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Abstract: Digital agriculture serves as a pivotal means of ushering in innovative agricultural practices
and achieving sustainable agricultural development. Although agricultural digitalization has received
increasing attention, the unbalanced development and regional disparities of digital agriculture are
still key obstacles to sustainable agricultural development. Based on the data of 31 provinces in China
from 2013 to 2021, this study evaluates the development level of digital agriculture in China, and
further analyzes the distribution pattern, spatial characteristics, and transition probabilities of digital
agriculture from a regional perspective. The index system of the digital agriculture development
level is constructed from five aspects: infrastructure, talent resources, agricultural informatization,
the digitization of agricultural production processes, and agricultural production efficiency. Among
these, infrastructure and talent resources reflect the resources needed for the development of digital
agriculture; agricultural informatization and the digitization of the agricultural production process
indicate the role of digitization in the process of agricultural development; and the agricultural
production efficiency is the goal of the digital agriculture development, which is a critical criteria of
its evaluation. The weighted analysis method of objective sequential analysis, which combines the
dynamic level of indicators and sequential relationships, is used to assign weights to the indicators.
In addition, to address the regional disparities in the development level of digital agriculture, kernel
density estimation, Moran’s index, and (spatial) Markov chain analysis are applied to analyze the
spatial dynamic evolution of digital agriculture in China. The findings reveal substantial regional
disparities in digital agriculture development within China, particularly in the Western region,
where development lags behind. Moreover, this study offers actionable policy recommendations for
policymakers to strengthen regional infrastructure and talent cultivation, as well as other aspects
of digital agriculture development, to mitigate regional differences and provide reference for other
emerging countries.

Keywords: digital agriculture; regional differences; objective sequential analysis (SRA) method;
sustainable agricultural development

1. Introduction

The sustainable development of agriculture, serving as the bedrock of economic
progress, is a pivotal prerequisite for achieving high-quality economic growth. Digital-
ization and informatization represent crucial directions for the future development of
agriculture. The rapid proliferation of the digital economy, with its far-reaching influence,
acts as a powerful catalyst for the high-quality development of agriculture, offering a novel
path towards sustainable agricultural practices.

The concept of digital agriculture first surfaced in 1987, representing the fusion of
intensive, information-rich agricultural technology supported by geospatial and informa-
tion technology [1,2]. Although scholars have not converged on a uniform definition for
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“digital agriculture”, there is a prevailing consensus that “digital agriculture” signifies the
fourth revolution in the field of agriculture [3–5]. The first revolution in agriculture was
the transformation from a primitive hunting economy to a farming economy, while the
second agricultural revolution turned into mechanical agriculture, which gradually used
pesticides, fertilizers, and large machinery in the production process. The third agricultural
revolution was labeled as the “Green Revolution”, which is mainly reliant on modern
biotechnology with molecular biology and genetic engineering, as well as other supporting
green technologies that are conducive to sustainable environmental development. The
fourth revolution is based on information technology and digitalization, which can more
effectively realize the development of precision agriculture [6,7], accelerate the develop-
ment of agricultural mechanization, and improve agricultural production efficiency [8].
The development of digital agriculture has strengthened the application of the Internet, the
Internet of Things [9], cloud computing, and big data to the agricultural production and
sales processes, thus continuously improving agricultural production standards, deepening
the processing of agricultural products, and building agricultural brands. Therefore, the
increase in agricultural output value and sustainable development can be realized [10,11].

Current research places a significant focus on the application of digital technology
in the agricultural production process, while also emphasizing efficiency gains, food se-
curity, and ecological preservation [12,13]. Research findings highlight the critical role of
digitalization in steering agriculture towards sustainable development [14–16]. Digital
technologies effectively reduce carbon emissions during production [17,18] and foster green
agricultural practices [19]. Digital agriculture enables precise production, enhancing the
quality and yield of agricultural products by monitoring dynamic crop changes and effec-
tively regulating and predicting the production process [20–24]. The widespread adoption
of digital machinery and equipment reduces fixed agricultural operation costs [25], while
increasing overall agricultural productivity [26,27]. This shift towards reduced energy con-
sumption and heightened productivity propels agriculture towards sustainability [10,11,28].
The confluence of the “digital economy” and “agriculture” expands avenues for agricul-
tural sales [29], enhances market transparency [30], augments agricultural production
efficiency [31,32], balances supply and demand information, and delivers high-quality
agricultural products to consumers. Moreover, digital agriculture stimulates the growth
of agriculture-related industries [33], elevates agricultural and supply chains [34,35], and
reinvigorates rural sectors [36].

As an important developing country in the agricultural field, China has experienced
a rapid growth in digital agriculture in recent years, with achievements such as the in-
formatization level of national agricultural production reaching 22.5%, agricultural product
quality and safety traceability at 22.1%, and online retail sales of agricultural products
accounting for 13.8% of total agricultural product sales in 2020 [37], which make China
become an important force for the sustainable development of agriculture in the world.
The significant role of China in global agriculture and digital agriculture is remarkable,
such as its support of nearly one-fifth of the world’s population with less than 9 percent of
the world’s total arable land [38]; furthermore, China is also exporting the experience of
agricultural digitization to developing countries.

However, when considering the characteristics of the agricultural industry and the
disparities in economic development levels, it becomes apparent that the degree of digital
transformation in Chinese agriculture exhibits noticeable imbalances [39] and that the
progress of digital agriculture in China also shows obvious regional disparities. Existing
studies have revealed the challenges posed by these imbalances in digital agriculture
development, and the substantial regional disparities represent a significant hurdle to
coordinated and sustainable agricultural development [40]. Consequently, the issue of the
regional divide in digital economy development has become a pressing concern [41,42].

