
Citation: Ćelić, J.; Mandžuka, B.;
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Abstract: With urbanization, there is a growing need for mobility. Challenges for urban drivers
include finding available parking spaces. Searching for a parking spot can be a frustrating experience,
often time consuming and costly. Also, the increasing number of vehicles on the roads leads to an
additional strain on traffic flow, while the search for parking spaces lowers the level of service. In
inner cities, vehicles circulate in search of an available parking space, leading to an increase in travel
time, fuel consumption, pollutant emissions, and a decrease in traffic safety. The search for a free
parking space generates a significant increase in traffic in urban areas. To solve the parking search
problem, it is necessary to develop certain strategies and measures that minimize circling in search of
a parking space. The implementation of intelligent transportation systems stands out. By applying
intelligent transport systems, drivers are provided with information about free parking spaces, which
reduces the circulation of vehicles in search of free parking. Although initially ITS systems mainly
provided services for closed parking lots and garages, with the further development of the system,
the service was extended to street parking lots or open-type parking lots. These measures not only
solve traffic challenges but also promote sustainability in urban areas. This article analyzes the effect
of a cooperative approach of guiding vehicles to available parking spaces compared to a standard
model of searching for an available parking space. Within the framework of the advanced model for
searching for available space, four parking demand scenarios were defined and simulated. Based on
the created traffic simulation, a comparative analysis was made between the classic and cooperative
approach, while the primary differences are manifested in the load of the traffic flow A simulation
model was developed using the road network from the urban center of Zagreb.

Keywords: urban sustainability; search for parking; dynamic routing; cooperative approach; traffic
simulations

1. Introduction

The existing traffic networks of the city centers are generally not designed for the
current traffic demand, while the search for a parking space additionally increases the
traffic volume, which has a negative impact on traffic congestion, safety, and the impact on
the environment [1]. Extensions of the existing infrastructure are mostly not possible due
to lack of space until all difficulties can be solved with certain procedures or improvements
to the existing infrastructure, ensuring better urban sustainability. Therefore, an innovative
approach within the framework of the cooperative system aims to reduce the traffic volume
sampled by searching for parking.

The cooperative approach includes the use of information and communication tech-
nologies such as smart parking systems [2]. The demand for an available parking place
affects the increase in the total travel time and is negatively reflected in the increase in fuel
consumption, harmful gas emissions, noise production, and traffic accidents [3]. The cre-
ation of intelligent parking systems is essential to minimize the time taken to find parking
and decrease greenhouse gas emissions [4].

Sustainability 2024, 16, 856. https://doi.org/10.3390/su16020856 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16020856
https://doi.org/10.3390/su16020856
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2316-840X
https://orcid.org/0000-0001-6946-4987
https://orcid.org/0000-0003-0416-3854
https://orcid.org/0000-0003-2556-4358
https://doi.org/10.3390/su16020856
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16020856?type=check_update&version=1


Sustainability 2024, 16, 856 2 of 22

The use of a system for informing or directing vehicles to parking spaces significantly
improves the parking process in terms of efficiency [5]. Therefore, with further technological
development [6,7] systems have been upgraded to provide real-time information.

The study underscores the integration of Intelligent Cooperative Sensing for Improved
Traffic Efficiency (ICSI) with a parking guidance system, emphasizing its potential to
enhance traffic efficiency and parking guidance in urban environments. ICSI integrates
advanced sensing technologies, cooperative communication, and intelligent data analysis to
collect real-time data from connected vehicles, infrastructure sensors, and parking facilities.
This enables the system to dynamically adapt routing strategies, offer dynamic parking
guidance, and optimize the allocation of resources. Key features of ICSI include real-time
data collection, cooperative communication protocols, intelligent data analysis, and the
overall improvement of traffic efficiency and parking availability. As a transformative
solution, ICSI holds significant promise in revolutionizing urban mobility and effectively
addressing the challenges posed by congestion and parking difficulties [8].

One way to reduce travel time and cost is to use a dynamic parking and route guidance
system. Previous research [9] has proposed a model that integrates the change of parking
destination and route traffic in real time. Based on test simulations, the system was
found to improve the coordination of parking resources, thereby increasing the optimal
use of parking spaces. Similar solutions to this issue can be found in several research
papers [10–20]. In the study by [16], the approach to integrate parking search behavior
through the methodology of underground replanning was analyzed, and the test area
is located in the city of Berlin. The study concludes that vehicles actively searching for
parking contribute to approximately 20% of the total traffic within residential areas.

In modern society, where the paradigm of a smart city is being promoted, there is
an escalating need for the personalization of services to enhance the efficiency of each
individual. Within the context of mobility, whether for drivers or public transport users, it
is important to develop route-planning services that reflect the real needs and preferences
of end users. On the one hand, the service will assist users in daily and ad hoc mobility,
while cities will benefit in terms of better traffic distribution, congestion reduction, and
optimization of traffic flows, thereby achieving greater throughput and reducing the burden
on key traffic nodes. The traditional survey method, known as the “on-the-spot” method,
which served as a precursor to the examination/discovery of the needs of transportation
system users, is no longer sufficient due to its static nature, limited reach, and inability
to adapt to dynamic changes in the traffic environment. Identifying and collecting data
on passenger mobility, habits, inclinations, and patterns of drivers and passengers is an
integral step in urban traffic planning [21,22].

Generally, consumer preference identification/discovery is based on the economic princi-
ple of stated preferences (explicitly, the classic “on-the-spot” method) and revealed/discovered
preferences [23]. Mobility has become unpredictable in a dynamic and changing envi-
ronment, and people’s habits and needs are becoming more sophisticated. It is best to
identify appropriate preferences for each user (driver) individually, as opposed to certain
approaches based on the preferences of the respective population. Indeed, preferences vary
from driver to driver. In this regard, different routes will be proposed, benefiting both
the driver (who will receive a route recommendation in line with their needs) and urban
environments, as such an approach is considered beneficial in reducing traffic congestion
in urban areas [24].

Because in urban areas it is difficult to find an available parking space, this is also a
problem that this paper deals with. The objective of this paper is to develop a model in
which vehicles are directed to the parking lot with an innovative approach using advanced
information and communication systems.

