
Citation: Abu-Zeid, M.A.-R.;

Elhenawy, Y.; Toderas, , M.; Bassyouni,

M.; Majozi, T.; Al-Qabandi, O.A.;

Kishk, S.S. Performance Enhancement

of Solar Still Unit Using v-Corrugated

Basin, Internal Reflecting Mirror,

Flat-Plate Solar Collector and

Nanofluids. Sustainability 2024, 16,

655. https://doi.org/10.3390/

su16020655

Academic Editor: Simon Pezzutto

Received: 12 November 2023

Revised: 25 December 2023

Accepted: 8 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Performance Enhancement of Solar Still Unit Using
v-Corrugated Basin, Internal Reflecting Mirror, Flat-Plate Solar
Collector and Nanofluids
Mostafa AbdEl-Rady Abu-Zeid 1 , Yasser Elhenawy 2,3,4 , Monica Toderas, 5,*, Mohamed Bassyouni 4,6,7 ,
Thokozani Majozi 3,* , Osama A. Al-Qabandi 8 and Sameh Said Kishk 1

1 Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
mostafa241981@agr.suez.edu.eg (M.A.-R.A.-Z.); sameh_kishk@agr.suez.edu.eg (S.S.K.)

2 Department of Mechanical Power Engineering, Faculty of Engineering, Port Said University,
Port Said 42526, Egypt; yasser.elhenawy@wits.ac.za

3 School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue,
Johannesburg 2000, South Africa

4 Center of Excellence in Membrane-Based Water Desalination Technology for Testing and
Characterization (CEMTC), Port Said University, Port Said 42526, Egypt; m.bassyouni@eng.psu.edu.eg

5 Faculty of Sciences, Oradea University, Universităţii Street No. 1, 410087 Oradea, Romania
6 Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
7 Faculty of Industry and Energy, East Port Said University of Technology, North Sinai 45632, Egypt
8 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;

osamah.alqabandi@aum.edu.kw
* Correspondence: monicatoderas@gmail.com (M.T.); thokozani.majozi@wits.ac.za (T.M.)

Abstract: The conventional solar still (CSS) unit faces challenges such as low productivity (Pd) and
thermal efficiency (ηth) due to the limited temperature difference between the hot water and the cold
interior glass cover surfaces (∆Tw-gi). This study addresses these issues by introducing enhancements
in the CSS unit, incorporating a v-corrugated-type basin, internal reflecting mirror, flat-plate solar
collector (FPSC) still, and FPSC nanofluids. A v-corrugated-type basin, internal reflecting mirror,
FPSC still, and FPSC nanofluids elicited a significant improvement in the distillate productivity (Pd)
up to approximately 22.39%, 41.72%, 70.10%, and 104.13% compared to the CSS unit. This increase in
the Pd is attributed mainly to a notable raise in the ∆Tw-gi, showing increments of around 34.33%,
52.32%, 77.37%, and 112.87% compared to the CSS unit. Moreover, a v-corrugated basin, internal
reflecting mirror, FPSC still, and FPSC nanofluids substantially increased the average daily thermal
efficiency (ηth), around 22.01%, 26.71%, 39.57%, and 56.21%, respectively. The results confirmed
that integrating the v-corrugated basin, internal reflecting mirror, FPSC still, and FPSC nanofluids
within a combined seawater distillation system can significantly enhance the performance of the CSS
unit. These different combinations effectively raised the basin water temperature (Tw) and ∆Tw-gi,
consequently improving the overall performance of the solar still unit.

Keywords: solar still; reflector; solar thermal collector; v-corrugated-type basin; nanofluids

1. Introduction

Solar still (SS) is a thermal desalination unit driven by a temperature difference be-
tween the two hot water and cold interior glass cover surfaces (∆Tw-gi) [1]. Utilizing water
desalination through solar collectors can aid in mitigating the spread of diseases such
as COVID-19 by providing a more reliable and clean water source, reducing reliance on
potentially contaminated water supplies [2]. The evaporation and condensation were
gathered in an integrated system [1], as shown in Figure 1. Comparing with other thermal
desalination processes, such as humidification-dehumidification (HDH), vapor compres-
sion (VC), multi-stage flash (MSF), and multi-effect distillation (MED), the solar still (SS) is
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a more convenient water desalination system utilized at remote coastal regions owing to
low operation and maintenance costs, low-operating temperatures, easy operation process,
no need for skilled workers, and less energy use, where it depends only upon the incident
solar radiation [2].
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The increasing or decreasing ∆Tw-gi deeply affects the solar still distillate productivity
(Pd) [3], whereas, the increase in the ∆Tw-gi helps in upgrading the still distillate productivity
(Pd) and vice versa [4]. The single slope-type solar still is one of the most common solar
desalination units [5]; however, low distillate productivity (Pd) ranging between 2 and
5 L/m2/day has been challenging [6]. To solve this issue, the water temperature (Tw)
in the still basin at first and the ∆Tw-gi should be augmented. This objective could be
accomplished practically by linking a flat-plate solar thermal collector (FPSC) with a solar
distillation unit in a system named FPSC still [7], fixing an internal reflecting mirror to the
still glass cover [8], and replacing a flat-plate type still basin with a v-corrugated-type still
basin [9].