To comprehensively analyze regional disparities in digital agriculture development in
China and propose actionable policy recommendations, this paper constructs an evaluation
index system for the digital agriculture development level, encompassing multiple dimen-
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sions. The study also employs objective sequential analysis to assess the development
level of digital agriculture across 31 provinces in China. Additionally, this research delves
into the distribution patterns, spatial characteristics, and transition probabilities of digital
agriculture development levels within the three major regions, providing a detailed portrait
of regional differences in digital agriculture across spatial and temporal dimensions. This
study enriches the understanding of digital agriculture development as well as regional dis-
parities, while offering actionable policy recommendations to mitigate regional differences
in digital agriculture development and providing reference for other emerging countries.

2. Index System and Methodology
2.1. Index System of Digital Agriculture Development Level

The progression of digital agriculture development is intricate, and a solitary indi-
cator falls short of providing an objective evaluation. Consequently, most scholars rely
on the construction of an index system to gauge the development level of digital agricul-
ture [43–45]. In this paper, we have formulated an evaluation system based on insights
from the “2021 National County Agricultural and Rural Informatization Development
Level Evaluation Report, (in China)” and the “Digital Countryside Development Report in
China”, as well as other pertinent research reports and studies. This comprehensive system
comprises five core dimensions and encompasses 18 key indicators, which include digital
agriculture infrastructure, digital agriculture talent, the agricultural informatization level,
the digitization of the agricultural production process, and the agricultural production
efficiency, as shown in Table 1.

Table 1. Evaluation system of digital agriculture development level.

Dimension Indicator Unit Code Property

Digital agriculture infrastructure

Rural delivery routes Kilometer X1 Benefit
Total reservoir capacity Billion cubic meters X2 Benefit
Road mileage Kilometer X3 Benefit
Rural electricity consumption 10,000 kW X4 Benefit
Length of optical fiber cables Kilometer X5 Benefit

Digital agriculture talent resources

Average years of education in rural areas Year X6 Benefit
Education expenditure 10,000 yuan X7 Benefit
Science and technology expenditure 10,000 yuan X8 Benefit
Average number of students enrolled in higher
education per 100,000 population Number X9 Benefit

Agricultural informatization level
The density of cell phone base stations 10,000 km2 X10 Benefit
The number of Internet domain names per 1000
people 10,000 X11 Benefit

Rural broadband access users 10,000 X12 Benefit

Digitization of agricultural
production process

The effective irrigated area Thousand hectares X13 Benefit
The total power of agricultural machinery 10,000 kW X14 Benefit
Large and medium-sized tractors for
agricultural use Number X15 Benefit

Agricultural production efficiency

E-commerce sales 100,000,000 yuan X16 Benefit
Per capita disposable income of rural households Yuan X17 Benefit
The total output value of agriculture, forestry,
animal husbandry, and fisheries 100,000,000 yuan X18 Benefit

Infrastructure forms the bedrock for digital agriculture development, which encom-
passes five crucial aspects: rural delivery routes, total reservoir capacity, road mileage,
rural electricity consumption, and the length of optical fiber cables. Rural delivery routes
and road mileage represent the transportation infrastructure essential for the movement of
agricultural production materials and products. Meanwhile, total reservoir capacity and
rural electricity consumption are fundamental resources vital for digitizing the agricultural
production process. The length of optical fiber cables serves as the hardware foundation
underpinning the advancement of agricultural informatization and digitization.

Talent resources play an indispensable role in elevating the level of digital agriculture
development. In comparison to hardware infrastructure, the scarcity of human resources
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remains a primary challenge in the digital agriculture development process and stands as a
pivotal indicator reflecting the current state of digital agriculture development. Talent re-
sources within digital agriculture are evaluated through four key indicators: average years
of education in rural areas, education expenditure, science and technology expenditure,
and the average number of students enrolled in higher education per 100,000 population.

The level of agricultural informatization is a critical dimension that mirrors the state
of digital agriculture development. The application of digital technology has made data
and information pivotal in agricultural progress. Evaluation indicators for the level of
agricultural informatization encompass the density of cell phone base stations, the number
of Internet domain names per 1000 people, and the count of rural broadband access users.

The digitization of the agricultural production process represents a key facet of dig-
ital agriculture development. The essential roles of digital agriculture are to refine the
production process, enhance agricultural production efficiency, and conserve resources.
This dimension includes indicators such as the effective irrigated area, the total power
of agricultural machinery, and the number of large and medium-sized tractors used in
agriculture. These indicators provide insights into the capacity and degree of digitization
of the production process in various regions.

The agricultural production efficiency serves as the ultimate objective of digital agri-
culture development. Vigorously promoting the digital agriculture process aims to achieve
high-quality agricultural development and sustainability, with the ultimate benefits re-
flected in the efficiency of agricultural production. This dimension includes indicators such
as e-commerce sales, per capita disposable income of rural households, and the total output
value of agriculture, forestry, animal husbandry, and fisheries.