The formulation of several research questions gave rise to the research problem in
this paper.
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Research Question 1: What is the effect of using a cooperative approach to guiding vehicles
to available parking spaces compared to a standard model of searching for an available
parking space?
Research Question 2: How can real-time parking availability information be used to
improve the efficiency of parking guidance systems?
Research Question 3: How can parking guidance systems be integrated with other traffic
management systems to improve traffic flow in urban areas?
Research Question 4: How can the use of parking guidance systems be promoted to
encourage drivers to use them more frequently?

In accordance with research questions, the following hypothesis is established:
A model that guides vehicles to available parking spaces using advanced information

and communication systems will be more efficient than traditional parking guidance systems.
The research methodology is designed to comprehensively address the complexities

of guiding vehicles to available parking spaces in urban settings. Beginning with a thor-
ough background exploration, the study identifies gaps in existing knowledge on parking
guidance systems, intelligent transportation systems (ITS), and route optimization algo-
rithms. Subsequently, the problem is precisely defined, paving the way for the design of
a novel model that integrates real-time parking availability data, driver preferences, and
dynamic traffic information. Utilizing the PTV Vissim simulation tool, a simulation model
is developed to assess the model’s performance in terms of reducing parking search time,
optimizing travel time, and minimizing traffic congestion.

2. Driver-Centric Personalizing Route Guidance in Urban Contexts (Background)

The fundamental idea of revealed preferences in microeconomics is to find out what
consumers prefer. The theory of revealed preferences (TRP) was introduced by economist
Paul Samuelson, who posited that a set of preferences that can be discovered underlies each
choice. It is important to note that preferences, which are revealed after completed activities,
most closely describe consumer behavior [25,26]. Today, this is a special area of research and
application in microeconomics (e-commerce, internet advertising, etc.). Examples include
personalized ads on social networks, recommended products on e-commerce platforms,
and personalized playlists on music streaming services.

When it comes to advanced digital solutions that support the end user (drivers,
passengers) personalization is more necessary today than ever. In delivering personalized
services/products (based on the discovery of preferences, tendencies, and patterns of
user behavior) recommendation systems play a significant role. Today, the most common
implementations of recommendation systems are based on the following methods [22,27]:

Collaborative filtering—Most widespread in the application, generates recommenda-
tions based on a group of users with similar previous choices (explicitly—rating, sliding
scale, ranking), implicitly—behavior tracking. This is a relational method, not with numeri-
cal but with qualitative linking.

Knowledge-based systems—Recommendations based on acquired knowledge about the
user (past experiences), rules restrictions, based on one person, using artificial intelligence
technology (e.g., artificial neural networks, as artificial intelligence technology are capable of
“learning” from previous user interactions and adapting to their changing preferences).

Preference discovery based on optimization methods—One of the popular recom-
mendation algorithms is based on a model that optimizes a certain goal to improve rec-
ommendation giving. The most common goal is minimizing the errors of predicting user
desires/preferences (through preference discovery procedures) or, for example, maximiz-
ing the quality of recommendation ranking. With this approach, the system can more
accurately predict what the user wants and provide more relevant recommendations.

One of the key factors in establishing smart cities is data openness. The development
of technologies such as the Internet of Things, crowd sensing, geolocation services, sensor
networks, etc., now allows for the collection of a large amount of data, which benefits the
development of passenger and driver information/planning services that will be “tailored
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to the modern” user. Without openness and availability of traffic data, travel planning
systems cannot be fully useful, and therefore attractive to the end user. According to EU
directives, each member state establishes a National Access Point (NAP) that will represent
a single access point for accessing travel data (static and real-time) of various modes of
transport [28,29]. To provide a recommendation aligned with the preferences of the end
user (in this case—drivers), the recommendation system requires information about user
preferences in two ways: explicitly (through posed queries, service/product ratings; the
so-called setup profile) and implicitly, i.e., by tracking user behavior and discovering
and recording preferences [30]. In this regard, the user profile is a key element of such
systems because it records preferences, interests, and other relevant attributes during
interaction with the user, which is upgraded over time (and with more interaction). More
and more recommendation systems are approaching the real needs of users, thus providing
a personalized experience [31,32].

The needs of drivers for recommended routes, which are in line with their needs, are
growing increasingly. The same applies to multimodal (cooperative) travel guides [33].
The limitation of existing (traditional) route guidance systems is evident in the limited
possibilities for personalization. This is particularly important when planning routes (in-
cluding guidance to parking spaces, as well as guidance in parking lots and garages) in a
complex environment like urban areas. For instance, drivers of larger vehicles (with more
passengers or small children; for example, “family parking”) may seek parking with larger
parking spaces to park more easily, while drivers of small city cars are looking for any
available spaces due to the smaller size of the vehicle. Similarly, people with disabilities are
looking for accessible parking with special spaces for people with disabilities. Furthermore,
attributes like the shortest or fastest route, including distance, driving time, and the number
of signalized intersections, are no longer sufficient for the modern driver. Wang et al. [24]
introduced a Personalized Route Planning System Based on Driver Preferences model
(DPRP) in their article, which can propose the optimal route considering a more com-
prehensive set of driver preferences. The authors note that there are various attributes
that can influence a driver’s choice when planning a route, such as scenery, the radius of
curvature, the number of lanes, lane width, distance, congestion, traffic flow, the number of
pedestrians and cyclists, congestion rate, time cost, fuel consumption, tolls, the number
of traffic lights, the number of intersections, the number of turns, and the separation of
motor vehicles from non-motor vehicles. The model uses preference matrices to discover
the driver’s inclinations towards certain road segments (in the study, the route is divided
into segments). These preferences are then used to adapt the route to the driver, consid-
ering various factors such as traffic congestion, closed roads, and other traffic situations.
The authors delve deeply into the importance of weights in the DPRP model. Weight
values are crucial for quantifying the driver’s preferences towards different road segments.
Through the process of associating weights with different road segments, the model can
more accurately reflect the driver’s inclinations and provide routes that align with his or
her preferences. Weights are, therefore, an integral part of the Personalized Route Plan-
ning System, allowing for fine-tuning of the route according to the individual affinities
of the driver. Weights are assigned to individual attributes in their research by analyzing
large data sets and by directly questioning drivers where the values of each option are, as
follows: “Most important”, “Very important”, “Important”, “Slightly important”, “Least
important”, and “No importance at all”. In cases where the driver cannot fully articulate
their desires, the model is equipped to assist with recommendations. Through optimization
methods (reducing the complexity of the road network, eliminating invalid sub-routes,
and considering the weights assigned to attributes by users), it is possible to recommend a
route that best matches the driver’s preferences.