Eltawil and Omara [10] stated that the FPSC still noticeably enhanced the still distillate
productivity (Pd) by about 56% and 82% in the case of sprayed hot water (passive and active
recirculation modes) and by 76% in the case of jet hot water (active recirculation mode).
Also, Sheeba et al. [11] demonstrated that a combined active desalination system (FPSC
still) outperformed the passive desalination system (solar still operating alone) in terms
of the daily thermal efficiency (ηth) by around 20.4% and 23.6% for tap and saline water,
respectively. Likewise, the distillate productivity (Pd) of the FPSC still was greater by 24%
compared with the passive desalination system [12]. Similarly, Badran and Al-Tahaineh [13]
and Badran [14] announced an around 36% enhancement in the distillate productivity (Pd)
of the active system compared to the passive one.

As for a reflector, a work was proceeded by Tanaka [15]; during the winter season, a
noticeable improvement in the still distillate productivity (Pd) from 70% to 100% resulted
due to the positive influence of internal and external reflectors, respectively. Hiroshi and
Yasuhito [16] investigated the impact of reflectors (internal and external) on the single slope
solar still productivity (Pd). The obtained outcomes showed the positive effect of reflectors
in enhancing the overall still distillate productivity (Pd), by around 21%. The authors
also recommended the inclination of a single slope solar still and reflector for fulfilling
better performance throughout the year. As described by Omara et al. [17], a comparative
investigation was carried out between the stepped solar still unit and the conventional
one. The results demonstrated that the stepped still unit remarkably outperforms the
conventional one. The distillate productivity (Pd) of the stepped still with fixing top and
bottom reflectors was upgraded by approximately 125% compared to the conventional still.
Another comparative investigation by Omara et al. [18] demonstrated that a v-corrugated-
type still basin with wick and internal reflecting mirrors achieved better productivity (Pd)
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than that of the conventional one by about 145.5%. Similarly, Al-Hayek and Badran [6]
reported an increment of 20% in the productivity (Pd) of asymmetric greenhouse-type
stills compared to the symmetric greenhouse-type still. Furthermore, Abdallah et al. [19]
reported that the distillate productivity (Pd) for the modified single slope solar still with
reflecting mirrors fixed on all interior sides was maximal at about 30% compared to the
productivity (Pd) without mirrors.

A v-corrugated-type still basin promoted the solar still performance as a result of
increasing the surface area of heat and mass transferring from the hot water surface to the
cold interior glass cover surface. Omara et al. [9] compared the volume of the still distillate
productivity (Pd) for three different kinds of absorber plate still basin, such as finned,
corrugated, and flat shapes. The experimental results showed a remarkable improvement
in productivity (Pd) in the case of finned and v-corrugated-type still basins in comparison
with the flat-plate type still basin, reaching around 40% and 21%, respectively.

By using several kinds of nanofluids, the solar collector’s absorption efficiency can
be enhanced [20]. In order to produce distilled water, experimental work was conducted
to study the flat-plate and evacuated-tube collectors [21]. The physical characteristics of
nanofluids and the yield of distilled water at various seawater flow rates were determined.
In the presence of carbon nanotubes in paraffin wax and ethylene glycol nanofluids, the
desalination unit’s performance was assessed. Ethylene glycol nanofluid at 80–100 ◦C
increased the flat-plate collector’s evaporation efficiency by up to 36%.

The pressure drops and thermal efficiency of several nanofluids inside a flat-plate
solar collector were computed. The thermal efficiency for Al2O3/water, however, was
examined both experimentally and numerically [22]. Working fluids include CuO/water,
Al2O3/water, Ti2O/water, and Si2O/water nanofluids, with vol. concentrations of 1, 2, and
3%, respectively. As the volume concentration of nanofluid rises, thermal efficiency does as
well. For instance, 2% Al2O3/water has a thermal efficiency that is 5.3% higher and 29.75%
more than 1% Al2O3/water and water. The thermal efficiencies of CuO and Al2O3 are 46%
and 43.8%, respectively, assuming a uniform mass flow rate and 1% volume concertation.