2.2. Methods of Measuring the Development Level of Digital Agriculture

In the contemporary landscape of digital agriculture development assessment, tradi-
tional methods such as the entropy value method and principal component analysis are
widely employed. However, these conventional approaches tend to underemphasize the
inherent significance of individual indicators. In light of this, this paper adopts a novel
weighted analysis technique that integrates the dynamic evolution and sequential relation-
ships of indicators, referred to as objective sequential analysis (SRA). SRA represents a
weighted analysis approach that intricately blends the dynamic evolution and sequential
relationships among indicators. This method places heightened importance on discerning
the relative significance of indicators within the evaluation framework. It achieves this
by scrutinizing the variations in indicators across different evaluation periods, thereby
objectively ascertaining their weights within the evaluation system.

Consider a scenario where there are n alternatives, denoted as A1, A2, · · · , An, mea-
sured by m indicators, marked as X1, X2, · · · , Xm. Without a loss of generality, let aij(tk)
represent the actual performance of alternative Ai on indicator Xj in assessment period
tk, where k = 1, 2, · · · , T represents T periods. In the objective sequential analysis (SRA)
method, the comparative evaluation of indicators is quantified based on their competitive
capability, rather than relying on subjective judgments from experts. Consequently, the
initial step in this process involves determining the competitive capabilities of different
indicators by analyzing the positive shifts in their ranking values.

Let λj represents the competitive capability of indicator Xj, then:

λj =
count

((
rij(tk+1)− rij(tk)

)
< 0

)
n(T − 1)

, i = 1, 2, · · · , n; j = 1, 2, · · · , m; k = 1, 2, · · · , T − 1 (1)

where rij(tk) indicates the ranking value of alternative Ai out of all the alternatives on
indicator Xj in period tk, with the values ranged in [1, n]. count(·) is a counting function
used to count the number of sort improvements in the next period over the adjacent
previous period of alternative Ai on indicator Xj.

It is known that count
((

rij(tk+1)− rij(tk)
)
< 0

)
∈ [0, n(T − 1)]. Therefore, λj ∈ [0, 1].

A larger value of λj indicates the higher competitive capability of indicator Xj.
Based on the analysis above, the objective SRA method is proposed as follows:
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Step 1—Rearrange indicators by their competitive capability.
Rearrange the indicators by their competitive capability λj. An indicator with a higher

competitive capability (larger value of λj) ranks on the top of the ordered indicators. For
simplicity, we denote the ordered indicators as X1 ≻ X2 ≻ · · · ≻ Xm, where “≻” represents
“proceed”.

Step 2—Determine the ratio of the importance of two adjacent indicators.
The ratio of importance of two adjacent indicators Xj and Xj+1, denoted as rj, can be

determined by:

rj =
λj−1

λj
, j = 2, . . . . . . , m − 1 (2)

Step 3—Calculate the indicator weights
Let variable wj be the weight of indicator Xj. Then, we have:{

wm =
(

1 + ∑m
l=2 ∏m

j=l rj)
−1

wl−1 = rlwl , l = m, m − 1, · · · , 2
(3)

The validity of Equation (3) is proved in the following.

Proof. Since wj−1/wj = rj for j = 2, · · · , m − 1, we have ∏m
j=2 rj = w1/wm.

Then, ∑m
l=2 ∏m

j=l rj =
∑m−1

j=1 wj

wm
.

Therefore, 1 + ∑m
l=2 ∏m

j=l rj= 1+
∑m−1

j=1 wj

wm
=

∑m
j=1 wj
wm

.

Since ∑m
j=1 wj = 1, we have wm =

(
1 + ∑m

l=2 ∏m
j=l rj)

−1 .
The equation wl−1 = rlwl , l = m, m − 1, · · · , 2 can be deduced from wj−1/wj = rj. □

Once the weights for each indicator have been determined, the next step involves
calculating the evaluation values for the five dimensions: digital agriculture infrastructure,
digital agriculture talent resources, the agricultural informatization level, the digitization
of the agricultural production process, and agricultural production efficiency. These evalu-
ation values for each dimension are represented as Lic, Ltr, Lit, Ld, and Lb, and the level of
digital agriculture development is represented by L. Where i represents provinces and j
represents indicators, the specific formula expressions are as follows:

Liic(tk) = ∑5
j=1 wjyij(tk), i = 1, 2, · · · , n; j = 1, 2, · · · , 5 (4)

Litr(tk) = ∑9
j=6 wjyij(tk), i = 1, 2, · · · , n; j = 6, 7, · · · , 9 (5)

Liit(tk) = ∑12
j=10 wjyij(tk), i = 1, 2, · · · , n; j = 10, 11, 12 (6)

Lid(tk) = ∑15
j=13 wjyij(tk), i = 1, 2, · · · , n; j = 13, 14, 15 (7)

Lib(tk) = ∑18
j=16 wjyij(tk), i = 1, 2, · · · , n; j = 16, 17, 18 (8)

Li(tk) = (Lic +Ltr+Lit+Ld +Lb)/5 (9)

In order to ensure the dynamic changes in different evaluation periods, the data are
standardized using the method of dynamic extreme value. As all the indicators in the
evaluation index system of digital agriculture development level are positive indicators,
their processed values are set as yij(tk), and the formula is as shown in Equation (10):

yij(tk) =
xij(tk)− min

(
xij(tk)

)
max

(
xij(tk)

)
− min

(
xij(tk)

) (10)
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2.3. Methods for Assessing Spatial and Temporal Trends in the Development Level of
Digital Agriculture

(1) Distribution pattern—Kernel density estimation.
Kernel density estimation is one of the methods of spatial disequilibrium analysis.