3. Traffic Modeling for Parking Application

In the traffic modeling for parking application, a detailed exploration of the road
traffic system using microsimulation tools is undertaken, emphasizing its relevance to the
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implementation of Smart Search for Parking in urban areas. The objective is to establish a
precise and realistic model of the infrastructure, contributing to an enhanced understanding
of traffic dynamics for the optimization of intelligent parking solutions [3]. The results
of microsimulation analysis were obtained within a certain time interval that evaluates
output indicators such as queue length, travel time, travel cost, average vehicle speed, and
exhaust emissions.

The simulation created is based on a traffic model where a certain percentage of
vehicles are equipped with a parking guidance system. The system makes real-time
decisions about the route from the current location (origin) to the parking lot (destination).
In addition, guidance information is dynamically updated and route selection is suggested
based on various criteria, such as parking lot occupancy, travel time, travel duration,
cost, etc.

3.1. Route Choice Models

Optimal route selection models help considerably in analyzing and understanding
passenger behavior. They also form an essential element in the application of the traffic
distribution method. The modeling problem can be deterministic or stochastic in nature.
The user equilibrium problem with determinism is shown by the fact that the route choice
model assumes that the traveler has all the information about the cost of the trip and
therefore chooses the route with the lowest cost. The user equilibrium with the stochastic
problem assumes that the traveler does not have the necessary information about the cost
of the trip, so the model chooses the route that minimizes the cost. In the dynamic traffic
assignment model, the route choice is already predetermined when the network structure
is loaded [3].

In this research, an abstract model of the city center was created at the microscopic level.
The values of the measured parameters were obtained using the PTV Vissim simulation
tool. The PTV Vissim simulation tool is based on the C++ programming language and
object-oriented programming. Due to the available application programming interface, it
is also suitable for the use of independent control or another algorithm. When defining
the direction of the vehicle’s movement, it is possible to choose between static routes with
predefined loading points for the vehicle and dynamic routes. In a dynamic assignment,
traffic demand is specified in the form of one or more origin–destination matrices, which
allows the road network to be simulated without having to manually define routes and
enter vehicles [34]. Vehicles entering the traffic network should have a specific type, class,
and category of traffic units (Figure 1).
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Vehicle composition refers to the distribution and characteristics of different vehicle
types in a traffic simulation. It is created by specifying the proportions of vehicles in the
model. To better assess the impact of different vehicle types, it is possible to place them in
the same vehicle class if they share similar characteristics.

3.2. Driver Behavior

Since driving styles are not the same for every driver, specific features are combined to
create representative parameters for driving behavior when building a traffic flow model.
The types of driving behaviors are identified according to the value of the attribute on [34]:

- Urban (motorized);
- Slow lane rule (motorized);
- Outside the city (free choice of lane);
- Footpath (no interaction);
- Cycle path (free overtaking).

The behavior of drivers in traffic flow changes according to algorithms based on the
behavioral rules established according to the versions of the psychophysical model of traffic
flow Wiedemann 74 and Wiedemann 99. The versions are based on the assumption that
motorists can be in four states [3]:

- Free driving—reaching the desired speed with a tendency to maintain it constant;
- Approaching—adjusting the speed of the vehicle concerning the movement of the

vehicle in front;
- Following—following the vehicle in front, maintaining a safe distance without sudden

acceleration and deceleration;
- Braking—when reducing the safety distance, the vehicle slows down with the inten-

tion of re-matching the driving speed.

During driving, the stated states change when crossing a threshold that is a function
of the difference in speed and distance. The Wiedemann 74 version mainly defines the
maximum acceleration and deceleration functions for passenger vehicles. The driver and
the vehicle can have different attributes, which are divided into three groups [3]:

- Technical specification of the vehicle;
- The behavior that describes the entity;
- The mutual dependence of driver and vehicle.

The Wiedemann 99 model is more often used for calculations within cities or in more
complex urban environments. This is because the Wiedemann 99 model has an improved
formulation that considers various factors of driver behavior such as overtaking, lane
changes, and anticipation. Therefore, this model better simulates the complexities of traffic
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flow in an urban environment, while the Wiedemann 74 model is often used for calculations
outside cities or in simpler rural environments. Since the Wiedemann 74 model is older
and has a simpler formulation, it may be more suitable for simulating traffic on open roads
and highways where interactions between vehicles are less complex.

3.3. Traffic Assignment

Traffic assignment is considered as a model based on which drivers choose a route.
The first step in traffic assignment is to identify all possible routes and then evaluate them.
The final step is to describe the way drivers make a decision based on previous evaluations.

Dynamic traffic assignment is based on iterative simulations using collected data
on the total cost of the chosen route from previous iterations. Since it involves dynamic
stochastic user balancing, dynamic traffic assignment is much more efficient in abstract
traffic networks. Therefore, in contrast to the classical representation of the network with
links and connections, an abstract representation is used where the links are represented
by nodes. In dynamic traffic demand assignment using OD matrices, the observed area is
divided into zones, while the matrix contains the number of trips in a given time interval.
Moreover, the designated parking spaces in the model are not exclusively used as parking
spaces but are considered entry and exit points of the traffic network depending on the
usage zone. In other words, each parking is defined for a specific zone.

