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Abstract: The growing importance of climate change underlines the need to comprehend Urban Heat
Islands (UHI), particularly those influenced by urban morphology. As progress has been made in
understanding the macroscale relationship between urban morphology and UHIs, the microscale
effects are often overlooked. This study, conducted in the city of Erzurum in Turkey, delves into
the complex relationship between urban morphology and UHI intensity in different housing areas
with distinct microclimates, focusing particularly on street networks, building systems, and land use.
Pearson correlation analysis was performed to investigate the relationships between morphological
indicators and UHIs in different housing areas. Key findings include that (1) noticeable UHI effects
were observed, especially in dense areas with high-rise buildings. (2) UHIs reveal a strong correlation
with both 2D and 3D urban morphological indicators. A moderate-to-high Sky View Factor (SVF)
tends to reduce UHIs, while an extremely high SVF aggravates UHIs. (3) Enhancing street network
integration emerges as a more effective strategy for mitigating UHI effects in mid-rise buildings
compared to other morphological factors. The Normalised Difference Built-Up Index (NDBI) and
Normalised Difference Vegetation Index (NDVI) may not reliably indicate UHIs in housing areas
with a predominantly rural character. Consequently, this article recommends that urban morphology
optimisation for UHI mitigation should prioritise spatial and indicator specificity in urban design
and spatial planning for cities. Future research endeavours should investigate the influence of
morphological indicators on UHI dynamics in different seasons, including various remote sensing
indicators related to morphological structure, to enrich our understanding of daily UHI fluctuations
within urban morphology research.
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1. Introduction

In recent years, climate change-induced extreme weather events have emerged as
pressing threats to communities [1,2]. The process of urbanisation significantly contributes
to climate change by not only consuming energy and polluting the urban atmosphere but
also by progressively transforming natural Earth surfaces into impermeable ones [3,4].
Urbanised surfaces continue to expand within cities, altering the urban structure and
morphology to accommodate the rising human population [5–7]. This expansion, primarily
the proliferation of built-up areas and impervious surfaces, significantly influences climate
through the urban heat island (UHI) effect [8]. UHIs characterise the discernible temper-
ature variance between microclimates within a city and its surrounding areas [9]. The
expansion of cities has amplified the UHI effect, contributing to increased energy consump-
tion, exacerbated pollution, and adverse effects on public health and well-being [10–12].
Thus, addressing this phenomenon promptly is crucial, necessitating a comprehensive under-
standing of the factors influencing UHIs to effectively mitigate their detrimental impacts.

Research has consistently highlighted various factors influencing UHIs, including
climatic components, land surface characteristics, and notably, urban morphology [13,14].
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While existing studies have primarily concentrated on the influence of climatic compo-
nents and land surface characteristics on UHI formation, the role of urban morphology
has emerged as a crucial factor driving UHI formation and expansion [15–17]. These
morphological aspects significantly impact surface temperature [18–24], highlighting the
importance of land use changes, impermeable surfaces, and vegetation cover in contribut-
ing to the UHI effect. However, while progress has been made in understanding the
macro-scale relationship between urban morphology and UHIs, the microscale impact, par-
ticularly the influence of street network pattern, building form, and height, often remains
overlooked in many cases.

The microscale impact of urban morphology on UHIs is noteworthy, altering the urban
microclimate by reshaping the urban surface structure [25,26]. It has been observed that
characteristics including street networks, building systems, and land use intensity at the
micro-scale significantly affect UHIs [27]. Despite these insights, many analyses tend to
focus on singular dimensions of spatial morphology, disregarding the comprehensive three-
dimensional nature of urban form, which comprises street networks, building systems, and
land use [28]. Building systems represent a 3D spatial morphology, while street networks
and land use refer to a 2D spatial morphology.

Studies examining the relationship between the UHI effect and distinct urban mor-
phology aspects often use the integration index as an indicator to analyse the street net-
work [29–31]. This index, rooted in the Space Syntax Theory, identifies high-integration
areas that foster consistent cooling effects compared to low-integration areas [32]. The
impact of the building system, the second component of urban morphology, on UHIs is
commonly assessed using the Sky View Factor (SVF) method. SVF, a 3D urban morpho-
logical indicator, significantly influences solar and terrestrial radiation, exhibiting a strong
positive correlation with UHIs [33–35]. While areas with lower SVF experience slower
heating due to building shadows, spaces with higher SVF heat faster due to increased
solar radiation. The Normalised Difference Vegetation Index (NDVI) and the Normalised
Difference Built-up Index (NDBI) constitute essential land use intensity indicators affecting
micro-climate dynamics. Studies note a positive correlation between UHIs and NDBI and a
negative correlation with NDVI [36–41].

The utilisation of geographic information systems (GIS) and correlation analysis has
become a prevalent method for investigating the effect of morphological indicators on
UHIs. While the majority of researchers have predominantly focused on examining the
relationship between singular indicators of morphological components and UHIs, their
consensus suggests a significant correlation [21–24,42]. Simultaneously, certain researchers
have concentrated solely on the influence of building space [34,43,44], neglecting the mutual
interaction between solar radiation and terrestrial radiation induced by enclosed building
forms in diverse housing areas. This oversight has led to an insufficient explanatory
power of morphology indicators for the UHI effect [27,45]. Consequently, there is a need
for further exploration of the implications of these indicators in various housing areas.
Understanding the intricate relationship between thermal conditions and morphological
characteristics in housing areas is crucial for effective risk mitigation and the promotion of
liveable spaces through sustainable urban planning strategies. Remote sensing-based land
surface temperature (LST) obtained from satellite thermal bands serves as a pivotal tool for
quantifying UHI intensity on broader scales [46–50].