The position of the kernel density curve is utilized to reflect the level of digital agriculture
development. We utilize the height and width of wave peaks to illustrate the degree of
discrete agglomeration. The number of wave peaks is used to illustrate the polarization
phenomenon, and the ductility-dragging tail phenomenon is used to illustrate the degree
of divergence.

It is assumed that the density function of the random variable x of the method is as
follows:

f (x) =
1

Nh∑N
i=1 K

(
Xi − x

h

)
(11)

where N is the number of observations; h is the bandwidth; K is the kernel density; Xi is
the independent identically distributed observations; and x is the mean value. In addition,
it is necessary to satisfy: lim

x→∞
K(x)·x = 0; K(x) ≥ 0;

∫ +∞
−∞ K(x)dx = 1; supK(x) < +∞;∫ +∞

−∞ K2(x)dx < +∞.
(2) Spatial autocorrelation—Moran index and Lisa plot.
Whether the digital agriculture development level has spatial autocorrelation needs

to be tested by autocorrelation. Global spatial autocorrelation is mainly used to measure
whether there are agglomeration characteristics of spatial units, while local spatial auto-
correlation explains the agglomeration characteristics of specific spatial locations and the
significance of agglomeration, which is presented by Lisa diagrams. The global Moran’s I
and local Moran’s I are specifically represented as follows:

IG = ∑n
i=1 ∑n

j=1 wij(yi − y)
(
yj − y

)
/S0S2 (12)

IL = Zi∑n
j ̸=i wijZj/S2 (13)

where S0 = ∑n
i=1 ∑n

j=1 wij, S2 = ∑(yi − y)2/n, Zi = yi − y, Zj = yj − y, n is the number of
spatial units, yi and yj are the attribute values of the ith and jth spatial units, wij is the
spatial weight value, using spatial neighbor weights, and y is the average of the attribute
values of all spatial units.

(3) Evolutionary dynamics—Markov chains.
Markov chains are utilized to illustrate the transfer probabilities of the digital agricul-

ture development level at different states. The Markov chain is a k × k matrix of transfer
probabilities depicting the transfer of attribute types at different times, with the probability
of a region of type i at time t transferring to type j at the next moment denoted by aij:

aij = bij/bi (14)

Assuming that the Markov transfer probabilities are smooth in time, we have
the following:

Nt+s = MSNt (15)

where bij denotes the number of areas transferred from type i to type j in the study time
period, from time period t to the next time period, and bi denotes the number of areas of
type i in time period t. Ms is the sth power of the transfer probability matrix M, and Nt,
Nt+s are the probability distributions over time periods t and t + s, respectively.

While the spatial Markov chain method is formed by introducing spatial autocorrela-
tion into the Markov chain method, the transfer probability matrix is conditioned on the
type of spatial lag in a region at time t. The spatial lag value of region u is a weighted



Sustainability 2024, 16, 735 7 of 19

average of the values of attributes of spatially neighboring regions of the region, which is
given in the following formula:

Lag = ∑U
u=1 yuwuv (16)

where the spatial weight matrix wuv denotes the spatial relationship between region u and
region v using the spatial adjacency matrix, yu denotes the attribute value of region b, and
Lag is the spatial lag value of region u, which denotes the state of the region u neighborhood.

3. Results
3.1. Results of Measuring the Development Level of Digital Agriculture

Based on the objective sequential analysis (SRA), the weight of each indicator of the
digital agriculture development level is calculated, and the results are shown in Table 2.

Table 2. Weights of indicators calculated based on objective sequential analysis.

Digital Agriculture Infrastructure X1 X2 X3 X4 X5
0.235 0.128 0.208 0.155 0.274

Digital agriculture talent resources X6 X7 X8 X9
0.309 0.254 0.158 0.279

Agricultural informatization level X10 X11 X12
0.152 0.481 0.367

Digitization of agricultural
production process

X13 X14 X15
0.385 0.231 0.385

Agricultural production efficiency X16 X17 X18
0.280 0.268 0.452

The assessment of digital agriculture development across 31 provinces in China over
the period 2013–2021 has yielded valuable insights into regional disparities and progress.
The specific data involved in the process of measuring the “digital agriculture development
level” come from the China Statistical Yearbook, provincial statistical yearbooks, statistical
bulletins, etc. There are a few missing values in some indicators; therefore, this study uses
linear interpolation to supplement the corresponding indicators to ensure the completeness
of the data.

The evaluation results, presented in Table 3, highlight the varying levels of digital
agriculture development in these regions. The top three regions with the highest level of
digital agriculture development are Shandong Province, Jiangsu Province, and Guang-
dong Province, while the bottom three regions are Ningxia Autonomous Region, Qinghai
Province, and Tibet Autonomous Region.

By examining the average development level and rankings of digital agriculture across
each province, it becomes evident that the eastern and central regions generally boast
better digital agriculture development levels. In contrast, the western region lags behind,
experiencing a more substantial gap compared to other regions. Overall, the development
level of digital agriculture in China has been continuously rising. However, regional
disparities still persist.

To gain a better understanding of the digital agriculture development level and re-
gional disparities among Chinese provinces, a heat map depicting the level of digital
agriculture development in China was generated, based on the average values obtained
from Table 3. The heat map utilizes a color spectrum, with darker shades indicating higher
levels of digital agriculture development and lighter shades representing lower levels. As
depicted in Figure 1, a gradual transition from darker to lighter colors is observed from
east to west, reflecting a better overall development of digital agriculture in the eastern and
central regions compared to the western region. The disparity between the eastern and
central regions is relatively minimal, which possibly due to the fact that agricultural devel-
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opment is intrinsically linked to the natural environment, and the central region’s provinces
possess a stronger foundation for digital agriculture implementation. Additionally, the
eastern region benefits from developed economic conditions and access to coastal areas
and abundant water resources, which contribute to its digital agriculture advancement.
Consequently, both the eastern and central regions exhibit relatively favorable progress in
digital agriculture development.

