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Abstract: With urbanization, there is a growing need for mobility. Challenges for urban drivers
include finding available parking spaces. Searching for a parking spot can be a frustrating experience,
often time consuming and costly. Also, the increasing number of vehicles on the roads leads to an
additional strain on traffic flow, while the search for parking spaces lowers the level of service. In
inner cities, vehicles circulate in search of an available parking space, leading to an increase in travel
time, fuel consumption, pollutant emissions, and a decrease in traffic safety. The search for a free
parking space generates a significant increase in traffic in urban areas. To solve the parking search
problem, it is necessary to develop certain strategies and measures that minimize circling in search of
a parking space. The implementation of intelligent transportation systems stands out. By applying
intelligent transport systems, drivers are provided with information about free parking spaces, which
reduces the circulation of vehicles in search of free parking. Although initially ITS systems mainly
provided services for closed parking lots and garages, with the further development of the system,
the service was extended to street parking lots or open-type parking lots. These measures not only
solve traffic challenges but also promote sustainability in urban areas. This article analyzes the effect
of a cooperative approach of guiding vehicles to available parking spaces compared to a standard
model of searching for an available parking space. Within the framework of the advanced model for
searching for available space, four parking demand scenarios were defined and simulated. Based on
the created traffic simulation, a comparative analysis was made between the classic and cooperative
approach, while the primary differences are manifested in the load of the traffic flow A simulation
model was developed using the road network from the urban center of Zagreb.

Keywords: urban sustainability; search for parking; dynamic routing; cooperative approach; traffic
simulations

1. Introduction

The existing traffic networks of the city centers are generally not designed for the
current traffic demand, while the search for a parking space additionally increases the
traffic volume, which has a negative impact on traffic congestion, safety, and the impact on
the environment [1]. Extensions of the existing infrastructure are mostly not possible due
to lack of space until all difficulties can be solved with certain procedures or improvements
to the existing infrastructure, ensuring better urban sustainability. Therefore, an innovative
approach within the framework of the cooperative system aims to reduce the traffic volume
sampled by searching for parking.

The cooperative approach includes the use of information and communication tech-
nologies such as smart parking systems [2]. The demand for an available parking place
affects the increase in the total travel time and is negatively reflected in the increase in fuel
consumption, harmful gas emissions, noise production, and traffic accidents [3]. The cre-
ation of intelligent parking systems is essential to minimize the time taken to find parking
and decrease greenhouse gas emissions [4].
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The use of a system for informing or directing vehicles to parking spaces significantly
improves the parking process in terms of efficiency [5]. Therefore, with further technological
development [6,7] systems have been upgraded to provide real-time information.

The study underscores the integration of Intelligent Cooperative Sensing for Improved
Traffic Efficiency (ICSI) with a parking guidance system, emphasizing its potential to
enhance traffic efficiency and parking guidance in urban environments. ICSI integrates
advanced sensing technologies, cooperative communication, and intelligent data analysis to
collect real-time data from connected vehicles, infrastructure sensors, and parking facilities.
This enables the system to dynamically adapt routing strategies, offer dynamic parking
guidance, and optimize the allocation of resources. Key features of ICSI include real-time
data collection, cooperative communication protocols, intelligent data analysis, and the
overall improvement of traffic efficiency and parking availability. As a transformative
solution, ICSI holds significant promise in revolutionizing urban mobility and effectively
addressing the challenges posed by congestion and parking difficulties [8].

One way to reduce travel time and cost is to use a dynamic parking and route guidance
system. Previous research [9] has proposed a model that integrates the change of parking
destination and route traffic in real time. Based on test simulations, the system was
found to improve the coordination of parking resources, thereby increasing the optimal
use of parking spaces. Similar solutions to this issue can be found in several research
papers [10-20]. In the study by [16], the approach to integrate parking search behavior
through the methodology of underground replanning was analyzed, and the test area
is located in the city of Berlin. The study concludes that vehicles actively searching for
parking contribute to approximately 20% of the total traffic within residential areas.