This study aims to comprehensively investigate the effect of urban morphological
components (street networks, building systems, and land use intensity indices) on UHIs
in different housing areas characterised by distinct microclimate features. This study
hypothesised that the impact of morphological indicators on UHIs varies in different
housing areas. The study’s focus on daytime summer conditions aligns with the evident
health risks associated with rising temperatures during this period. This research aims
to answer two key questions: (1) how do different morphological indicators impact UHI?
(2) Are the effects of these indicators on UHI consistent across various housing areas?
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2. Materials and Methods
2.1. Study Area

Three different housing areas with different morphological patterns were selected
as the study area in Erzurum’s city centre, situated in the north-eastern part of Turkey
(39◦55′ N, 41◦16′ E). Erzurum is one of the cities exposed to the largest amount solar radia-
tion, depending on several factors (e.g., elevation; the actinometrical value is 141 kcal/cm2).
The long-term (1991–2020) mean annual temperature is 5.8 ◦C, the ever-recorded maxi-
mum temperature is 36.5 ◦C, and the sunshine duration is 11 h. Three different housing
areas were selected for the study, which were developed in different time periods and
have different structural characteristics and morphological patterns. Study areas were
determined as the housing areas of Dadaşket (northwest), Yenişehir-Yıldızkent (southwest),
and Kayakyolu (southeast; Figure 1).
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Figure 1. Chronological spatial development of the study area.

The range of housing patterns found in the study area highlights distinct characteristics
in terms of building height, form, and arrangement, as well as street layout, resulting
in a variety of urban canyon shapes. These distinct characteristics within the city of
Erzurum provide an excellent context for examining how urban morphology influences
thermal conditions.

The study was conducted in three housing areas that were developed under the Zeki
Yapar Development Plan of 1967. Despite the development during the same planning
periods, these areas have different morphological characteristics due to distinct urban
development processes [51]. This different pattern was chosen as the study area because it
provides an opportunity to compare the impact of three distinct urban morphologies on
the UHI.
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Dadaşkent housing area (HA1) was proposed as a satellite city for urban growth in
the plan and has experienced rapid development since 1990. Over time, the storey heights
of housing buildings have increased up to 5 storeys, with courtyard blocks being built in
the southern part of the area since 2010. Notable characteristics of this area consist of a
grid-like street structure composed of a main axis and streets branching off the main axis.

The Yenişehir and Yıldızkent housing areas (HA2) were constructed by cooperatives
between 1980 and 1990 to address the slum problem experienced between 1970 and 1980.
The development in the north of HA2 is characterised by mid-rise, linear block buildings.
Throughout the planning, design, and implementation phases, the emphasis was on achiev-
ing a balance between open and closed spaces. The orientation of streets and avenues was
determined based on the prevailing wind direction. However, since 2010, the area has
become a major focal point for city development due to its increasing attractiveness. In
the southern part of HA2, there has been a recent architectural trend towards high-rise
buildings with point blocks, leading to a greater variety of housing building forms in
the area.

The Kayakyolu housing area (HA3), located in the southeast of the city, has expe-
rienced spatial development at different times. The northern area of HA3 was mainly
composed of low-rise buildings that were initially inhabited by individuals who migrated
to the city during the 1960s. As the income levels of residents increased over time, these
structures evolved into 3- to 4-storey buildings. The transportation infrastructure within
this area developed in an unplanned manner, lacking a systematic design or organisation.
Conversely, the southern part of the area underwent development after the introduction of
the Zeki Yapar Plan. This plan led to the construction of high-rise apartment buildings that
differed from the existing texture. It is important to note that although the development
was carried out after the planned period, the road routes were implemented irregularly
in practice. This unique texture combined unplanned low-rise buildings with a high rural
character and planned high-rise buildings, creating a unique mixture of building forms
and spatial arrangements in the surrounding area.

2.2. Time Period

The study period was determined to be July 2022 due to the prevalence of mostly clear
skies during this month. Specifically, 15 July was chosen, as it exhibited a very low mean
cloudiness rate of 0.05 octas. This date offered optimal image quality and was characterised
by a monthly maximum temperature of 33 ◦C and a minimum temperature of 14 ◦C,
according to data from the Erzurum Meteorological Administration.

2.3. Materials

NDBI, NDVI, and LST were calculated using remote sensing data from the Landsat 8
Operational Land Imager (OLI), provided by the USGS. The Landsat-8 OLI image, captured
during the summer daytime (July 2022 at 07:56), constituted the dataset used.

Street network data for the integration (RN) analysis, which describes the degree of
integration of a street with other streets in the city, were obtained from two main sources:
Open Street Map (OSM) and the General Directorate of Highways database referred to
as Atlas [52]. Leveraging these open-source platforms offers updated location data and
inherent advantages.

Given the variable nature of the data from Atlas and OSM, the confidence in the
information was cross verified using additional sources, including Google Maps, Google
Streets, and Environmental System Research Institute (ESRI) Streets. To produce a full and
detailed visualisation, all the fundamental maps were overlapped and integrated within the
GIS environment. Ultimately, a cohesive and conclusive map was generated by integrating
data from various sources.

Field surveys were conducted to identify housing areas and green spaces within each
HA. Although the study area includes green spaces known for their cooling effect, it is
important to mention that previous research has highlighted the cooling influence of a
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24 ha green space extending up to distances of 200–250 m [53,54]. Therefore, to ensure
accuracy, the cooling effect attributed to these green spaces was excluded from the analysis.

Building heights and forms were classified into eight categories, comprising irregular
houses, detached houses, traditional Erzurum apartment houses, courtyard blocks, linear
blocks, mid-rise apartments, high-rise apartments, and point blocks. Sky View images were
captured at eight different control points, each of which represented a different building
height and form, for the SVF analyses.