Table 3. Evaluation of digital agriculture development in 31 provinces in China (2013–2021).

Province 2013 2015 2017 2018 2019 2020 2021 Average Rank

Shandong 43.41 46.77 47.85 50.17 51.66 54.16 57.69 49.10 1
Jiangsu 36.10 40.37 44.95 47.27 50.57 52.97 52.30 44.94 2

Guangdong 31.46 36.58 42.02 45.38 51.01 52.14 53.86 42.74 3
Henan 36.52 40.21 41.13 43.29 45.15 47.24 49.41 42.30 4
Hebei 34.31 36.01 35.48 37.48 39.54 41.12 42.45 37.19 5

Sichuan 23.86 28.62 33.29 36.21 39.59 42.37 44.67 33.87 6
Hunan 26.31 28.81 32.65 34.25 37.11 38.79 40.54 32.92 7
Hubei 26.91 30.08 32.13 33.89 36.47 38.03 39.82 32.90 8

Zhejiang 25.37 28.96 31.86 34.82 38.20 38.83 39.63 32.71 9
Anhui 25.00 28.38 31.31 33.95 36.32 38.31 40.92 32.33 10
Beijing 20.78 27.14 31.42 30.42 33.53 33.11 38.09 29.75 11

Heilongjiang 24.32 25.79 27.49 28.68 30.37 31.38 32.19 27.87 12
Fujian 16.83 19.87 27.05 27.48 29.63 27.04 29.23 24.20 13

Shanghai 15.14 21.50 24.95 25.35 27.43 29.15 29.97 24.10 14
Guangxi 17.74 19.96 22.81 24.88 27.95 29.62 31.43 23.83 15
Yunnan 17.25 20.26 22.02 23.56 26.40 28.25 29.64 22.95 16
Jiangxi 16.93 19.02 22.06 23.89 26.51 28.21 29.63 22.65 17

Liaoning 19.84 21.68 21.93 22.75 23.42 24.37 25.73 22.41 18
Shaanxi 18.13 19.64 20.57 22.09 24.12 25.00 25.91 21.58 19

Inner Mongolia 17.70 19.23 20.41 21.56 23.23 24.35 25.57 21.08 20
Xinjiang 16.34 18.42 19.96 21.68 22.71 23.78 25.64 20.55 21

Jilin 16.68 18.33 18.43 19.97 21.39 22.80 23.87 19.67 22
Shanxi 16.78 18.12 17.17 18.74 19.29 20.15 21.41 18.41 23

Guizhou 12.26 14.43 17.02 19.07 20.74 21.93 24.33 17.64 24
Chongqing 12.31 14.62 16.84 17.82 19.81 21.18 22.56 17.17 25

Tianjin 13.20 14.96 15.03 15.78 17.04 17.64 19.23 15.77 26
Gansu 13.31 14.65 14.68 16.10 17.25 18.10 19.18 15.72 27
Hainan 8.95 10.30 11.94 12.32 13.95 14.16 14.35 11.76 28
Ningxia 6.84 7.54 7.92 8.60 9.45 10.09 10.54 8.44 29
Qinghai 4.50 5.47 6.80 7.43 7.74 8.08 8.56 6.65 30

Tibet 3.74 5.02 5.70 6.06 6.54 7.29 8.04 5.74 31

The division of Chinese provinces into high and low development levels of digital
agriculture, based on average values, offers a clear picture of the regional disparities in
digital agriculture advancement. The results are depicted in Figure 2. There are 12 provinces
classified as having a high development level of digital agriculture, while 19 provinces fall
into the low-level category. This result indicates that approximately 60% of China’s regional
digital agriculture development still requires further improvement. Among the twelve
provinces with a high development level of digital agriculture, six of them are located in
the eastern region, namely Shandong, Jiangsu, Guangdong, Hebei, Zhejiang, and Beijing.
The central region encompasses five provinces, namely Henan, Hunan, Hubei, Anhui,
and Heilongjiang. Only Sichuan represents the western region as a province with a high
development level of digital agriculture. The distribution of high-level digital agriculture
provinces once again underscores the significant regional disparities in China’s digital
agriculture development. This has emerged as one of the critical challenges impeding the
sustainable development of Chinese agriculture.
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3.2. Distribution Pattern

In order to observe the distribution pattern of the digital agriculture development in
each region of China more clearly, a three-dimensional kernel density map of the digital
agriculture development is shown in Figure 3, including the eastern, central, and western
regions, as well as the whole country, from 2013 to 2021.
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The analysis of the distribution pattern of the regional digital agriculture development
level in China provides several noteworthy conclusions.

Firstly, across the nation and across the eastern and central regions, there are observable
leftward shifts in the center of the kernel density curves. This indicates that the development
level of digital agriculture has improved to varying degrees in these regions. However,
there is no clear leftward shift trend evident in the western region.

Secondly, the primary peaks in the kernel density curves for the nation as a whole
and the eastern, central, and western regions have experienced varying degrees of de-
crease. Additionally, the width of the wave peaks in the eastern and central regions is
increasing, indicating a widening gap in the development level of digital agriculture within
these regions.