In modern society, where the paradigm of a smart city is being promoted, there is
an escalating need for the personalization of services to enhance the efficiency of each
individual. Within the context of mobility, whether for drivers or public transport users, it
is important to develop route-planning services that reflect the real needs and preferences
of end users. On the one hand, the service will assist users in daily and ad hoc mobility,
while cities will benefit in terms of better traffic distribution, congestion reduction, and
optimization of traffic flows, thereby achieving greater throughput and reducing the burden
on key traffic nodes. The traditional survey method, known as the “on-the-spot” method,
which served as a precursor to the examination/discovery of the needs of transportation
system users, is no longer sufficient due to its static nature, limited reach, and inability
to adapt to dynamic changes in the traffic environment. Identifying and collecting data
on passenger mobility, habits, inclinations, and patterns of drivers and passengers is an
integral step in urban traffic planning [21,22].

Generally, consumer preference identification/discovery is based on the economic princi-
ple of stated preferences (explicitly, the classic “on-the-spot” method) and revealed /discovered
preferences [23]. Mobility has become unpredictable in a dynamic and changing envi-
ronment, and people’s habits and needs are becoming more sophisticated. It is best to
identify appropriate preferences for each user (driver) individually, as opposed to certain
approaches based on the preferences of the respective population. Indeed, preferences vary
from driver to driver. In this regard, different routes will be proposed, benefiting both
the driver (who will receive a route recommendation in line with their needs) and urban
environments, as such an approach is considered beneficial in reducing traffic congestion
in urban areas [24].

Because in urban areas it is difficult to find an available parking space, this is also a
problem that this paper deals with. The objective of this paper is to develop a model in
which vehicles are directed to the parking lot with an innovative approach using advanced
information and communication systems.

The formulation of several research questions gave rise to the research problem in
this paper.
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Research Question 1: What is the effect of using a cooperative approach to guiding vehicles
to available parking spaces compared to a standard model of searching for an available
parking space?

Research Question 2: How can real-time parking availability information be used to
improve the efficiency of parking guidance systems?

Research Question 3: How can parking guidance systems be integrated with other traffic
management systems to improve traffic flow in urban areas?

Research Question 4: How can the use of parking guidance systems be promoted to
encourage drivers to use them more frequently?

In accordance with research questions, the following hypothesis is established:

A model that guides vehicles to available parking spaces using advanced information
and communication systems will be more efficient than traditional parking guidance systems.

The research methodology is designed to comprehensively address the complexities
of guiding vehicles to available parking spaces in urban settings. Beginning with a thor-
ough background exploration, the study identifies gaps in existing knowledge on parking
guidance systems, intelligent transportation systems (ITS), and route optimization algo-
rithms. Subsequently, the problem is precisely defined, paving the way for the design of
a novel model that integrates real-time parking availability data, driver preferences, and
dynamic traffic information. Utilizing the PTV Vissim simulation tool, a simulation model
is developed to assess the model’s performance in terms of reducing parking search time,
optimizing travel time, and minimizing traffic congestion.

2. Driver-Centric Personalizing Route Guidance in Urban Contexts (Background)

The fundamental idea of revealed preferences in microeconomics is to find out what
consumers prefer. The theory of revealed preferences (TRP) was introduced by economist
Paul Samuelson, who posited that a set of preferences that can be discovered underlies each
choice. It is important to note that preferences, which are revealed after completed activities,
most closely describe consumer behavior [25,26]. Today, this is a special area of research and
application in microeconomics (e-commerce, internet advertising, etc.). Examples include
personalized ads on social networks, recommended products on e-commerce platforms,
and personalized playlists on music streaming services.

When it comes to advanced digital solutions that support the end user (drivers,
passengers) personalization is more necessary today than ever. In delivering personalized
services/products (based on the discovery of preferences, tendencies, and patterns of
user behavior) recommendation systems play a significant role. Today, the most common
implementations of recommendation systems are based on the following methods [22,27]:

Collaborative filtering—Most widespread in the application, generates recommenda-
tions based on a group of users with similar previous choices (explicitly—rating, sliding
scale, ranking), implicitly—behavior tracking. This is a relational method, not with numeri-
cal but with qualitative linking.

Knowledge-based systems—Recommendations based on acquired knowledge about the
user (past experiences), rules restrictions, based on one person, using artificial intelligence
technology (e.g., artificial neural networks, as artificial intelligence technology are capable of
“learning” from previous user interactions and adapting to their changing preferences).