2.4. Methods

The general methodology procedure is given in Figure 2.
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2.4.1. Land Surface Temperature Analysis

Calculations of LST provide a prominent technique for illustrating the spatial distribu-
tion of the UHI phenomenon, which has been extensively studied in the literature [55,56].
The NDVI equation is crucial when calculating LST, particularly due to the well-known
ability of urban green spaces to alleviate LST [57].

QGIS 3.12 software was used for the LST analysis, and the raster calculator tool was
used to calculate LST from Landsat 8 OLI bands. Band 10 from the two thermal infrared
sensors (TIRS) integrated into Landsat 8 was specifically chosen for its higher accuracy in
LST calculations, as highlighted in the research by Yu et al. [58]. In order to determine LST,
it is essential to first convert Band 10 digital number (DN) values into Top-of-Atmosphere
(TOA) radiance using the following equation [55]:

Top of Atmosphere (TOA)= ML × Qcal + AL (1)

where Qcal denotes band 10, ML represents a band-specific multiplicative rescaling factor
obtained from metadata, and AL stands for an additive rescaling factor.

After converting DN values to TOA radiance, the TIRS band data should be further
transformed into brightness temperature (BT) using the thermal constants provided in
the metadata. The calculation of BT from satellites involves deriving the absolute tem-
perature (in Kelvin) from TOA data, typically employing the relationship depicted in
Equation (2) [59].
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Brightness Temperature (BT) =
K2

ln
(

K1
TOA + 1

) − 273.15 (2)

where BT is the at-satellite brightness temperature. K1 and K2 are the thermal constants of
TIR band 10 from the metadata.

The calculation of NDVI is necessary for further determining proportional vegetation
(Pv) and emissivity (ε). Band 4 and Band 5, representing the red and near-infrared bands of
Landsat-8 OLI [60], were used in the NDVI equation as given by Equation (3). The LST is
calculated by Equation (6) using BT, NDVI, and ε by land use type.

NDVI =
Band5 − Band4
Band5 + Band 4

(3)

The proportion of vegetation (Pv)= [
NDVI − NDVImin

(NDVImax − NDVImin)

]2
(4)

Emissivity (ε)= 0.004 × Pv + 0.986 (5)

Land Surface Temperature (LST) =
BT

1+(0.00115 × BT
1.4388

× Ln(ε) (6)

where Pv provides an estimation of the area under each land cover type and is acquired
from the NDVI of pure pixels. Emissivity is defined as a measure of absorptivity [61].

2.4.2. Space Syntax Analysis

The Space Syntax analysis examines street networks to precisely define urban spaces
by quantitatively computing morphological characteristics based on linkages shown in
segment maps [62]. At the urban scale, axial lines represent street segments, and Space
Syntax focuses on the topological dimension of the street network, specifically how axial
lines interconnect [63]. The degree of integration assesses the extent to which the initial
segment is integrated into the global system, with greater integration indicating a higher
number of connections to the network [64].

The analysis of Space Syntax was conducted using the DepthmapX (version 0.8.0)
software. Initially, an axial map of Erzurum city was generated in QGIS 3.12. Subsequently,
the data underwent angular segment analysis within the DepthmapX software after being
transformed into shapefile format.

Space Syntax is based on the four steps [65] illustrated in Figure 3:

i. The street pattern (1) is transformed into an axial map (2), which is, albeit not precisely
a graph, still a rudimentary representation.

ii. The axial map (2) is transformed into a binary graph (3), referred to as a connectivity
graph. This undirected graph consists of N nodes, the number of axial lines, and K
links, representing intersections between pairs of axial lines.

iii. Integration, a vital measure in Space Syntax, is determined through Equations (7) and (8).
Within Space Syntax, the distance between two spaces is computed using a depth
value [66]. In the computation of integration, Space Syntax typically calculates topo-
logical distance, which is defined as the minimum number of directional changes from
each street segment to all others, commonly referred to as depth [65].

MDi =
TDi

n− 1
=

∑n
j=1 dij

n− 1
(7)

where, MDi is the mean depth value of space i, TDi represents the total depth value of
space i, and dij defines the shortest way from space i to j.
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RRAi =
2(MDi−1)
(n− 2)×Dn

Dn =

(
2
(

n
(

log2(n+2)
3 −1

)
+1

))
(n−1)×(n−2)

(8)

where Dn is used for providing a standardised value for the integration measure, and RRAi
represents the RRA value for space i.

iv. The integration of each node in the integration graph (3) is computed, and the colour-
coded values are then mapped back onto the axial map (4), culminating in a final
primitive-like colour-coded representation [65].
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2.4.3. Sky View Factor Photographic Analysis

Optical and photographic techniques serve as means to ascertain the SVF [67]. Pho-
tographic methodology involves the use of a fisheye lens to capture urban canyon im-
ages [68,69]. Fisheye lenses intentionally distort image edges, providing a wide-angle view
and a slightly curved perspective.

As there is no standardised height for capturing SVF images [70], images were taken
in this study by positioning at the base of an urban canyon, lying in the middle of the street,
and raising the hand vertically at eight points, representing diverse building heights and
forms. The photos were taken during clear sky conditions in the summer.

Adobe Photoshop (version CS6) software was employed to calculate SVF values from
these images [69,71]. The magic wand tool in Photoshop facilitated the selection of visible
sky areas, automatically detecting open sky areas based on blue pixel values. Careful
attention was paid to distinguish between blue sections of buildings and the actual sky
during the automatic selection process.

This approach effectively identified SVF, even in images captured under tree canopies,
by distinguishing the blue sky amidst branches and leaves. After accurately selecting the
sky colour, the total count of all visible pixels in the fisheye lens image (β) and the number
of pixels representing the visible sky (α) were determined. Both pixel counts were recorded
in Microsoft Excel, and SVF values were calculated using the α/β equation following the
methodology outlined in Debbage [71].