Another way to assign traffic is to use files containing trip chains. A trip chain is
defined as the result of a trip with much more detail and requires more coding compared
to the OD matrix. It is also possible to use trip chains in combination with the OD matrix
in the simulation model to generate the traffic volume and achieve the predicted travel
demand. Figure 2 shows an example of an OD matrix and a travel chain:
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The use of the trip chain file is a detailed description of a vehicle’s trip within the
traffic network. Within the file, the first three columns refer to the vehicle number, the
vehicle type, and the departure zone. The following columns refer to the time of leaving
the previous zone, the number of the destination zone, the number of activities, and the
minimum stay in the destination zone [34].
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Figure 3 shows the principle of traffic assignment using the PTV Vissim simulation
tool. The allocation method is based on parameter values that describe the behavior of the
model. Moreover, depending on the state of the first simulation, the results can be saved
for the next iteration.
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4. Model of Guidance Vehicles to Available Parking Spaces

With the introduction of a broader set of attributes (which are further divided into
specific sets) and the ability to assign weights by drivers (and experts), it is possible to
achieve user satisfaction and influence congestion in urban areas. However, neuralgic
points (from the driver’s perspective) in urban traffic are also parking lots and garages. By
integrating attributes related to parking lots and garages, a more comprehensive solution
could be achieved, enhancing the quality of user experience. In this context, the attributes
can be divided into two sets:

(A). Guidance to the parking/garage:

- Selection or elimination of on-street parking spaces;
- Real-time traffic congestion assessment on the proposed route;
- Road condition (information on road works, closed lanes or other obstacles);
- Weather conditions (current weather information);
- Estimated time of arrival (ETA considering current conditions on the route);
- Alternative routes (suggested alternative routes in case of jams or obstacles);
- Low emissions zone—LEZ (information on restricted access zones or special tariffs);
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- Parking pricing (information on parking prices at different locations);
- Parking space availability (real-time information on the number of free spaces in

specific garages or parking lots).

(B). Guidance at the parking lot/garage:

- Real-time availability of parking spaces (dynamic updates on the locations of free
parking spaces within the parking/garage lot);

- Reservation capability;
- Parking space size (information on the size and type of parking space (e.g., for small

and family cars, disabled persons);
- Digital signposts (directing drivers to free spaces or exits);
- Parking pricing (details on parking tariffs, special offers, discounts);
- Parking time (ability to track parking time and notifications about time expiration);
- Security cameras (information on the presence of security cameras or security personnel);
- Access points (locations and directions to elevators, stairs, exits or other important

points within the parking lot);
- Electric charging stations (information on the locations and availability of charging

stations for electric vehicles).

By dividing the attributes into two sets, the system is focused and efficient. The
attributes in Set A can be used to provide drivers with information and recommendations
that will help them find the most convenient and efficient route to the parking lot or garage.
The attributes in Set B can be used to provide drivers with information and assistance once
they have arrived at the parking lot or garage.

This is a more efficient way to use the system because the system does not need to
collect and process all the attributes for every driver. Instead, the system can just focus on
the attributes that are relevant to the driver’s current situation.

In addition, dividing the attributes into two sets makes the system more adaptable.
The system can be easily modified to add or remove attributes as needed. For example, the
system could be modified to add attributes that are specific to a particular type of parking
lot or garage.

Overall, dividing the attributes into two sets is a more efficient and adaptable way to
design a personalized navigation system for guiding vehicles to available parking spaces.

Considering the attributes for guidance to parking lots and garages, the personalized
navigation system would be designed as follows: at the beginning of its use, the user would
create their profile during which specific queries would be posed. The goal of these queries
would be to explicitly collect weights for individual attributes, using ranking methods
and rating scales, all including attributes related to parking lots and garages. In previous
research, it has been observed that preferences revealed after completed activities most ac-
curately describe user behavior. It has been concluded that it is best to identify appropriate
preferences (expressed, for example, through numerical values of corresponding criteria)
for each user individually, as opposed to certain approaches based on the preferences of
the respective population to which the user belongs (based on some principle). To ensure
continuous relevance and precision of the system in relation to user preferences, a dynamic
model is proposed that would periodically update information on user preferences, based
on their previous choices, thus allowing for a finer adaptation of the user profile.

When utilizing the system to direct the vehicle to an available parking space, the
driver obtains insights about the best path (based on prevailing circumstances, traffic, and
established parameters) starting from their current location to their endpoint, which is the
nearest available parking to their desired destination. If the driver modifies their route, such
as incorporating a new location of interest, the system recalculates to find the most suitable
path based on the updated requirements. Throughout the journey, the system continuously
monitors the ongoing traffic conditions and alerts the driver of any significant changes. If,
based on the gathered data, the system identifies a more fitting route in alignment with the
set parameters, it timely notifies the driver. There can be many reasons for changing the
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route, for example, if there are no free parking spaces, the system changes the travel route
and directs the driver to the nearest available parking space. Of course, this situation is
also possible in parking lots that do not offer the possibility of reserving a parking space.
The operation of the simulation model with the system for guiding vehicles to an available
parking space is shown in Figure 4.
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4.1. Travel Time

Travel time depends on factors such as traffic volume and road infrastructure, so travel
time varies depending on the time of day. To simplify the consideration of travel time, the
total simulation time is divided into evaluation intervals, which usually have a duration
from 5 min to half of the time interval of the OD matrix.

Travel time during the simulation is measured on each edge or path between two
nodes. For each vehicle traveling between two nodes, the program records the time taken.
Thus, the travel time is the average of all travel times spent on that edge and is considered
the resulting travel time at that point. If the vehicles stay longer than the duration of the
evaluation interval, it means that the level of service has decreased due to traffic congestion.
In addition, if the vehicles remain stationary (due to congestion), the travel time does not
refer to the route search in the current iteration, but to the next one.

The simulation tool, which uses MSA (Method of Successive Averages) and the expo-
nential smoothing method, uses data from the current and all previous iterations. MSA is
used to calculate the arithmetic mean of all iterations and use this calculation to determine
the weighting factor. As the number of previous iterations in the calculation increases, the
influence of each subsequent iteration decreases [34].

Tn,Kei
ir =

(
1 − 1

N + n

)
· Tn−1,Kei

ir +
1

N + n
· TOn,Kei

ir (1)

In the above Formula (1), N represents a user-defined value, Kei represents the index
of the evaluation interval in the simulation period, n represents the index of the assignation
iteration, ir represents edge index, TOn,K

i represents measured edge travel time for a period
to iteration n, Tn,K

i represents expected edge travel time and for period K to iteration n,
and 1

N+n represents variable smoothing factor dependent on parameter N and assignment
iteration index.