Preference discovery based on optimization methods—One of the popular recom-
mendation algorithms is based on a model that optimizes a certain goal to improve rec-
ommendation giving. The most common goal is minimizing the errors of predicting user
desires/preferences (through preference discovery procedures) or, for example, maximiz-
ing the quality of recommendation ranking. With this approach, the system can more
accurately predict what the user wants and provide more relevant recommendations.

One of the key factors in establishing smart cities is data openness. The development
of technologies such as the Internet of Things, crowd sensing, geolocation services, sensor
networks, etc., now allows for the collection of a large amount of data, which benefits the
development of passenger and driver information/planning services that will be “tailored
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to the modern” user. Without openness and availability of traffic data, travel planning
systems cannot be fully useful, and therefore attractive to the end user. According to EU
directives, each member state establishes a National Access Point (NAP) that will represent
a single access point for accessing travel data (static and real-time) of various modes of
transport [28,29]. To provide a recommendation aligned with the preferences of the end
user (in this case—drivers), the recommendation system requires information about user
preferences in two ways: explicitly (through posed queries, service/product ratings; the
so-called setup profile) and implicitly, i.e., by tracking user behavior and discovering
and recording preferences [30]. In this regard, the user profile is a key element of such
systems because it records preferences, interests, and other relevant attributes during
interaction with the user, which is upgraded over time (and with more interaction). More
and more recommendation systems are approaching the real needs of users, thus providing
a personalized experience [31,32].

The needs of drivers for recommended routes, which are in line with their needs, are
growing increasingly. The same applies to multimodal (cooperative) travel guides [33].
The limitation of existing (traditional) route guidance systems is evident in the limited
possibilities for personalization. This is particularly important when planning routes (in-
cluding guidance to parking spaces, as well as guidance in parking lots and garages) in a
complex environment like urban areas. For instance, drivers of larger vehicles (with more
passengers or small children; for example, “family parking”) may seek parking with larger
parking spaces to park more easily, while drivers of small city cars are looking for any
available spaces due to the smaller size of the vehicle. Similarly, people with disabilities are
looking for accessible parking with special spaces for people with disabilities. Furthermore,
attributes like the shortest or fastest route, including distance, driving time, and the number
of signalized intersections, are no longer sufficient for the modern driver. Wang et al. [24]
introduced a Personalized Route Planning System Based on Driver Preferences model
(DPRP) in their article, which can propose the optimal route considering a more com-
prehensive set of driver preferences. The authors note that there are various attributes
that can influence a driver’s choice when planning a route, such as scenery, the radius of
curvature, the number of lanes, lane width, distance, congestion, traffic flow, the number of
pedestrians and cyclists, congestion rate, time cost, fuel consumption, tolls, the number
of traffic lights, the number of intersections, the number of turns, and the separation of
motor vehicles from non-motor vehicles. The model uses preference matrices to discover
the driver’s inclinations towards certain road segments (in the study, the route is divided
into segments). These preferences are then used to adapt the route to the driver, consid-
ering various factors such as traffic congestion, closed roads, and other traffic situations.
The authors delve deeply into the importance of weights in the DPRP model. Weight
values are crucial for quantifying the driver’s preferences towards different road segments.
Through the process of associating weights with different road segments, the model can
more accurately reflect the driver’s inclinations and provide routes that align with his or
her preferences. Weights are, therefore, an integral part of the Personalized Route Plan-
ning System, allowing for fine-tuning of the route according to the individual affinities
of the driver. Weights are assigned to individual attributes in their research by analyzing
large data sets and by directly questioning drivers where the values of each option are, as
follows: “Most important”, “Very important”, “Important”, “Slightly important”, “Least
important”, and “No importance at all”. In cases where the driver cannot fully articulate
their desires, the model is equipped to assist with recommendations. Through optimization
methods (reducing the complexity of the road network, eliminating invalid sub-routes,
and considering the weights assigned to attributes by users), it is possible to recommend a
route that best matches the driver’s preferences.