2.4.4. NDBI and NDVI Analysis

The use of Landsat bands allows for the evaluation of land use intensity indices
(NDVI and NDBI) using various methods [35,72–74]. Spectral index techniques rely on the
electromagnetic spectrum’s wavelength-related properties and the spectral behaviour of
residential landscapes regarding absorption or reflection. In this context, built-up and bare
lands tend to reflect more short-wave infrared radiation (SWIR) compared to near-infrared
radiation (NIR). On the other hand, water bodies do not reflect in the infrared spectrum.
Healthy green surfaces typically show higher reflectance in the NIR spectrum compared
to the SWIR spectrum. These distinct bands within satellite images represent different
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wavelengths of the electromagnetic spectrum, forming the basis for various spectral index
methods and their respective formulas and calculation approaches [75].

NDVI stands out as one of the most widely used land use intensity indices for eval-
uating plant densities [76–79]. Healthy vegetation, due to its chlorophyll content, tends
to strongly absorb blue and red spectra while reflecting the green spectrum, which is why
healthy vegetation appears green. NDVI is computed using the high reflectance in NIR
and the high absorption in the red spectrum, as outlined in Equation (9):

NDVI =
NIR − Red
(NIR + Red)

(9)

In Landsat 8 OLI data, NDVI = Band 5−Band4
Band 5+Band 4 .

Generally, NDVI values from −1 to 0 represent bodies of water; −0.1 to 0.1 barren
rocks, sand, or snow; 0.2 to 0.5 bushes, pastures, or ageing crops; and 0.6 to 1.0 dense
vegetation or tropical rainforest [75].

The NDBI is a valuable indicator used to measure built-up density [80,81]. It stands
out among various land use classes due to its distinct spectral response. The formula for
calculating NDBI is expressed as Equation (10).

NDBI =
SWIR − NIR
SWIR + NIR

(10)

For Landsat 8 data, NDBI = Band 6−Band 5
Band 6+Band 5 .

The NDBI value lies between −1 and 1. Larger values represent build-up areas. The
NDBI value for vegetation is lower.

In this research, calculations were conducted using Landsat 8 OLI satellite image
bands. For the analysis of NDVI and NDBI, QGIS 3.12 software was employed, utilising
the raster calculator tool to derive values from the Landsat 8 OLI bands.

2.4.5. Statistical Analysis among Integration (Space Syntax), SVF, NDVI, NDBI, LST

For the purpose of statistical analysis, the study area was systematically divided into
uniformly spaced grids of 500 m, aligning with the methodology employed in prior stud-
ies [82–84]. The utilisation of 500 m grids also facilitates the assessment of street network
integration and the monitoring of variations in housing forms. This grid segmentation was
executed using the fishnet tool integrated into QGIS 3.12 software. A total of 55 grids were
delineated in HA1, 70 in HA2, and 53 in HA3, and values for LST, NDBI, NDVI, integration,
and SVF were determined for each grid cell.

IBM SPSS Statistics 22 software was used to analyse the effect of morphological
components on LST. The initial data collected from the three different HAs was subjected
to a normality test (Kolmogorov–Smirnov). One-way ANOVA analysis in SPSS was used to
confirm differences in LST trends between HAs, followed by Duncan’s multiple comparison
test to assess mean differences between subclasses.

LISA analysis using the Global Moran Index was performed to determine the distribu-
tion pattern of LST within the three HAs. This method provided an indication of whether
LST values were clustered or dispersed across these areas. The high-high and low-low
grid designations denoted spatial clusters, indicating areas where both the grid itself and
its surrounding grids had either high or low LST values. Conversely, the high-low and
low-high designations signified spatial outliers, representing grids with contrasting LST
values compared to their adjacent areas [85]. The colourless dots on the analysis map
indicated grids without statistically significant clustering or outlier characteristics relative
to their surroundings.

Pearson correlation analyses were performed to determine the significance and nature
of the relationship between LST and morphological parameters (integration, SVF, NDVI,
and NDBI) within the three different HAs.
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3. Results
3.1. Results of Land Surface Temperature Analysis

The study areas demonstrated a spatial distribution of LST ranging from 41.86 ◦C to
68.66 ◦C. It is worth highlighting that the highest LST value was recorded in HA2, which
is characterised by high-rise, point block buildings. In contrast, mid-rise and low-rise
buildings in HA1 and HA3 had relatively lower LST values (Figure 4).
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Figure 4. Spatial distribution of LST in the study areas.

Analysis of LST in the different HAs revealed that HA2 had the highest average LST
at 64.96 ◦C, placing it in first place. This was closely followed by HA1 in second with a
64.44 ◦C average LST. Meanwhile, HA3 had the lowest LST of 63.97 ◦C, resulting in third
place (Table 1). This significant difference in LST values emphasises the thermal differences
between the different HAs.

Table 1. The Duncan’s Multiple Comparison Test results of LST values for the HAs in the study area.

HA1
Mean LST Value

HA2
Mean LST Value

HA3
Mean LST Value p Value

64.44 a 64.96 b 63.97 c p = 0.000
a, b, c The means shown in different lowercase letters between the groups (on the line) are statistically significant.
p < 0.05: Statistically significant.