In the exponential smoothing method, the influence of previous iterations is calculated
using a user-defined smoothing factor. The first iterations have the least impact. The
smoothed travel time is calculated by summing the old, smoothed values of the previous
iteration and the new values of the current iteration [34].

Tn,Kei
ar = (1 − αz) · Tn−1,Kei

ar + αz · TOn,Kei
ar (2)

In this Equation (2), N denotes a value set by the user, Kei refers to the evaluation
interval’s index during the simulation, n is the allocation iteration’s index, ar stands for the
edge’s index, TOn,K

ar indicates the observed travel time on edge a during iteration n, Tn,K
ar

signifies the anticipated travel time on edge a for period k in iteration n, and αz represents
smoothing parameters.

Selecting the best route involves more than just travel time; costs are also a factor.
Travel costs are viewed as a mix of travel time, distance, and other fees, such as tolls. The
cost components for vehicles are set based on their class. The overall cost (C) for each edge
is computed using [34]:

C = α · t + β · s + γ · C f + ∑ Cn2 (3)

In the mentioned Formula (3), α, β, γ represent weighting factors that can be used to
determine the different behavior of a group of drivers when choosing a route, s represents
a factor determined by the geometry of traffic sections, C f represents the sum of the costs
of all traffic sections that make up one edge, and Cn2 represents the additional cost of a
traffic section.

4.2. Determining the Optimal Route

The optimal route is searched in each iteration of the dynamic assignment as the times
change until the convergence criterion is met. The program writes the optimal routes
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obtained through iterations to a file (.weg). Records from the specified file are used in
future iterations.

Choosing the appropriate route defines the overall cost. Given that the first iteration
cannot use records from previous iterations, it therefore uses the length of the path. To
speed up the finding of new paths in the following iterations, a travel time of 0.1 s is added
to those vehicles that did not pass the edges to increase their attractiveness when searching
for a route.

The route is defined as a series of edges that describe the path through the network,
while the beginning and end of the route are considered parking spaces. The route cost is de-
fined according to the general costs of all edges, which can be expressed as Formula (4) [34]:

CR = ∑a∈R Cr (4)

In the given Formula (4), C represents the general cost, R represents the route, and r
represents the border.

By leaving the place of origin, drivers choose a route and use all known roads in such
a way that a greater proportion of vehicles will be distributed along better roads. The
utility (2) of roads is evaluated using the reciprocal of overhead costs.

Uj =
1
Cj

(5)

In the mentioned Formula (5) [34], Uj represents the utility of road j, while Cj represents
general travel expenses j.

The Logit function is used to determine the behavior of vehicles in the traffic network.

p
(

Rj
)
=

eµUj

∑ eµUi
(6)

In the above formula [34], Uj represents the utility of road j, p(Rj) represents the
probability of choosing path j, and µ indicates the sensitivity parameter of the model (>0).

The values of the sensitivity parameter determine whether the drivers will use the
best route or if there will be no impact on the utility of the routes. If the default value of the
sensitivity parameter is low, the distribution will not have a great impact on utility, while a
high value determines that vehicles mostly use the best route.

For approximating the estimation and distribution of traffic demand along all known
routes of a set of OD pairs, the Kirchhoff distribution formula is used.

p
(

Rj
)
=

Uko
j

∑i Uko
i

(7)

In the given Formula (7) [34], Uj represents the utility of path j, then p(Rj) represents
the probability of choosing path j, and ko indicates the sensitivity parameter of the model.

4.3. Choice of Parking Lot

The traffic demand in the OD matrices refers to the identified zones. In the traffic
network, zones are determined by parking spaces. Before choosing a route, the driver
selects a parking space using discrete choice theory. Also in this situation, the logit formula
and the utility function with the attributes of the parking lot are used.

Parking lots can be used for three purposes in the transportation model. In the first
method, parking lots can be used as connector zones, i.e., they represent entry and exit
points in the traffic network. The second method refers to an abstract parking lot, where
vehicles slow down when approaching the parking lot and are deleted from the traffic
network after stopping. In the third method, the parking lot refers to a “real parking lot”
where the decision to park at a certain distance is made before the simulation begins.
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There are several options for choosing a parking space. Vehicles can start their journey
from the original parking lot. There is also an option to choose a parking space after a
decision about dynamic assignment has been made. In addition, the selection of a parking
space can be determined using the vehicle guidance system.

The utility for a parking space is expressed using Formula (8) [34]:

Uktv ,ks = αktv ,ks · CParking + βktv ,ks · Z + γktv ,ks · Dodr + δktv ,ks · Cvoz + εktv ,ks · fs (8)

In the above formula, CParking represents the price of parking in the zone, Z presents the
attractiveness of the characteristics of the observed zone, Dodr represents the air distance
between the center of the destination zone and the parking space, Cvoz represents the
general costs of the cheapest route from the current position of the vehicle, fs represents the
availability of parking spaces, ktv represents the vehicle type index, and ks represents the
scenario index. Positive (βktv ,ks , εktv ,ks ) and negative ( αktv ,ks , γktv ,ks , δktv ,ks

)
coefficients are

determined by the user.

5. Simulation Model Development

This study examines a linearized generalized model of an urban center, focusing on
the city of Zagreb and the corresponding descriptive parameters. The city of Zagreb is
characterized by a complex road network and heavy traffic flow. By accurately modeling
this network in PTV Vissim, traffic conditions are simulated, and the parking scenario is
evaluated (Figure 5).
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Figure 5. Simulation model of the urban traffic network of the study area of Zagreb using PTV
Vissim app.

The traffic network in the study area consists of an extensive network of roads and
intersections. It includes major thoroughfares, arterial roads, and local roads serving both
residential and commercial areas. The network is designed to accommodate a significant
volume of vehicles, including cars, buses, and motorbikes. Several major roads in the city
center serve as important transport corridors. These roads connect different neighborhoods
and major landmarks. There are several of them in the study area, such as Nikola Tesla,
Hebrangova, and Branka Tenta streets (Figure 6). They have several lanes, controlled
intersections, and a high volume of traffic.