3. Traffic Modeling for Parking Application

In the traffic modeling for parking application, a detailed exploration of the road
traffic system using microsimulation tools is undertaken, emphasizing its relevance to the
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implementation of Smart Search for Parking in urban areas. The objective is to establish a
precise and realistic model of the infrastructure, contributing to an enhanced understanding
of traffic dynamics for the optimization of intelligent parking solutions [3]. The results
of microsimulation analysis were obtained within a certain time interval that evaluates
output indicators such as queue length, travel time, travel cost, average vehicle speed, and
exhaust emissions.

The simulation created is based on a traffic model where a certain percentage of
vehicles are equipped with a parking guidance system. The system makes real-time
decisions about the route from the current location (origin) to the parking lot (destination).
In addition, guidance information is dynamically updated and route selection is suggested
based on various criteria, such as parking lot occupancy, travel time, travel duration,
cost, etc.

3.1. Route Choice Models

Optimal route selection models help considerably in analyzing and understanding
passenger behavior. They also form an essential element in the application of the traffic
distribution method. The modeling problem can be deterministic or stochastic in nature.
The user equilibrium problem with determinism is shown by the fact that the route choice
model assumes that the traveler has all the information about the cost of the trip and
therefore chooses the route with the lowest cost. The user equilibrium with the stochastic
problem assumes that the traveler does not have the necessary information about the cost
of the trip, so the model chooses the route that minimizes the cost. In the dynamic traffic
assignment model, the route choice is already predetermined when the network structure
is loaded [3].

In this research, an abstract model of the city center was created at the microscopic level.
The values of the measured parameters were obtained using the PTV Vissim simulation
tool. The PTV Vissim simulation tool is based on the C++ programming language and
object-oriented programming. Due to the available application programming interface, it
is also suitable for the use of independent control or another algorithm. When defining
the direction of the vehicle’s movement, it is possible to choose between static routes with
predefined loading points for the vehicle and dynamic routes. In a dynamic assignment,
traffic demand is specified in the form of one or more origin—destination matrices, which
allows the road network to be simulated without having to manually define routes and
enter vehicles [34]. Vehicles entering the traffic network should have a specific type, class,
and category of traffic units (Figure 1).

ehicle Types

B~ & <Single List> -RBAR &

Count 8 No Name Category Model2D3DDistr  ColorDistr1 OccupDistr Capacity
1 ~'..’. 0 ( ’ 1 Default 1. Cinnmn ~ S !
33 Bus 30: Bu 1: Default
4 4 ) efa
5 LY ) e |‘}‘ C M
6 . 0 "'l'! man F edestnan 20C "!" man 2( 1 Shirt "l'r man
7. 610 Bike Man Bike 61: Bike Man 101: Shirt Man
8 6 ke W ) k Bike W W

Figure 1. Cont.
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Vehicle Classes / Vehicle types

- XD 2851 T K vehicle types -BEHR &

Count 6 No Name VehTypes UseVehTypeColor Color
1 10 Car 100 v - (255, 0, 0, 0)
2 20 HGV 200 v . (255, 0, 0, 0)
3| 30Bus 300 v .(255 0,0, 0)
4 40 Tram 400 v .(ZSS 0,0 0)
S| S0 Pedestrian 510,520 v -(255 0.0 0)
6 60 Bike 610,620 v -(255 0. 0. 0)

Figure 1. Presentation of vehicle type and class using the PTV Vissim.

Vehicle composition refers to the distribution and characteristics of different vehicle
types in a traffic simulation. It is created by specifying the proportions of vehicles in the
model. To better assess the impact of different vehicle types, it is possible to place them in
the same vehicle class if they share similar characteristics.

3.2. Driver Behavior

Since driving styles are not the same for every driver, specific features are combined to
create representative parameters for driving behavior when building a traffic flow model.
The types of driving behaviors are identified according to the value of the attribute on [34]:

- Urban (motorized);

- Slow lane rule (motorized);

- Outside the city (free choice of lane);
- Footpath (no interaction);

- Cycle path (free overtaking).