The LISA analysis findings revealed patterns of LST clustering in both HA1 and HA2.
However, no significant clusters or outliers were detected in HA3. HA1, the northern sector
characterised by mid-rise apartments, displayed clusters with low-low values. On the other
hand, the southern region, dominated by detached houses, exhibited clusters with high-
high values. Noteworthy is that the southern part of HA2, experiencing rapid development
with high-rise point block buildings, demonstrated high-high clusters, suggesting an
elevation in LST. Conversely, the northern area of HA2 exhibited low-low clusters (Figure 5).
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3.2. Results of Space Syntax Analysis

Figure 6 illustrates the integration index of Erzurum’s street network, representing a
spectrum of integration values in different shades from light to dark, depicting a range from
low to high integration. Notably, the main axis indicated a higher level of integration, which
gradually decreased towards the periphery of the city. The three HAs revealed differences
in integration indices. HA1 presented integrated areas in the northern and southern regions,
with integration decreasing towards the periphery. A noteworthy feature of HA2 was the
high rate of integration, which could be attributed to the grid street network design aligned
with the prevailing wind direction. The southern area of HA2, which is experiencing
rapid urban expansion, displayed amplified integration as a result of planned boulevards.
Conversely, in HA3, there was a higher level of integration in the unplanned northern
sectors, with a corresponding decline as progress was made towards the southern areas.

3.3. Results of NDVI and NDBI Analysis

Tables 2 and 3 provide statistical insights into NDBI and NDVI values in the three
HAs. It was evident from these tables that HA2 exhibited a higher NDBI, indicating more
intense built-up areas compared to the others, along with a lower proportion of green
spaces. Conversely, HA1, predominantly characterised by detached houses, displayed
lower built-up areas and higher green spaces. The maps depicting the NDBI and NDVI
distributions (Figure 7) clearly illustrated the disparities in index values among the HAs.
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The NDVI value in the public zone (empty area) in the northwest of HA2 appeared higher
due to ongoing construction activities for a new housing area. However, this particular
zone was excluded from the study, focusing solely on the data from existing housing areas.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 6. The integration index of axial lines. 

3.3. Results of NDVI and NDBI Analysis 

Tables 2 and 3 provide statistical insights into NDBI and NDVI values in the three 

HAs. It was evident from these tables that HA2 exhibited a higher NDBI, indicating more 

intense built-up areas compared to the others, along with a lower proportion of green 

spaces. Conversely, HA1, predominantly characterised by detached houses, displayed 

lower built-up areas and higher green spaces. The maps depicting the NDBI and NDVI 

distributions (Figure 7) clearly illustrated the disparities in index values among the HAs. 

The NDVI value in the public zone (empty area) in the northwest of HA2 appeared higher 

due to ongoing construction activities for a new housing area. However, this particular 

zone was excluded from the study, focusing solely on the data from existing housing ar-

eas.  

 

Figure 7. NDBI and NDVI maps. 

  

Figure 6. The integration index of axial lines.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 6. The integration index of axial lines. 

3.3. Results of NDVI and NDBI Analysis 

Tables 2 and 3 provide statistical insights into NDBI and NDVI values in the three 

HAs. It was evident from these tables that HA2 exhibited a higher NDBI, indicating more 

intense built-up areas compared to the others, along with a lower proportion of green 

spaces. Conversely, HA1, predominantly characterised by detached houses, displayed 

lower built-up areas and higher green spaces. The maps depicting the NDBI and NDVI 

distributions (Figure 7) clearly illustrated the disparities in index values among the HAs. 

The NDVI value in the public zone (empty area) in the northwest of HA2 appeared higher 

due to ongoing construction activities for a new housing area. However, this particular 

zone was excluded from the study, focusing solely on the data from existing housing ar-

eas.  

 

Figure 7. NDBI and NDVI maps. 

  

Figure 7. NDBI and NDVI maps.

Table 2. Statistical data of the NDBI for HAs.

Area Minimum Maximum Mean Standard Deviation

HA1 −0.26 0.31 0.02 0.06
HA2 −0.24 0.28 0.03 0.06
HA3 −0.22 0.21 0.03 0.05
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Table 3. Statistical data of the NDVI for HAs.

Area Minimum Maximum Mean Standard Deviation

HA1 0.00 0.41 0.17 0.06
HA2 −0.01 0.41 0.13 0.07
HA3 −0.01 0.39 0.14 0.06

3.4. Results of Sky View Factor Photographic Analysis

Different morphological characteristics were observed in the three HAs based on the
building heights and forms. HA1’s northern area was characterised by mid-rise apartments,
while the southern part was comprised of detached houses. HA2’s northern section was
dominated by mid-rise building blocks, featuring linear blocks and courtyard blocks.
The southern part of HA2 demonstrated an urban configuration dominated by high-
rise point block buildings. HA3 exhibited a diverse urban pattern, including low-rise,
irregular housing with high rural character in the south and high-rise apartments in the
southwest. SVF analyses were conducted using sky images captured from eight distinct
points, each representing the various housing heights and forms mentioned above. Figure 8
demonstrates the results obtained from the SVF analysis.

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 22 
 

 

Table 2. Statistical data of the NDBI for HAs. 

Area Minimum Maximum Mean Standard Deviation 

HA1 −0.26 0.31 0.02 0.06 

HA2 −0.24 0.28 0.03 0.06 

HA3 −0.22 0.21 0.03 0.05 

Table 3. Statistical data of the NDVI for HAs. 

Area Minimum Maximum Mean Standard Deviation 

HA1 0.00 0.41 0.17 0.06 

HA2 −0.01 0.41 0.13 0.07 

HA3 −0.01 0.39 0.14 0.06 

3.4. Results of Sky View Factor Photographic Analysis 

Different morphological characteristics were observed in the three HAs based on the 

building heights and forms. HA1’s northern area was characterised by mid-rise apart-

ments, while the southern part was comprised of detached houses. HA2’s northern section 

was dominated by mid-rise building blocks, featuring linear blocks and courtyard blocks. 

The southern part of HA2 demonstrated an urban configuration dominated by high-rise 

point block buildings. HA3 exhibited a diverse urban pattern, including low-rise, irregu-

lar housing with high rural character in the south and high-rise apartments in the south-

west. SVF analyses were conducted using sky images captured from eight distinct points, 

each representing the various housing heights and forms mentioned above. Figure 8 

demonstrates the results obtained from the SVF analysis. 