Finally, in all regions except the western region, the kernel density curves consistently
exhibit single peaks. This implies that the development level of digital agriculture in
each province within these regions is relatively consistent. In contrast, the western region
maintains a double-peak trend from 2013 to 2021, indicating a “polarization” within
the region. While Sichuan, as a large agricultural province, has achieved higher levels
of digital agriculture development, due to favorable natural conditions and economic
resources, many other provinces in the western region still lag behind. This significant gap
in development within the western region contributes to the presence of double peaks.

3.3. Spatial Autocorrelation

(1) Global Autocorrelation
By utilizing the Local Moran’s I function in GeoDa 10.8 software, the global Moran’s

I index was calculated, and the results are presented in Table 4. Analyzing the Moran’s I
values, it can be observed that they initially increase and then decrease over time. Although
there is a declining trend in the Moran’s I values from 2016 to 2021, they still remain above
0.260. This suggests that there is an ongoing positive correlation in the development level of
digital agriculture. Furthermore, considering the level of significance, the maximum value
of 0.11 during the period from 2013 to 2021 meets the requirement for significance. This
indicates the presence of a positive spatial dependence in the pattern of digital agriculture
development in China, along with a spatial aggregation phenomenon.

Table 4. Global Moran’s I of digital agriculture development level (2013–2021).

2013 2014 2015 2016 2017 2018 2019 2020 2021

Moran’s I 0.296 0.311 0.303 0.306 0.298 0.289 0.279 0.270 0.269
z-value 2.816 2.952 2.889 2.919 2.852 2.768 2.694 2.608 2.599
p-value 0.005 0.005 0.005 0.005 0.007 0.008 0.010 0.009 0.011

(2) Local spatial autocorrelation
The global Moran’s I results reflect the existence of a spatial aggregation relationship of

China’s digital agriculture development level. In order to better analyze the characteristics
of the clustering of digital agriculture development level in each province, the local Moran’s
I index is calculated, and the significant Lisa clustering map of China’s digital agriculture
development level in 2013 and 2021 is drawn by Arcgis, as shown in Figure 4.

In 2015, the clustering of six provinces is significant, including three high–high cluster-
ing areas: Shandong, Henan, Anhui; two low–low clustering areas: Gansu and Xinjiang;
and one high–low clustering area: Sichuan. In 2019, the clustering of eight provinces is
significant, including less Henan and more Jiangsu in the high–high clustering area, more
Inner Mongolia in the low–low clustering area; still only Sichuan in the high–low clustering
area; and Jiangxi appears in the low–high clustering area. The results of the significant
agglomerations to which each province belongs are shown in Table 5.
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Table 5. Significant clustering of the digital agriculture development by province in 2013, 2017,
and 2019.

Year High–High Clustering Areas High–Low Clustering Area Low–Low Clustering Area Low–High Clustering Area

2013 Shandong, Henan, Anhui Sichuan Xinjiang, Gansu
2017 Shandong, Jiangsu, Anhui Sichuan Xinjiang, Gansu Jiangxi
2021 Shandong, Jiangsu, Anhui Sichuan Xinjiang, Inner Mongolia, Gansu Jiangxi

Based on the findings presented in Table 5, the following conclusions can be derived.
Firstly, it is evident that there is a spatial clustering pattern in the level of digital agri-

culture development in China, and this clustering tendency is progressively strengthening.
Secondly, there is a tendency for enterprises with similar levels of digital agriculture

development to cluster spatially. This means that provinces with high development levels
of digital agriculture are more likely to be surrounded by other provinces with high levels
of development, while provinces with low development levels tend to be surrounded by
other provinces with similarly low development levels.

Lastly, by examining the quantity of high–high cluster areas, low–low cluster areas,
high–low cluster areas, and low–high cluster areas, we can infer that the regional disparities
in digital agriculture development within the country are relatively minimal.

3.4. Transfer Probability

(1) Transfer probabilities for the development level of digital agriculture.
Utilizing the quartile principle, the development level of digital agriculture is catego-

rized into four groups: low level, medium–low level, medium –high level, and high level.
By evaluating the development level of digital agriculture in 31 provinces from 2013 to
2021, the transfer probability matrix of the digital agriculture development level is com-
puted using Matlab, considering a time span of one. This analysis aims to provide a more
comprehensive understanding of the evolving trends in digital agriculture development.
The results of this analysis are presented in Table 6.

Table 6. Matrix of transfer probabilities for the development level of digital agriculture.

Province Status
Level of Digital Agriculture Development

Low Level Medium–Low Level Medium–High Level High Level

low level 0.818 0.182 0.000 0.000
Medium–low level 0.015 0.803 0.182 0.000
Medium–high level 0.000 0.000 0.862 0.138

high level 0.000 0.000 0.000 1.000

Firstly, upon observing the main diagonal elements of the transfer probability matrix,
it is evident that the probabilities surpass 0.800 and are consistently higher than the non-
main diagonal elements. This indicates a higher probability for each province to maintain
its current level of digital agriculture development in the subsequent period, implying a
greater degree of stability in the development level. Notably, provinces with a high level
of digital agriculture development exhibit a probability of 1.000 in maintaining their high
level in the following year, signifying that their development level will not decline.

