best forecasting
model because no option has the best parameters. All of the MCDM have strengths and
weakness in terms of ranking and the accuracy of results [39]. It should be noted that the
choice of multicriteria decision-support method can influence the ranking of the alternatives.
As illustrated in Table 6, exponential smoothing and multiple linear regression are the best
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forecasting models for our case study, followed by SARIMA. To confirm the consistency of
these results, the VIse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method
is used.

The VIKOR method was introduced by [40] to solve multicriteria decision making
problems. It is widely used to rank alternatives. The main concept of VIKOR is based on
the particular measure of “closeness” to the “ideal” solution. It calculates the best f ∗i and
f−i ( f ∗i = max

j
fij, f−i = min

j
fij) values of all criteria functions (j = 1,2, 3. . .J) to be able to

calculate Si (refers to the maximum group utility) and Ri (refers to the individual regret of
opponent) values for final Qi rankings [26]. The results from applying the VIKOR method
are presented in Table 7.

Table 7. Ranking of forecasting models obtained by VIKOR.

Qi Rank

ARIMA 0.178 4
SARIMA 0.033 2
MLR 0.000 1
DT 0.574 5
RF 1 6
ES 0.066 3

Due to inherent subjectivity in expert judgement, a sensitivity analysis is carried out
to examine how the ranking of alternatives changes due to the variation of criteria weights.
We apply a few perturbations to the experts’ evaluations to test the consensus on the
results. Equal weights and an additional seven scenarios are analyzed. In scenario 1, each
criterion is considered equally important. The following scenarios show the ranking results
when the weight of a specified criterion is augmented by 50% and the weight of the other
criteria is decreased proportionally to make the sum of the normalized weights equal to 1.
Table 8 presents the ranking based on the relative closeness of the forecasting models for
each scenario.

Table 8. Ranking of the forecasting models according to the different sensitivity cases.

S1: Equal
Criteria

S2:
ME
+50%

S3:
MAE
+50%

S4:
RMSE
+50%

S5:
MPE
+50%

S6:
RMSPE
+50%

S7:
MAPE
+50%

S8:
R2

+50%

ARIMA 4 4 3 4 4 4 4 4
SARIMA 2 2 2 2 3 2 2 2
MLR 3 3 4 3 1 3 3 3
DT 5 4 5 5 5 5 5 5
RF 6 5 6 6 4 6 6 6
ES 1 1 1 1 2 1 1 1

To evaluate the effectiveness of the proposed model, we conduct a comparative
analysis with similar studies from the existing literature. It can be observed that limited
research has been dedicated to developing models for predicting long-term electricity
consumption in Tunisia. A summary of these comparative findings is provided in Table 9.
The validation results indicate that the proposed hybrid approach is highly effective in
predicting long-term net electricity consumption and demonstrates strong generalization
in terms of accuracy. The results outperform those from studies conducted by Lahouar and
Jaleleddine [41] and Essallah and Khedher [42]. A comparison of the various techniques
examined shows that the proposed approach achieves a lower MAPE than previous studies
using different methods.
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Table 9. Comparison with similar studies in the literature.

References [41] [42] Current Paper

Methods ANN SVM Box–Jenkins MLR ES MLR ARIMA SARIMA DT RF
Accuracy Measure

MAPE (%) 3.2641 3.6765 4.76 3.26 2.905 2.942 2.503 3.568 7.639 12.065

3. Results and Discussions

This section summarizes the research outcomes and presents additional discussion
points related to the proposed methodology. To forecast electricity demand in Tunisia, we
consider six forecasting models (ARIMAX, SARIMAX, MLR, ES, DT, and RF).

These models are employed to estimate the intercept and the slope of the trend com-
ponent, the seasonal coefficient, and to determine the relationship between electricity
consumption and influential factors. After running the models, the actual and forecast
values of the total electricity demand are reported in Figure 5. It is apparent that the values
obtained through exponential smoothing provide the most accurate projections. Using the
error metrics provided in Section 2, we compare the performance of the proposed forecast-
ing models. The ARIMA model performed better than other models, giving the smallest
ME, MAE, RMSE, MPE, RMSPE, and MAPE. However, the R2 measure of 0.569 indicates
that the regression is lower compared to others. Therefore, to support the selection of the
most appropriate forecasting model with these conflicting performances, ANP–TOPSIS
is applied. Based on the experts’ judgments, the weights of the evaluation criteria are
obtained, as shown in Table 2. The results illustrate the importance assigned to MAPE,
MAE, and MPE as the top three main criteria with the priority level of 0.185, 0.184, and
0.171, respectively. RMSE also has a considerable weight of 0.148. R2 and RMSPE criteria,
respectively, achieved 0.129 and 0.119 weights. ME obtained the least weight of 0.064. The
ranking of alternatives, obtained using the TOPSIS method, are presented in Table 6. As
a result, we conclude that multiple linear regression and exponential smoothing are the
best models for forecasting electricity consumption. This ranking is similar to the VIKOR
method (Table 7). The final ranking of both methods coincides with the first and second
forecasting models. Therefore, the results from this comparison can validate the robustness
of the selected models. Additionally, the sensitivity analysis also demonstrates its robust-
ness. As shown in Table 8, each scenario presents how the ranking changes following the
adjustment of one criterion weight. The findings show that the exponential smoothing
forecasting model is always selected first except in the case of scenario 3 (MPE + 50%),
where it is classified second. Moreover, the ranking of regression, ARIMA, and SARIMA
switch between each other. These results are in line with the initial results and confirm that
the forecast selection process is robust in selecting the best forecast from a set of alternatives.