 

Figure 8. SVF analysis of different housing typologies. Figure 8. SVF analysis of different housing typologies.

The findings indicated that high-rise apartment buildings produced lower SVF values,
whereas low-rise buildings demonstrated higher SVF values. Moreover, courtyard and
linear blocks generally resulted in higher SVF values since courtyard blocks had shared
spaces between the buildings and linear blocks had spaces on two sides. Noteworthy, an
examination of various high-rise point block buildings and typical high-rise apartments
revealed distinctive patterns in SVF. This observation underscores the influence of both
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housing forms and heights on SVF, indicating a nuanced relationship that contributes to
the variability in SVF patterns.

3.5. Results of Correlation Analysis among Integration (Space Syntax), SVF, NDVI, NDBI
and LST

This study examined correlations between LST and morphological indicators using
500 m gridded averages within three different HAs. The Pearson correlation results high-
lighted variations in the morphological characteristics of these HAs. The findings indicated
that LST levels tended to increase with higher NDBI values and decrease with higher NDVI
values. Notably, HA1 and HA2 demonstrated a strong positive correlation between NDBI
and LST, while NDVI had a significant negative effect on LST in both HA1 and HA2. In
contrast, no significant correlation was observed between these land use intensity indices
(NDBI and NDVI) and LST in HA3.

The HA3 was noteworthy for its mixed building form, which consisted of unplanned
low-rise buildings and planned high-rise apartment buildings. This exceptional composi-
tion resulted in variations in LST that could not be attributed entirely to increases in NDBI
and NDVI. Therefore, the SVF was an important factor to understand for LST variation.
The various types of buildings, with their different heights and forms, significantly affected
SVF, especially in the HA3. Thus, it was determined that SVF demonstrated a positive
correlation with LST in HA3 (Table 4).

Table 4. Results of the correlation analyses between SVF and LST in HAs.

LST (HA1) LST (HA2) LST (HA3)

SVF (HA1) 0.597 **
SVF (HA2) −0.698 **
SVF (HA3) 0.416 *

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

However, a contrasting scenario was observed in HA2, where the prevalence of high-
rise, point block buildings resulted in remarkably low SVF values. Despite the reduced
solar radiation reception due to extremely low SVF, these areas experienced high levels of
terrestrial radiation. This complex juxtaposition led to an elevation in LST. The synergy
between the extremely low SVF and diminished NDVI values in HA2 contributed to
increased LST. Indeed, the absence of NDVI’s cooling effect and the dominance of increased
terrestrial radiation, despite notably low SVF levels, likely contributed to this scenario.

The integration index exhibited a strong correlation in different HAs, making it a
key indicator for explaining LST (Tables 5–7). Similar to the SVF, this index indicated
a correlation with reduced LST values in both detached and low-rise buildings. The
correlation was possibly due to increased shading in integrated areas. In HA1 and HA3,
a notably strong negative correlation was found between the integration index and LST.
Contrary to expectations, HA2 exhibited a remarkable reversal in the relationship between
the integration index and LST. This remarkable shift challenged conventional assumptions,
offering a new perspective on understanding the intricate dynamics between high-rise
buildings and LST.

Table 5. Results of the correlation analyses between multiple urban morphological indicators in HA1.

LST INTEGRATION SVF NDBI NDVI

LST 1
INTEGRATION −0.607 ** 1

SVF 0.597 ** −0.280 1
NDBI 0.400 ** −0.267 0.039 1
NDVI −0.378 ** −0.062 0.002 −0.936 ** 1

** Correlation is significant at the 0.01 level (two-tailed).
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Table 6. Results of the correlation analyses between multiple urban morphological indicators in HA2.

LST INTEGRATION SVF NDBI NDVI

LST 1
INTEGRATION 0.424 ** 1

SVF −0.698 ** −0.225 1
NDBI 0.520 ** 0.421 ** −0.423 ** 1
NDVI −0.528 ** −0.513 ** 0.395 ** −0.933 ** 1

** Correlation is significant at the 0.01 level (two-tailed).

Table 7. Results of the correlation analyses between multiple urban morphological indicators in HA3.

LST INTEGRATION SVF NDBI NDVI

LST 1
INTEGRATION −0.453 ** 1

SVF 0.416 * −0.268 1
NDBI 0.122 0.080 −0.788 ** 1
NDVI −0.088 −0.180 0.647 ** −0.939 ** 1

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

4. Discussion

The findings of this study indicate that HAs characterised by high-density high-rise
buildings experienced higher LST during the summer compared to HAs with less dense
mid-rise and low-rise buildings. This observation was consistent with studies investigating
the relationship between LST and urban morphology [35,86,87]. The importance of morpho-
logical features in HAs could not be underestimated, as they influenced the microclimate
and ultimately contributed to a higher LST. The studied city parts are evaluated only for
their morphological characteristics and LST, which are accepted to be not changeable for
their geographical location, proximities, and closeness to each other.