The behavior of drivers in traffic flow changes according to algorithms based on the
behavioral rules established according to the versions of the psychophysical model of traffic
flow Wiedemann 74 and Wiedemann 99. The versions are based on the assumption that
motorists can be in four states [3]:

- Free driving—reaching the desired speed with a tendency to maintain it constant;

- Approaching—adjusting the speed of the vehicle concerning the movement of the
vehicle in front;

- Following—following the vehicle in front, maintaining a safe distance without sudden
acceleration and deceleration;

- Braking—when reducing the safety distance, the vehicle slows down with the inten-
tion of re-matching the driving speed.

During driving, the stated states change when crossing a threshold that is a function
of the difference in speed and distance. The Wiedemann 74 version mainly defines the
maximum acceleration and deceleration functions for passenger vehicles. The driver and
the vehicle can have different attributes, which are divided into three groups [3]:

- Technical specification of the vehicle;
- The behavior that describes the entity;
- The mutual dependence of driver and vehicle.

The Wiedemann 99 model is more often used for calculations within cities or in more
complex urban environments. This is because the Wiedemann 99 model has an improved
formulation that considers various factors of driver behavior such as overtaking, lane
changes, and anticipation. Therefore, this model better simulates the complexities of traffic
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flow in an urban environment, while the Wiedemann 74 model is often used for calculations
outside cities or in simpler rural environments. Since the Wiedemann 74 model is older
and has a simpler formulation, it may be more suitable for simulating traffic on open roads
and highways where interactions between vehicles are less complex.

3.3. Traffic Assignment

Traffic assignment is considered as a model based on which drivers choose a route.
The first step in traffic assignment is to identify all possible routes and then evaluate them.
The final step is to describe the way drivers make a decision based on previous evaluations.

Dynamic traffic assignment is based on iterative simulations using collected data
on the total cost of the chosen route from previous iterations. Since it involves dynamic
stochastic user balancing, dynamic traffic assignment is much more efficient in abstract
traffic networks. Therefore, in contrast to the classical representation of the network with
links and connections, an abstract representation is used where the links are represented
by nodes. In dynamic traffic demand assignment using OD matrices, the observed area is
divided into zones, while the matrix contains the number of trips in a given time interval.
Moreover, the designated parking spaces in the model are not exclusively used as parking
spaces but are considered entry and exit points of the traffic network depending on the
usage zone. In other words, each parking is defined for a specific zone.

Another way to assign traffic is to use files containing trip chains. A trip chain is
defined as the result of a trip with much more detail and requires more coding compared
to the OD matrix. It is also possible to use trip chains in combination with the OD matrix
in the simulation model to generate the traffic volume and achieve the predicted travel
demand. Figure 2 shows an example of an OD matrix and a travel chain:

Matrix Editor (Matrix '2")

H ke
5x5 1 2 3 4 5
MName Zone 1 North | Zone 2 East Zone3 Zone 4 Zone 3
Sum 2560,00 2250,00 1460,00 1650,00 1950,00
1| Zone 1 North 3150,00 900,00 900,00 300,00 450,00 600,00
2| Zone 2 East 2050 500,00 750,00 100,00 500,00 100,00
3 Zone 3 300,00 400,00 200,00 200,00 200,00
4 Zoned 60,00 80,00 60,00 200,00 350,00
5 Zone s 262000 700,00 20,00 800,00 300,00 700,00
1.1
1;1;10; 1; 20; 101; 117; 211; 30; 101; 169; 732; 20; 101; 171;
2;1;10; 4; 20; 101; 255; 334; 30; 101; 147; 815; 20; 101; 124;
3;1;10; 8; 20; 101; 202; 395; 30; 101; 178; 832; 20; 101; 175;
4;1;10; 12; 20; 101; 216; 703; 30; 101; 162; 533; 20; 101; 208;
5;1;10; 16; 20; 101; 164; 601; 30; 101; 251;1134; 20; 101; 159;
6;1;10; 20; 20; 101; 295; 529; 30; 101; 133; 846; 20; 101; 114;
7;1;10; 25; 20; 101; 248; 262; 30; 101; 256; 987; 20; 101; 117;
8;1;10; 29; 20; 101; 169; 322; 30; 101; 164; 463; 20; 101; 141;
9;1;10; 31; 20; 101; 138; 543; 30; 101; 212; 40S5; 20; 101; 252;
10;1;10; 35; 20; 101; 296; 205; 30; 101; 160; 802; 20; 101; 221;
11;1;10; 40; 20; 101; 270; 622; 30; 101; 244; 604; 20; 101; 175;
12;1;10; 44; 20; 101; 189; 151; 30; 101; 185; 419; 20; 101; 227;

Figure 2. View of the OD matrix and trip chain file using PTV Vissim.