4. Conclusions

Energy security is a critical issue worldwide. For effective decision making in the
energy sector, long-term load forecasting plays a decisive role in cost-effective, CO2 reduc-
tion, and reliable planning and operation of the power system. This paper introduces an
innovative integrated methodological approach for annual electricity demand forecasting,
incorporating a robust multicriteria decision making framework. In fact, the MCDM ap-
proach serves as a powerful tool for selecting a resilient electricity forecasting model from
various alternatives across different classes, considering conflicting error measures.

An empirical case study in Tunisia validates the effectiveness of the proposed method-
ology. For long-term electricity demand forecasting, several factors can affect future energy
demand growth, including climatic, technological, demographic, and socioeconomic vari-
ables. These factors are often chosen based on the author’s knowledge, but this approach
does not ensure that all variables are explanatory and significant. Based on correlation
analysis, the case study results imply that population, urban population, internet users,
GDP per capita, and inflation are significant variables that directly influence the electricity
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demand evolution in Tunisia and were considered as input in the forecasting models. Six
forecasting models of different classes (ARIMAX, SARIMAX, MLR, DT, RF, and ES) were
used and evaluated with several error measures (ME, MAE, RMSE, MPE, RMSPE, MAPE,
and R2). However, the results revealed contradictory performance. Therefore, the decision
maker found it difficult to choose a model for forecasting electricity consumption based
solely on the results of error measurements. To address this complex problem, we adopted
two well-known decisions making methods, namely ANP and TOPSIS, to select the best
alternative forecasting model with respect to several evaluation criteria. By considering all
seven error measures and their interdependencies, ES and MLR are the best alternatives,
followed by SARIMA.

In this paper, we also complement our research with two robustness analyses: com-
parison with the VIKOR method and a sensitivity analysis. Our findings indicate that the
final ranking is resilient. The results obtained from the comparison with the other MCDM
method (VIKOR) validate the robustness of the final ranking. Moreover, our sensitivity
analysis reveals that, in all scenarios, perturbations in criteria weighting do not significantly
impact the ranking of forecasting models.

Therefore, this study provides an important reference for Tunisian policymakers and
offers a robust methodology for selecting the best forecasting models for other cities. For
future research, we aim to extend our study by applying Fuzzy MCDM, which can better
handle vagueness in the decision making process.
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Appendix A. Historical Data Used in This Study from 1995 to 2021

Year
Electricity

Consumption
(GWh)

Population
Size

Urban
Population

Inflation
Internet

Users

Average
Maximum

Temperature

Average
Temperature

Precipitation
GDP Per

Capita

1995 5944 9,294,102 61,474 6.244 0.011 40.747 20.21 371.077 1,940,034
1996 6254 9,430,550 61,87 3.725 0.028 42.187 20.309 297.7 2,076,990
1997 6563 9,557,948 62,262 3.652 0.044 41.856 20.935 293.396 2,170,571
1998 7015 9,677,148 62,653 3.125 0.108 42.661 20.661 313.452 2,253,029
1999 7415 9,788,067 63,043 2.690 1.602 44.749 21.761 389.261 2,343,997
2000 7637 9,893,316 63,432 2.962 2.751 43.264 21.068 244.668 2,170,508
2001 7866 9,995,123 63,818 1.983 4.298 42.8 21.388 237.748 2,207,661
2002 8259 10,094,561 64,202 2.721 5.253 42.327 19.887 297.265 2,292,483
2003 8548 10,193,798 64,585 2.713 6.491 45.885 20.031 540.007 2,693,196
2004 8848 10,292,225 64,95 3.632 8.529 40.392 18.692 353.896 3,029,850
2005 10,374 10,388,344 65,237 2.018 9.655 44.408 19.396 341.658 3,106,576
2006 10,800 10,483,558 65,524 3.225 12.986 44.285 19.938 380.923 3,279,103
2007 11,212 10,580,395 65,809 2.967 17.100 45.127 18.377 384.342 3,678,062
2008 11,826 10,680,380 66,093 4.345 27.530 42.3 16.2 390 4,200,174
2009 12,215 10,784,504 66,376 3.665 34.070 44.45 17.75 320 4,029,461
2010 12,850 10,895,063 66,657 3.339 36.800 43.131 21.862 322.9 4,241,012
2011 13,053 11,032,528 66,938 3.240 39.100 43.058 19.658 393.677 4,361,948
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Year
Electricity

Consumption
(GWh)

Population
Size

Urban
Population

Inflation
Internet

Users

Average
Maximum

Temperature

Average
Temperature

Precipitation
GDP Per

Capita

2012 13,705 11,174,383 67,218 4.612 41.442 44.411 20.204 324.904 4,233,917
2013 14,350 11,300,284 67,495 5.316 43.800 41.644 19.86 353.464 4,308,337
2014 14,841 11,428,948 67,772 4.626 46.160 43.4 20.328 343.676 4,398,639
2015 14,991 11,557,779 68,056 4.437 46.500 42.772 19.864 349.16 3,960,925
2016 15,004 11,685,667 68,346 3.629 49.600 42.552 20.524 323.288 3,796,109
2017 15,427 11,811,443 68,642 5.309 55.500 44.592 19.816 282.464 3,569,719
2018 16,738 11,933,041 68,945 7.308 64.191 42.236 20.06 404.208 3,577,169
2019 15,249 12,049,314 69,254 6.720 66.700 44.26 18.292 416.932 3,477,844
2020 16,479 12,161,723 69,568 5.634 72.807 43.3 19.938 311.415 3,497,733
2021 16,442 12,262,946 69,888 5.706 78.990 44 20 312 3,807,185
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