Secondly, by examining the non-primary diagonal elements of the transfer probability
matrix, it is observed that the digital agriculture development level, apart from maintaining
its current state, only transitions to neighboring categories. For instance, the probability
of a province with a low development level of digital agriculture shifting to medium–low,
medium–high, and high levels in the next year is 0.182, 0.000, and 0.000, respectively. This
implies that provinces in the low level category primarily transition to the medium–low
level while maintaining their original level. Provinces with a medium–low and medium–
high level of digital agriculture development also exhibit similar characteristics. These
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results can be attributed to the influence of various factors on the development of digital
agriculture. Apart from economic development, natural resources and conditions play a
significant role in shaping the trajectory of digital agriculture. Improving the development
level of digital agriculture is a complex task that requires addressing the shortcomings
of natural conditions and enhancing economic development. It is crucial for the gov-
ernment to formulate tailored plans for digital agriculture development based on the
specific conditions of each province. Long-term strategies should be devised to foster the
advancement of digital agriculture, reduce regional disparities, and promote sustainable
agricultural development.

(2) Spatial transfer probability for the development level of digital agriculture.
Based on the results of the global Moran’s I index and the local Moran’s I index,

it is evident that there is a positive spatial dependence and aggregation pattern in the
development level of digital agriculture in China. To analyze the evolving trends in digital
agriculture development more comprehensively, spatial factors were incorporated into
the study. This involved examining the spatial Markov chain characteristics of the digital
agriculture development level. Furthermore, utilizing the quartile principle, the digital
agriculture development level was categorized into four types: low level, medium–low
level, medium–high level, and high level. The transfer probability matrix of the digital
agriculture development level was calculated, and the outcomes are presented in Table 7.

Table 7. Spatial transfer probability matrix for the development level of digital agriculture.

Spatial Lagging Province Status
Level of Digital Agriculture Development

Low Level Medium–Low Level Medium–High Level High Level

low level

low level 0.857 0.143 0.000 0.000
medium–low level 0.000 0.875 0.125 0.000
medium–high level 0.000 0.000 0.714 0.286

high level 0.000 0.000 0.000 1.000

medium–low level

low level 0.913 0.087 0.000 0.000
medium–low level 0.000 0.917 0.083 0.000
medium–high level 0.000 0.000 1.000 0.000

high level 0.000 0.000 0.000 1.000

medium-high level

low level 0.632 0.368 0.000 0.000
medium–low level 0.036 0.714 0.250 0.000
medium–high level 0.000 0.000 0.792 0.208

high level 0.000 0.000 0.000 1.000

high level

low level 0.900 0.100 0.000 0.000
medium–low level 0.000 0.667 0.333 0.000
medium–high level 0.000 0.000 0.938 0.063

high level 0.000 0.000 0.000 1.000

Firstly, by examining the main diagonal elements of the transfer probability matrix,
it is observed that the probability distributions are all greater than 0.632, surpassing the
non-main diagonal elements. This suggests a stable digital agriculture development level,
consistent with the findings of the traditional Markov chain analysis.

Secondly, for provinces with a high development level of digital agriculture, their
future development level remains high, regardless of the spatial lag level.

Finally, the spatial lag level influences the probability of a province transferring its
digital agriculture development level to some degree. In the case of provinces with a
medium–low level, the type of spatial lag level increases the probability of transitioning to
a medium–high level. For instance, the probabilities of transitioning to a medium–high
level for provinces with a medium–low level of digital agriculture development are 0.125,
0.083, 0.025, and 0.333, respectively.

Based on the results of the spatial Markov chain analysis of digital agriculture devel-
opment levels, it is evident that the development level remains stable, aligning with the
findings of the traditional Markov chain analysis. However, it is worth noting that digital
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agriculture development still exhibits a certain spatial effect, influencing the neighboring
areas to some extent.

Overall, there is an obvious regional disparities in the development of digital agri-
culture in China. The differences in the eastern, central and western regions are relatively
significant, especially the development level of digital agriculture in the western region
lags behind.

4. Discussion and Conclusions
4.1. Discussion

In the existing literature, the measurement of the development level of digital agri-
culture mostly comes from the aspects of the environment, supporting resources, and
outputs [44]. This study adds the level of agricultural informatization, as well as the
digitization dimension of the agricultural production process, which measures the deep
integration of digitalization and agriculture in the production process. On the basis of
calculating the development level of digital agriculture and analyzing regional differences
in previous studies [46,47], this paper uses the Markov chain to analyze the probability of
horizontal transfer of digital agriculture and reveals that the development level of digital
agriculture is relatively stable; therefore, improving digital agriculture is a challenge. This
study further enriched the research on the regional development of digital agriculture and
provided recommendations for improving the development level of digital agriculture and
reducing regional disparities.

In addition, this study also addresses the following insights to reveal the reasons for
regional disparities.

Firstly, the natural conditions and foundations for the development of agriculture are
inequal in different regions. Considering that the development of agricultural industry
is greatly constrained by the natural environment, therefore, it is more conducive to
promote and use the large-scale machinery, as well as to apply the digital technology, in
the agricultural production process in the areas with superior natural conditions and a
solid foundation for the development of agriculture, such as Shandong, Heilongjiang and
other places.

Secondly, there is a gap in China’s digital economy, which leads to differences in the
digital resources available in different regions, resulting in an unbalanced development of
digital agriculture [39,41].

Thirdly, the level of infrastructure construction varies greatly. The application of digital
technology and the promotion of mechanization need to rely on certain infrastructure,
such as network construction and transportation facilities [48]. Due to the differences in
economic level and geographical environment in different regions, the development of
infrastructure construction is also extremely unbalanced, which is also one of the important
reasons for regional disparities in digital agriculture.