The Space Syntax analysis, conducted to determine the impact of the street network
integration index, one of the morphological indicators, on LST demonstrated remarkably
high explanatory power on LST across all HAs exhibiting diverse morphological features.
Nevertheless, it is noteworthy that the change in the correlation direction is based on
the housing characteristics of each HA. We found a strong negative correlation between
the integration index and LST in HA1 and HA3, similar to previous studies [30,31]. This
indicates that integrated areas exhibit a more consistent cooling effect, showcasing stability
in temperature regulation. However, it is noteworthy that the direction of the relationship
between LST and the integration index varies depending on housing morphology. This
relationship was notably reversed in HA2, which is dominated by high-rise, point block
buildings, and we observed a significant positive correlation between the integration index
and LST. It is also notable that the indicator has a cooling effect in low-rise and low-density
areas, whereas it contributes to heating in high-rise and high-density areas. Point block
buildings, a relatively new type compared to typical high-rise apartments, have rapidly
developed since around 2010. The significant decrease in ventilation performance within
closed forms of three or more buildings in point block developments may be a contributing
factor. Moreover, due to the life cycle of densely populated and high-rise housing areas,
greenhouse gas emissions are higher than in other areas [88]. Reduced ventilation not
only contributes to an increase in air temperature but also contributes to an increase in
surface temperature [59]. Therefore, the low ventilation performance in high-rise, high-
density point block housing areas may have contributed to the increase in LST. These
findings highlight the intricate relationship between urban design and temperature control
and challenge previously conventional expectations. This study’s results suggest that the
effect of morphological features on microclimates varies between different housing areas,
highlighting the need for tailored approaches to urban planning and design based on
specific housing characteristics.
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Drawing from the study’s results, to effectively alleviate the UHI effect in low-rise
housing areas, it is advisable, in alignment with prior research [30], to amplify the inte-
gration of urban spaces. This involves designing surfaces with higher integration that
are more connected to the network [31] and constituting linear green street networks [30].
Conversely, in housing areas characterised by high-rise point blocks, it becomes pivotal
to prioritise designs that curtail integration, thereby sustaining a lower LST environment.
Recognising the detrimental impacts of greenhouse gas emissions on UHIs, it is imperative
to promote the use of renewable energy sources such as solar and wind. Furthermore,
the adoption of low-carbon emissions is paramount. In this context, the implementation
of mechanisms, including carbon credits or caps, emerges as pragmatic and immediate
solutions to curtail greenhouse gas emissions in the atmosphere [89].

NDBI and NDVI indices indicating land use intensity were positively correlated with
NDBI and negatively correlated with NDVI in HA1 and HA2. The findings obtained are
in light of the literature, and as Kikon et al. stated, likely due to the fact that vegetation
and moisture-retaining soils use a relatively large fraction of the absorbed radiation in
the process of evaporation (transpiration) and cool the surrounding air by releasing water
vapour [89]. In harmony with prior research [35,74,90], NDBI demonstrated a positive
correlation with LST in urban contexts. Notably, the study unveils a significant result: NDBI
and NDVI indices were insufficient in explaining LST changes across housing areas in HA3.
This limitation aligns with prior studies highlighting the constraints of NDBI and NDVI in
elucidating LST [91,92]. It is worth noting that, despite previous studies emphasising the
inability of these indices to capture LST in summer, this study, conducted during the same
season, minimises the significance of the seasonal effect and demonstrates considerable po-
tential in elucidating LST in HA1 and HA2. The study proposes two potential explanations
for the underperformance of NDVI and NDBI indices in explaining LST in HA3. Firstly,
the diversity of housing forms in the area, with irregular development and varying heights
of houses, contrasts with the regular development of houses with similar heights in HA1
and HA2. This discrepancy may explain why NDBI is inadequate in elucidating LST in
HA3, as its working principle, relying on building density, may not effectively compare
NDBI values between unplanned, dense low-rise housing areas and 6- to 10-storey housing
areas. Secondly, the higher spectral reflectance of bare soil in rural areas, especially in the
SWIR band, compared to urban areas, is highlighted. Sparse and dry vegetation exhibits
higher reflectance in the SWIR wavelength range compared to the NIR range, resulting in
high NDBI values and low NDVI values in these areas. It is worth noting that the NDBI
value of housing areas with a higher rural character in HA3 has a similarity with that
of housing areas in the same region that have 6–10 storeys. Based on these findings, it
could be speculated that NDBI and NDVI are inadequate in explaining LST in high-rural
unplanned settlements such as HA3. The specific features of rural unplanned areas call for
a specialised methodology to analyse the interplay of land use indicators and temperature
trends. This highlights the importance of conducting more comprehensive studies to unveil
the intricacies of the relationship between NDBI, NDVI, and LST in such environments.

In light of these results, it is imperative to initiate measures aimed at mitigating
the UHI phenomenon, placing a primary emphasis on expanding the city’s vegetation
cover. The augmentation of greenery serves as a crucial factor in amplifying the rate
of evapotranspiration [89]. Given the distinctive spatial configurations of planned and
unplanned urban fabrics, it is recommended to prioritise the preservation of dense tree
areas, elevate overall vegetation cover, and rehabilitate bare soil and bush lands with the
integration of dense trees [30]. In the construction or transformation of urban blocks, it is
crucial to consider not only the demands of urban development but also to prioritise the
preservation of urban green spaces. Proactive planning of the urban green space system
significantly contributes to enhancing cooling benefits, as evidenced by NDVI [93]. Strategic
and thoughtful planning, including the intentional planting of trees, the incorporation of
vegetation covers in urban areas, and the creation of green spaces, plays a pivotal role in
cooling the atmosphere [94–96]. Implementing strategic measures, including planting trees
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around housing areas, not only provides shade to urban surfaces, consequently reducing
roof and wall temperatures, but also results in significant reductions in energy consumption
for air conditioning [89]. Moreover, the shade generated by trees impedes the heating
of enclosures and impermeable surfaces, contributing to the cooling rates of vegetated
areas [42,97]. In conjunction with these strategies, the promotion of urban gardening,
particularly the utilisation of private urban gardens such as vertical and rooftop gardens,
emerges as an effective approach to mitigate the UHI effect. These measures contribute to
the cooling of buildings and the conservation of energy consumption [98]. Furthermore,
this practice also extends the lifespan of roofing materials compared to traditional rooftops,
diminishes air pollutants and greenhouse gases, and enhances building insulation [89].