The use of the trip chain file is a detailed description of a vehicle’s trip within the
traffic network. Within the file, the first three columns refer to the vehicle number, the
vehicle type, and the departure zone. The following columns refer to the time of leaving
the previous zone, the number of the destination zone, the number of activities, and the
minimum stay in the destination zone [34].
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Figure 3 shows the principle of traffic assignment using the PTV Vissim simulation
tool. The allocation method is based on parameter values that describe the behavior of the
model. Moreover, depending on the state of the first simulation, the results can be saved
for the next iteration.

Load trip matrix for all OD
Bulid node-edge-graph

Input i
Convergence criterion
Max number of iterations: N
v
n=0
For all edges: set expected travel time = distance
v
n=n+1 -«
v
Route For all OD: Search route with minimum cost and add new route
search to the set of routes
v
Rout .
. For all OD: Split demand onto all routes
choice
v
Simulation For all OD and all vehicles (simultaneously): Perform
and Travel microscopic simulation
Times For all edges: Calculate travek time and cost
v
NO
Query nzN OR Convergence criterion fulfilled
v

End of assignment

Figure 3. Dynamic traffic assignment [34].

4. Model of Guidance Vehicles to Available Parking Spaces

With the introduction of a broader set of attributes (which are further divided into
specific sets) and the ability to assign weights by drivers (and experts), it is possible to
achieve user satisfaction and influence congestion in urban areas. However, neuralgic
points (from the driver’s perspective) in urban traffic are also parking lots and garages. By
integrating attributes related to parking lots and garages, a more comprehensive solution
could be achieved, enhancing the quality of user experience. In this context, the attributes
can be divided into two sets:

(A). Guidance to the parking/garage:

- Selection or elimination of on-street parking spaces;

- Real-time traffic congestion assessment on the proposed route;

- Road condition (information on road works, closed lanes or other obstacles);

- Weather conditions (current weather information);

- Estimated time of arrival (ETA considering current conditions on the route);

- Alternative routes (suggested alternative routes in case of jams or obstacles);

- Low emissions zone—LEZ (information on restricted access zones or special tariffs);
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- Parking pricing (information on parking prices at different locations);
- Parking space availability (real-time information on the number of free spaces in
specific garages or parking lots).

(B). Guidance at the parking lot/garage:

- Real-time availability of parking spaces (dynamic updates on the locations of free
parking spaces within the parking/garage lot);

- Reservation capability;

- Parking space size (information on the size and type of parking space (e.g., for small
and family cars, disabled persons);

- Digital signposts (directing drivers to free spaces or exits);

- Parking pricing (details on parking tariffs, special offers, discounts);

- Parking time (ability to track parking time and notifications about time expiration);

- Security cameras (information on the presence of security cameras or security personnel);

- Access points (locations and directions to elevators, stairs, exits or other important
points within the parking lot);

- Electric charging stations (information on the locations and availability of charging
stations for electric vehicles).

By dividing the attributes into two sets, the system is focused and efficient. The
attributes in Set A can be used to provide drivers with information and recommendations
that will help them find the most convenient and efficient route to the parking lot or garage.
The attributes in Set B can be used to provide drivers with information and assistance once
they have arrived at the parking lot or garage.

This is a more efficient way to use the system because the system does not need to
collect and process all the attributes for every driver. Instead, the system can just focus on
the attributes that are relevant to the driver’s current situation.

In addition, dividing the attributes into two sets makes the system more adaptable.
The system can be easily modified to add or remove attributes as needed. For example, the
system could be modified to add attributes that are specific to a particular type of parking
lot or garage.

Opverall, dividing the attributes into two sets is a more efficient and adaptable way to
design a personalized navigation system for guiding vehicles to available parking spaces.

Considering the attributes for guidance to parking lots and garages, the personalized
navigation system would be designed as follows: at the beginning of its use, the user would
create their profile during which specific queries would be posed. The goal of these queries
would be to ex