Fourthly, the innovation and application of digital agriculture-related technologies is
disparate. The level of innovation adoption and the scope and efficiency of the application
of digital agriculture-related technologies are much higher in the eastern region than the
western [49], which leads to the unbalanced development of digital agriculture in China.

4.2. Conclusions

Digital agriculture is a crucial direction for agricultural development, serving as a
pivotal pathway to enhance sustainable agricultural practices. This study aims to assess
the development level of digital agriculture in China by constructing an evaluation system
comprising five dimensions: digital agriculture infrastructure, digital agriculture talent,
agricultural informatization, the digitization of agricultural production processes, and
agricultural production efficiency. Using data from 2013 to 2021, the objective sequential
analysis method (SRA) is employed to assign weights to the indicators and calculate the
evaluation values for the digital agriculture development level across the 31 provinces in
China. Additionally, kernel density estimation, Moran’s index, and Markov chain analysis
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techniques are employed to examine the distribution pattern, spatial characteristics, and
transition probabilities associated with the digital agriculture development level. The
findings lead to the following conclusions:

(1) The overall development level of digital agriculture in the 31 provinces of China
has been steadily improving; however, there are significant disparities exist between
provinces and regions, with the western region lagging behind the eastern and central
regions. Provinces with higher levels of digital agriculture development are con-
centrated in the eastern and central regions, with Sichuan being the exception in
the west.

(2) The development level of digital agriculture shows less variation within the eastern
and central regions of China, while significant disparities exist within the western
region, leading to a polarization phenomenon. This situation poses a considerable
disadvantage to sustainable agricultural development in the western region.

(3) Positive spatial dependence and aggregation characteristics are observed, indicating
that provinces with similar digital agriculture development levels tend to cluster
together. Within localized spatial areas, the disparities in digital agriculture develop-
ment level among provinces are relatively small.

(4) The Markov chain analysis suggests that the digital agriculture development level
tends to remain stable over time. Provinces are more likely to maintain their existing
development level of digital agriculture in the following year. However, for provinces
with a lower level of digital agriculture development, the type of spatial lag level
somewhat increases the probability of their level transitioning.

4.3. Recommendations

The regional disparities in the development level of digital agriculture have emerged as
a significant concern, presenting a formidable obstacle to the progress of digital agriculture
and the attainment of sustainable agricultural development. It is important to recognize
that enhancing the development level of digital agriculture is a gradual process influenced
by a multitude of factors. In light of the aforementioned conclusions and the prevailing
circumstances, this paper puts forth the following recommendations to effectively tackle
the regional disparities in the development level of digital agriculture:

(1) Enhance policy formulation related to digital agriculture to eliminate regional dis-
parities in its development. The government should devise policies based on the
actual development conditions of each region, adjusting the distribution of digital
technology resources nationwide. This will facilitate the inflow of digital resources
into the western region, coordinate the overall development of digital agriculture na-
tionwide, and elevate the level of digital agriculture development, thereby achieving
sustainable agricultural development.

(2) Enhance infrastructure development and cultivate digital agriculture technical tal-
ents. Accelerate agricultural infrastructure construction and promote full network
coverage in rural areas to provide a solid hardware foundation for the development
of digital agriculture. Special attention should be given to addressing the inadequate
infrastructure conditions in the western region.

(3) Investing in education and training programs at higher learning institutions and
vocational colleges can create a skilled workforce capable of leveraging digital tech-
nologies in agriculture. This intellectual support is critical for successful digital
adoption. Leverage the role of spatial radiation and regional assistance. Harnessing
the spatial spillover effect from provinces with high digital agriculture development
can be a catalyst for progress in neighboring provinces. To address the lower develop-
ment level in the western region, it is recommended to implement inter-provincial
assistance programs between the eastern, central, and western regions. This would
involve establishing communication platforms and channels to facilitate knowledge
exchange between provinces with high and low development levels of digital agricul-
ture. These initiatives aim to enhance the digital agriculture development level in the
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western region, ultimately achieving regional coordination and promoting sustainable
development in digital agriculture.

(4) Revealing the spatial dynamic evolution of digital agriculture development in China
can provide valuable experience and inspiration for developing or emerging countries;
meanwhile, it can also make a positive contribution to the sustainable development
of global agriculture.

However, even though this study proposed to improve the development level of
digital agriculture and eliminate the regional divide from the aspects of policy support,
infrastructure, and personnel training, there are still many difficulties in the implementation
of the above recommendations. For example, there will be different understandings
regarding the implementation of policies related to digital agriculture in different regions.
Therefore, the government should promote the balanced development of digital agriculture
by interpreting the relevant policies of digital agriculture and strengthening the role of the
government in infrastructure construction and personnel training.

4.4. Limitations and Future Directions

There are still some limitations of this study, which are also the directions of future
research. First of all, in terms of index system construction, numerical indicators are
currently selected. In the future, indicators created by mining text should be included;
for example, in the “Government Work Report” analysis, the frequency of the words
“digital agriculture” could be calculated, to further measure the importance of the digital
agriculture governance. Secondly, the current measurement period is 2013–2021, which is a
relatively short time span. This is due to the short development time of digital agriculture
in China, and researchers are temporarily unable to use a longer period of continuous
data for evaluation. Thirdly, take cities as samples to evaluate the development level of
China’s digital agriculture. Based on the current index system, some indicators cannot
obtain city-level data. In the future, the development level of China’s digital agriculture
can be evaluated by constructing a city-level index system and enriching the methods of
obtaining indicators.
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