Sustainability 2024, 16, 856 14 of 22

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 22 
 

Tesla, Hebrangova, and Branka Tenta streets (Figure 6). They have several lanes, con-
trolled intersections, and a high volume of traffic. 

 
Figure 6. Simulation model of the urban center of Zagreb using PTV Vissim app. 

Routing with dynamic traffic assignment depends on certain conditions being met. 
For example, if all parking spaces in the destination parking lot are occupied, the system 
assigns a new parking space with an available parking lot with a new route. The effective-
ness of this model is reflected in total travel time and total distance traveled. 

Traffic volume is determined by the number of vehicles traveling the traffic section 
in a period of one hour according to the Poisson distribution. Considering the scope and 
method of the research in this work, the traffic distribution was made by using the dy-
namic routes option. 

The duration of the simulation was set to 60 min to simulate the traffic load in an 
abstract city center. For vehicle types with a route guidance system, a route guidance in-
terval of 60 s with an information arrival delay of 8 s was set. When creating the model, 
pedestrian traffic and traffic of other units were not considered, but only 2 vehicle compo-
sitions were set. The first composition was the basic traffic flow, while the second compo-
sition consisted of vehicles with a system to indicate available parking spaces. The basic 
traffic flow consisted of 98% cars, while trucks accounted for 2%. The Wiedemann 74 sim-
ulation model for directing vehicles to available parking spaces is used to better describe 
the behavior of drivers in inner cities. 

Calibration was used to bring the model to the maximum traffic load to illustrate the 
negative effects of unnecessary circling in search of a parking space. Once the model was 
brought to an equilibrium state, the simulation was run for four scenarios. The first sce-
nario refers to parking vehicles without a wayfinding system. The other scenarios refer to 
the parking of vehicles with a traffic guidance system with a percentage of 10%, 25%, and 
50%. 

The results of the first half-hour were not considered because the traffic network was 
not filled with vehicles. As a result, the network was unbalanced and could not provide 
reliable data. The percentage of vehicles that wanted to park in the designated zones was 
25% of the total traffic. The traffic intersections are equipped with traffic signals and speed 
reduction when turning, while the right-of-way rule is applied at certain intersections. 
The reference speed is set at 50 km/h. 

The OD matrix consists of three entries, exit, and parking zones. The access zone from 
the west has 1400 vehicles, while the access zone to the network from the east is set at 800 
vehicles (Figure 7). The time interval is set at 1 h. Considering the number of entries and 

Figure 6. Simulation model of the urban center of Zagreb using PTV Vissim app.

Routing with dynamic traffic assignment depends on certain conditions being met. For
example, if all parking spaces in the destination parking lot are occupied, the system assigns
a new parking space with an available parking lot with a new route. The effectiveness of
this model is reflected in total travel time and total distance traveled.

Traffic volume is determined by the number of vehicles traveling the traffic section
in a period of one hour according to the Poisson distribution. Considering the scope and
method of the research in this work, the traffic distribution was made by using the dynamic
routes option.

The duration of the simulation was set to 60 min to simulate the traffic load in an
abstract city center. For vehicle types with a route guidance system, a route guidance
interval of 60 s with an information arrival delay of 8 s was set. When creating the
model, pedestrian traffic and traffic of other units were not considered, but only 2 vehicle
compositions were set. The first composition was the basic traffic flow, while the second
composition consisted of vehicles with a system to indicate available parking spaces. The
basic traffic flow consisted of 98% cars, while trucks accounted for 2%. The Wiedemann
74 simulation model for directing vehicles to available parking spaces is used to better
describe the behavior of drivers in inner cities.

Calibration was used to bring the model to the maximum traffic load to illustrate
the negative effects of unnecessary circling in search of a parking space. Once the model
was brought to an equilibrium state, the simulation was run for four scenarios. The first
scenario refers to parking vehicles without a wayfinding system. The other scenarios refer
to the parking of vehicles with a traffic guidance system with a percentage of 10%, 25%,
and 50%.

The results of the first half-hour were not considered because the traffic network was
not filled with vehicles. As a result, the network was unbalanced and could not provide
reliable data. The percentage of vehicles that wanted to park in the designated zones was
25% of the total traffic. The traffic intersections are equipped with traffic signals and speed
reduction when turning, while the right-of-way rule is applied at certain intersections. The
reference speed is set at 50 km/h.

The OD matrix consists of three entries, exit, and parking zones. The access zone
from the west has 1400 vehicles, while the access zone to the network from the east is
set at 800 vehicles (Figure 7). The time interval is set at 1 h. Considering the number of
entries and exits from the traffic network, nine combinations of vehicle movements were
considered in the analysis.
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The parking zone has a total of 645 parking spaces, of which 89 parking spaces are
located in the first zone, 254 parking spaces in the second zone, and 302 parking spaces in
the third zone.

The point of interest was placed on the northern part of the traffic network, and the
parking zones and the attractiveness of the parking lot were determined accordingly. The
length of the parking spaces is 6 m. Moreover, there are no restrictions on the parking lots
in terms of the price of collection, working hours, or parking duration.

In addition to creating the traffic network and determining the traffic behavior and
vehicle type, it was necessary to define the key parameters of the dynamic mapping. The
evaluation interval is set to 600 s. The costs are stored using exponential smoothing with
a smoothing factor of 0.2. The maximum number of routes per parking lot route is 999.
Routes whose total cost is higher than 75% of the best route are discarded. The destination
parking decision is made with a logit scaling factor of 1.5, while the route selection is
determined with a stochastic assignment (Kirchhoff exponent) of 0.2. In addition, the
option of correcting for overlapping paths was used, while bypass paths that were 2.5 times
larger than the best path were discarded. The percentage of paths that must converge to
meet the convergence criterion was set to 95%.

6. Evaluation of the Simulation Results

The evaluation of the simulation results includes 9 observed routes on which criteria
tests were performed: travel time and distance traveled.

Table 1 shows the statistical indicators of total travel time for vehicles without route
guidance systems. Tables 2–4 present statistical indicators for vehicles equipped with
guidance systems at different percentages (10%, 25%, and 50%) of the total number of
vehicles in the search for parking. The tables contain data for nine different directions
(labeled 1 through 9) with the associated number of vehicles, time spent in the network,
minimum and maximum travel time, and standard deviation. The last row of each table
shows the total number of vehicles and the time spent in the network in seconds.