Previous studies focused on specific enhancements or modifications individually, lack-
ing a comprehensive approach that combines multiple innovations to maximize efficiency
and productivity. Many studies did not extensively address the influence of varying envi-
ronmental conditions on the performance of enhanced solar distillation systems, thereby
limiting the broader applicability of their findings. A few studies conducted detailed
comparative analyses between different enhancement methods or their combined effects to
understand their synergistic impact comprehensively. The scalability and adaptability of
enhancements across diverse geographical regions or varying water salinity levels were
not extensively addressed in some studies, limiting their broader applicability [21–23].

The novelty of this study lies in its comprehensive approach that integrates multiple
enhancements (v-corrugated basin, internal reflecting mirror, FPSC still, and FPSC nanoflu-
ids) into a single solar distillation system. This approach could potentially address various
limitations observed in previous studies. The study offers a comparative evaluation of
various enhancements in terms of their individual and combined impact on distillate pro-
ductivity and thermal efficiency. This comparative analysis provides valuable insights into
the synergistic effects of these enhancements. By emphasizing performance improvements
in a combined seawater distillation system, this study aims to bridge the gap between
theoretical advancements and practical application, potentially making it more relevant for
real-world scenarios. The significant improvements reported in distillate productivity (Pd)
and average daily thermal efficiency (ηth) due to these combined enhancements underscore
the novelty of this study. This study potentially addresses environmental dependency
concerns by assessing the performance enhancements under varying conditions, making
the findings more robust and applicable in diverse settings.

2. Thermal Analysis

The following assumptions were used in the present analytical analysis [22]:
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• The glass cover has the same area Ag as the water film Aw.
• The water film and the glass cover are gray surfaces.
• The water film is maintained at a constant temperature Tw.
• The glass cover is taken at a constant temperature Tgi.
• There is constant and equal specific heat C for feed, brine, and distillate.
• The sky can be considered as a black body.
• The glass cover is exposed only to the sky.

The energy flow and energy balance for the solar still unit are given by
Equations (1) and (2) [23].

• Heat balance for the still basin (b)

mb Cpb
dTb
dt

= IAb − qbwb − qb (1)

• Heat balance for water in the basin (w)

mw Cpw
dTw

dt
= I Aw + qbw − qrw − qcw − qew (2)

• Heat balance for the glass cover (g) can be determined using Equation (3).

mg Cpg
dTg

dt
= I Ag + qrw + qcw + qew − qcga − qrgs (3)

• The condensate rate is given by Equation (4) [23].

dmc

dt
=

hew Ab
(
Tw − Tgi

)
Lw

=
qew

Lw
(4)

The rate of heat transfer through convection, denoted as qcw (W), within the solar still,
specifically from the water surface to the interior surface of the glass cover, is described by
Equation (5) [24].

qcw = hcw Ab
(
Tw − Tgi

)
(5)

where Tw and Tgi are water temperature and temperature of the glass interior surface (K),
respectively. Meanwhile, hcw is the convective heat transfer coefficient in (Wm−2 K−1); it is
given by Equation (6) [25].

hcw = 0.884

[(
Tw − Tgi

)
+

(
Pw − Pgi

)
268900 − Pw

(Tw + 273)

]1/3

(6)

where Pw and Pgi are the partial pressures in (Nm−2) for water vapor at water and the inte-
rior glass surface temperatures within the still, which are given by Equations (7) and (8) [26].

Pw = exp
[

25.317 −
(

5144
Tw + 273

)]
(7)

Pgi = exp

[
25.317 −

(
5144

Tgi + 273

)]
(8)

Rate of the evaporative heat transfer within the still from the water surface to the inner
glass cover surface, which is denoted by qew in (W) units in Equation (3), can be determined
using Equation (9).

qew = hew Ab
(
Tw − Tgi

)
(9)
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where the evaporative heat transfer coefficient, hew in (Wm−2 K−1), is given by Equation (10) [23].

hew = 16.273 × 10−3 hcw

(
Pw − Pgi

)(
Tw − Tgi

) Lw (10)

The rate of radiative heat transfer from the water surface to the interior surface of the
glass cover, qrwb in (W) in Equation (3), is given by Equation (11).

qrw = hrw Ab
(
Tw − Tgi

)
(11)

where hrw is the radiative heat transfer coefficient in (Wm−2 K−1). It can be determined
using Equation (12).

hrw =
εe f f σ

[
(Tw + 273)4 −

(
Tgi + 273

)4
]