Following an analysis of the SVF to investigate the effect of housing form and height
on surface temperature, we found a strong correlation between the SVF and LST in all
HAs. This substantial characteristic of SVF aligns with previous reports [34,35,99]. There
is a strong positive correlation between SVF and LST in low-density, low-rise, and mid-
rise housing areas (HA1 and HA3). Areas with higher SVF values are known to receive
more solar radiation and have higher temperatures compared to areas with lower SVF
values [100,101]. Moreover, considering the morphological characteristics of HA3, it could
be claimed that SVF is a better indicator than NDBI and NDVI in irregularly developed
housing areas with high rural character, as a result of the positive correlation of SVF
compared to NDBI and NDVI in explaining LST. However, in contrast to established
knowledge, the direction of this correlation shifts within high-density housing area (HA2)
that feature high-rise, point block buildings, similar to the analysis of the integration index.
Notably, high-rise point block buildings, characterised by extreme SVF values (0.3), exhibit
an elevation in LST. One possible reason is that the heat emitted from high-rise blocks could
indeed be a contributing factor. An increased distance between the buildings improves
airflow and allows the radiation to spread, while the ventilation level decreases in point
blocks with low SVF [34,59]. Furthermore, while the courtyard and linear block buildings
in the area have vegetation cover, point block buildings often have these areas covered with
hard surfaces. In the courtyard and linear block buildings, the cooling effect of vegetation
and the airflow around these buildings could lead to a decrease in LST. Therefore, in
the HA2, there is a tendency for cooling in areas with high SVF, whereas in point block
buildings with very low SVF, there is a tendency for heating. In light of these findings, it is
evident that SVF proves to be a reliable indicator of LST in both planned and unplanned
housing areas. However, contrary to initial expectations, the relationship between SVF
and LST takes an unexpected turn in housing areas characterised by extremely low SVF
values. In these areas, SVF serves as a negative indicator for LST, presenting a reversal
of the anticipated correlation. This impressive result highlights the necessity for a more
detailed understanding of the intricate interplay between SVF and LST, especially in areas
characterised by extreme SVF values. Further research and in-depth investigations are
crucial to unravelling the specific dynamics and contextual factors that contribute to this
complex relationship, providing valuable insights for urban planning and environmental
management in areas with extreme SVF conditions.

Considering the results of the study, as urban redevelopment progresses, the creation
of diverse building heights and massing rather than a monolithic wall of high-rise buildings
could effectively alleviate the UHI phenomenon [102–104]. To enhance the shielding
effect of buildings and reduce the UHI effect of the city, it is recommended to replace
worn textures with a well-balanced mix of compact mid-rises and open high-rises for
new construction, thereby avoiding excessively high and extremely low SVF [35,59]. To
counteract the UHI effect within the confined layouts of existing high-density high-rise
buildings, it is suggested to integrate green spaces within the courtyards rather than
employing impermeable surfaces [59].
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5. Conclusions

Erzurum, one of the cities exposed to the largest amount of solar radiation in Turkey,
has housing areas with different microclimate characteristics. In this paper, we compre-
hensively and objectively evaluated the 2D and 3D urban morphological indicators of
housing areas and offered a framework to quantify the impact of urban morphology
on microclimate.

The summer UHI effect within the high-rise buildings is severe, while the severity is
relatively light in low-rise and mid-rise buildings; the impact of spatial form indicators
on UHIs varies by HAs, with integrity index being the most correlated indicator with
UHI in all HAs; some indicators have a more significant impact in specific HAs, such as
SVF having a stronger impact on UHIs in HA2, where there is an extremely low SVF; the
form, height, and arrangement of buildings are closely related to UHI; and the integrated
distribution of mid-rise buildings is beneficial in reducing the UHI, while the segregated
distribution of high-rise point blocks is effective in reducing the UHI. The reducing effect of
NDVI on UHIs remains valid in the planned development of housing areas, with a larger
proportion of vegetation in space showing a greater cooling effect on UHIs. Similarly, the
enhancing effect of NDBI on UHIs remains valid in the planned development of housing
areas with increased terrestrial radiation in the built-up area. On the contrary, land use
intensity indices (NDBI, NDVI) are not good indicators for UHI studies in irregular housing
areas with high rural character.

Drawing from the aforementioned research findings, our recommendation emphasises
the importance of considering spatial and indicator-specific factors when optimising urban
spatial forms to mitigate the UHI effect in urban design and spatial planning. It is essential
to recognise that various indicators contribute differently to the urban heat environment in
different HAs. As a result, developing strategies focused on specific indicators becomes
imperative to effectively alleviate the UHI impact, taking into account the unique urban
geometry characteristics of each HA. It is important to note that the UHI impact is closely
associated with climate change. The warming climate will exacerbate already high tem-
peratures in heat island areas. Therefore, the proposed mitigation and cooling strategies
aimed at reducing UHIs could not only assist societies in adapting to the impacts of climate
change but also contribute to the reduction in greenhouse gas emissions, which are a major
cause of climate change.

This study’s focus on summer surface temperature data limits the conclusions drawn
about optimising urban heat environments to summer days. Moreover, the absence of
winter data restricts the broader applicability of these findings. There is a need for deeper
investigation into how morphological indicators impact UHI dynamics during winter,
alongside the quest for pertinent solutions. This study, owing to its constrained scope and
available data, leaves uncharted territory ripe for exploration. Exploring various vegetation
types, assessing biomass, and delving into factors like rainfall, wind direction, speed, and
various remote sensing indicators related to morphological structure (topographic position
index, water index, and forest index) could substantially enrich our understanding of daily
UHI fluctuations within urban morphology research. These unexplored elements hold the
potential to illuminate critical nuances in how UHIs operates across different seasons and
weather conditions.
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