Table 1. Statistical indicators of travel time for (vehicles without referral system) by author.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

1 165 26,280.06 122.90 159.27 135.26 9.66

2 358 47,565.46 93.02 132.86 110.22 13.17

3 181 14,807.89 64.63 130.58 89.94 20.60

4 514 135,937.32 218.52 343.81 286.38 37.35

5 268 32,958.49 100.95 158.79 139.67 16.79

6 267 48,937.48 122.35 190.31 167.09 20.80

7 197 20,776.21 82.85 126.95 100.54 11.53
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Table 1. Cont.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

8 170 23,355.77 116.64 154.53 135.84 10.13

9 346 38,443.86 99.81 126.83 109.96 6.69

∑ 2466 389,062.53

Table 2. Statistical indicators of travel time (share of RG vehicles 10%) by author.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

1 164 24,632.69 110.47 150.20 126.33 9.89

2 343 35,077.67 60.61 110.59 88.80 12.93

3 167 14,188.59 73.99 102.96 86.24 7.46

4 441 98,960.69 156.39 250.21 216.68 21.22

5 233 26,630.83 47.08 139.53 101.45 24.45

6 230 30,449.17 90.94 180.98 137.81 20.13

7 174 18,426.14 76.96 117.03 100.38 11.08

8 175 20,695.99 104.30 155.07 127.10 12.98

9 331 30,748.58 72.09 106.66 93.52 9.86

∑ 2258 299,810.36

Table 3. Statistical indicators of travel time (share of RG vehicles 25%) by author.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

1 159 21,880.26 115.89 158.45 129.53 11.62

2 346 36,717.36 77.54 106.12 91.27 9.48

3 168 14,706.38 73.99 94.98 87.42 5.41

4 443 100,729.18 193.85 237.40 222.00 11.69

5 231 25,730.26 74.82 124.02 105.13 14.39

6 231 29,380.18 126.30 179.06 142.87 16.28

7 171 17,511.18 77.01 121.29 101.57 12.40

8 173 20,444.44 112.80 142.85 127.32 8.69

9 331 31,457.03 71.37 108.78 96.93 9.02

∑ 2253 298,556.27

Table 4. Statistical indicators of travel time (share of RG vehicles 50%) by author.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

1 162 23,172.26 112.56 143.04 126.68 8.56

2 346 35,172.02 73.52 117.94 90.23 12.33

3 172 16,131.19 69.03 93.79 84.07 7.18

4 431 87,744.16 199.59 254.27 217.56 14.99

5 239 29,198.10 92.21 135.43 116.42 13.44

6 235 31,820.71 116.72 190.99 141.20 21.16
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Table 4. Cont.

Direction Vehicle Number Total Travel Time T Min T Max T Average Standard Deviation

7 177 19,002.95 90.08 130.18 106.29 11.79

8 169 18,759.29 111.00 143.67 127.60 10.29

9 327 28,979.78 76.04 100.62 92.46 7.29

∑ 2258 289,980.46

A comparison of the data in Tables 1–4 shows that the total time spent in the simulation
model network varied depending on the proportion of vehicles with a navigation system.
Vehicles without navigation systems spent the most time online, as shown in Table 1, while
vehicles with 50% navigation systems spent the least time online, as shown in Table 4. The
reduction in total travel time has an indirect effect on reducing congestion in urban areas.
It also affects reducing fuel consumption and pollutant emissions, increasing road safety,
reducing noise and stress, and ultimately reducing travel costs.

Figure 8 shows the efficiency of a referral system based on the proportion of RG
vehicles compared to the total travel time. The x-axis may represent the proportion of RG
vehicles, while the y-axis represents the efficiency of the referral system in terms of total
travel time. Figure 8 shows that vehicles without RG spend the most time on their journeys
compared to vehicles that use RG.
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Figure 9 shows the travel times for different traffic directions. The X-axis represents the
traffic routes, labeled as 1 through 9. The Y-axis shows the travel time in seconds. Each bar
on this figure (graph) represents the travel time for a particular traffic route. The bars are
color coded to distinguish between different types of vehicles, including vehicles without
navigation systems, vehicles with 10%, vehicles with 25% navigation systems, and vehicles
with 50% navigation systems.

Figure 10 shows a comparison of the efficiency of guidance systems based on the
proportion of vehicles with and without RG concerning the total distance traveled. Figure 10
has two lines representing two different types of guidance systems. The x-axis shows the
proportion of vehicles with and without RG, while the y-axis shows the efficiency of the
system in terms of distance traveled. The efficiency of the guidance system is measured in
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meters (m). Figure 10 shows that vehicles with a higher proportion of RG travel a lesser
distance than vehicles without RG or vehicles with a lower proportion of RG.
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The small difference between 25% and 50% parking regulation is due to parking
demand and the distribution of departures from parking lots (vehicles remaining parked).
Vehicles entering the network can be categorized as those passing through the network and
those intending to park, but there must be an available parking space at that moment (in
the case of parking regulation), or they will leave the zone (if they know such a space does
not exist). Ultimately, these vehicles can be considered as the first category passing through
the zone, regardless of the level of parking regulation. Changing the initial parameters
could yield different values, but our aim was to achieve a situation as realistic as possible,
reflecting the current conditions in the city of Zagreb.
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Based on the information provided, it seems that an abstract model was used to
analyze the travel time and distance traveled by vehicles equipped with a guidance system.
The results of the model indicate that the travel time between these vehicles varies between
22% and 25%, meaning that vehicles with a guidance system can navigate parking areas
more efficiently and therefore spend less time traveling. Moreover, according to the model,
there is a reduction in the overall distance traveled, ranging from 13% to 18%. This finding
holds significant implications for cost savings, encompassing reduced fuel consumption
and vehicle maintenance expenses, while also positively affecting the environment and
enhancing traffic safety.

Overall, the findings suggest that implementing guidance systems in vehicles can
result in significant benefits in terms of reducing travel time, distance traveled, and risk
of a traffic collision. This could be particularly beneficial in congested urban areas where
parking can be a major challenge, and where reducing travel time and distance traveled
could have a positive impact on traffic flow and overall efficiency.

7. Discussion

Parking guidance systems have the potential to significantly improve traffic efficiency
and reduce congestion in urban areas. A cooperative approach using real-time data from
other vehicles can efficiently navigate vehicles to available parking spots. This could
be more efficient than the standard parking method because it can consider the current
availability of parking spots across a city. Real-time parking availability information can
also help drivers find a parking spot more quickly and avoid unnecessary circling. These
data can be collected from various sources, such as sensors in parking lots, satellite data,
or data from other vehicles. Integrating parking systems with other traffic management
systems can further improve traffic flow. For instance, parking systems can be integrated
with traffic signal control systems to ensure that vehicles are directed to parking spots
closest to their desired destination. Promoting the use of parking systems can encourage
drivers to utilize them more frequently. This can be achieved by creating user-friendly
mobile applications for smartphones that provide real-time guidance to parking spots or
offering incentives to drivers who use parking systems. However, these approaches are
more complex and expensive to implement, and they are also sensitive to data accuracy
and driver adoption. The implementation can be complex and costly because it requires
integrating various systems and technologies. Real-time parking availability information
accuracy can be low if data is not collected accurately and promptly. Drivers may be
reluctant to utilize parking systems if they are not user-friendly or if they do not provide
clear benefits. Despite these challenges, these approaches have the potential to improve
traffic efficiency significantly and alleviate congestion in urban areas. To successfully
implement these approaches, it is necessary to consider the challenges and take steps to
mitigate them.

Here are some examples of how these approaches can be applied:

• Cooperative approach: Vehicles can exchange parking availability data using a mobile
app or other system.

• Real-time parking availability information: Sensors in parking lots can be used to
collect data on parking availability. This information can be presented to drivers via
mobile apps or signage on the road.

• Integration with other traffic management systems: Parking systems can be integrated
with traffic signal control systems to ensure that vehicles are routed to parking spots
closest to their destination.

• Promotion of parking system usage: Cities can develop user-friendly mobile apps for
smartphones that provide real-time guidance to parking spots. They can also offer
incentives to drivers who use parking systems, such as free parking hours or discounts
on public transportation.
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8. Conclusions

In conclusion, the exceptional importance of developing innovative approaches to
address the challenges related to finding available parking spaces in urban areas is under-
scored by this paper. Through an analysis of the effectiveness of a cooperative approach to
guiding vehicles to available parking spaces compared to the traditional model of searching
for parking spaces, key advantages of integrating intelligent transportation systems into
urban environments are highlighted.

The focus is on Intelligent Cooperative Sensing for Improved Traffic Efficiency (ICSI)
in collaboration with a parking guidance system, emphasizing its potential to enhance
traffic efficiency and parking guidance in urban settings. By employing advanced sensing
technologies, cooperative communication, and intelligent data analysis, ICSI collects real-
time data and dynamically adjusts routing strategies, provides dynamic parking guidance,
and optimizes resource allocation. This integrated approach shows great promise in revo-
lutionizing urban mobility and effectively addressing the challenges of traffic congestion
and parking difficulties.

Driver-centric personalizing route guidance in urban areas is of paramount importance
for several reasons. As cities grow and become more congested, the need for efficient and
personalized navigation solutions becomes increasingly critical. It is vital for addressing the
complex challenges of urban mobility. It not only benefits individual drivers but also has
far-reaching positive effects on traffic management, environmental sustainability, public
safety, and the overall quality of life in urban areas. The personalization approach in
driver navigation contributes to safer, more efficient, and less stressful journeys. It aligns
navigation systems with individual preferences and needs, making driving more enjoyable
and user centric. As technology continues to advance, personalized navigation will likely
become even more integral to the future of transportation.

The efficiency of the cooperative approach in reducing travel time and distance in the
search for parking spaces has been confirmed by the research results. Existing systems, es-
pecially for on-street parking, are reaching their limits, necessitating a cooperative approach
that utilizes advanced sensors and communication technologies. The key advantage of
using a route guidance system for parking is a significant reduction in travel time. Drivers
can simply follow the system’s directions to an available parking space instead of driving
around the block in search of one, saving time and reducing the frustration and stress
associated with finding parking. Moreover, because the system is constantly updated in
real time, drivers can be assured of the accuracy and currency of the provided information.

The proposed model encompasses all available parking capacities in a given area and
utilizes a cooperative approach to select optimal routes and corresponding parking spaces.
The research results confirm the hypothesis that the proposed system effectively reduces
travel time and distance traveled. The dynamic simulation model of the study confirms the
system’s effectiveness in reducing the negative impact of traffic congestion and improving
overall traffic safety. The cooperative approach of the system, along with the integration
of collected data and sensory information, enables the proposal of optimal solutions to
interested users. The research contribution includes testing and verification of an advanced
model for finding available parking spaces using a route guidance system.

The proposed solution of guiding vehicles to available parking spaces using a coop-
erative approach has the potential to be applied in practice. The use of advanced sensing
technologies, cooperative communication, and intelligent data analysis allows the system
to collect and process real-time data on parking availability, traffic conditions, and driver
preferences. This information is then used to dynamically adjust routing strategies, pro-
vide real-time parking guidance, and optimize resource allocation. The system has been
shown to be effective in reducing travel time, distance, and fuel consumption, while also
improving traffic flow and safety.

Overall, the proposed solution is a promising approach to addressing the challenges
of finding available parking spaces in urban areas. The system has the potential to improve
traffic efficiency, reduce congestion, and improve the overall quality of life in urban areas.
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As the development of ITS continues, the proposed solution is likely to become even more
widely adopted.

With the expected increase in the development of telematics systems in vehicles, the
proposed system could potentially solve some congestion and parking problems in urban
centers. As more cities grow, these systems are likely to become even more widespread
and essential for drivers in urban areas.

In the final analysis, this research contributes valuable insights into the cooperative
approach to guiding vehicles to available parking spaces and the broader context of route
guidance personalization in urban environments. The obtained results underscore the
potential of intelligent transportation systems to transform urban mobility, improve traffic
efficiency, and enhance the overall urban quality of life.
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