(
Tw − Tgi

) (12)

where εeff is the effective emissivity factor of diffuse radiation from the water surface to
the interior surface of the glass cover and σ is the Stefan–Boltzmann constant taken as
56.7 × 10−9 Wm−2 K−4 [27]. If the shape factor is taken as the unity and the emissivity
of the water is 0.90, the radiative heat transfer from the hot water surface to the interior
surface of the glass cover can be determined using Equation (13).

qrw = 0.90 Abσ
[
(Tw + 273)4 −

(
Tgi + 273

)4
]

(13)

Thus, the internal heat transfer within the still is governed by three modes: the heat
exchange between condensing and evaporating surfaces, i.e., from water surface to interior
surface of glass cover of the solar still, which is known as internal heat transfer. These
modes are radiation, convection, and evaporation, and, hence, the total internal heat
transfer coefficient (h1) from the water surface to the interior surface of the glass cover
will be the sum of all these modes of heat transfer coefficients according to Tiwari and
Tiwari [28], as given in Equation (14).

h1 = hcw + hew + hrw (14)

And the total value of the energy transfer q1 in (W) within the solar still from the water
surface to the interior surface of the glass cover can be obtained using Equation (15).

q1 = qcw + qew + qrw (15)

The influence of relative magnitudes of these three modes can be better understood by
evaluating the fraction of total energy, as performed by Cooper [29]. These convective (Fc),
evaporative (Fe), and radiative (Fr) fractions can be determined using Equation (16) [30].

Fc =
qcw

q1
Fe =

qew

q1
Fr =

qrw

q1
(16)

qbw in (W) in Equation (2) represents the rate of the convective heat transfer coefficient from
the black basin liner (the hottest region in the still) to the water surface. The calculations
were performed by applying Equation (17).

qbw = hbw Ab (Tbi − Tw) (17)

where Tbi is the inner basin temperature (K) and hbw is the convective heat transfer coeffi-
cient from the black basin liner to the water surface in (Wm−2 K−1).
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The conductive heat transfer coefficient (Ug) through the thickness of the still glass
cover (xg) could be formulated, as given in Equation (18).

Ug = kg/xg (18)

where kg and xg are the thermal conductivity for the glass cover in (Wm−1 K−1) and the
glass cover thickness in (m), respectively.

The rate of heat transfer from the exterior surface of the glass cover to the surroundings
due to convection, qcga in (W) (caused by the wind), is given by Equation (19).

qcga = hcga Ag
(
Tgo − Tao

)
(19)

where Tgo, Tao, and hcga are the outer glass cover temperature, ambient air temperature, and
convective heat transfer coefficient, respectively. The convective heat transfer coefficient
(hcga) depends on the prevailing wind speed. It is given by Equation (20) [31].

hcga = 5.7 + 3.8w (20)

where w is the wind speed in (m/s).
The rate of radiative heat transfer from the exterior surface of the glass cover to the

sky can be determined using Equation (21).

qrgs = hrgs Ag

(
Tgo − Tsky

)
(21)

where hrgs is the radiative heat transfer coefficient in (Wm−2 K−1); it is given by Equation (22)

hrgs =

εe f f σ

[(
Tgo + 273

)4 −
(

Tsky + 273
)4
]

(
Tgo − Tsky

) (22)

where εeff is the effective emissivity factor of diffuse radiation from the exterior surface of the
glass cover to the sky and σ is the Stefan–Boltzmann constant taken as 56.7 × 10−9 Wm−2 K−4.
If the shape factor is taken as unity and the emissivity of the glass cover is 0.90, the radiative
heat transfer from the exterior surface of the glass cover to the sky can be determined using
Equation (23).

qrgs = 0.90 σAg

[(
Tgo + 273

)4 −
(

Tsky + 273
)4
]

(23)

where Tsky is the sky temperature and, generally, the average sky temperature during the
operating hours is given by Equation (24) [32].

Tsky = 0.0552 T1.5
ao (24)

The total external heat transfer coefficient (h2) is given by Equation (25).

h2 = hcga + hrgs (25)

The total value of the rate of energy transfer from the exterior surface of the glass
cover to its surroundings q2 in (W) can be determined using Equation (26).

q2 = qcga + qrgs (26)

Hence, the overall heat transfer coefficient (Ut) through the top of the still can be
calculated using Equation (27).

U−1
t = (h1)

−1 +
(

xg/kg
)

+ (h2)
−1 (27)
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The rate of conductive heat losses qb in (W) from the basin bottom to the atmosphere
can be formulated using Equation (28) [33,34].

qb =
kin
xin

(Twb − Tamb) (28)

where kin and Xin are the insulation thermal conductivity in (Wm−1 K−1) and the basin
thickness in (m), respectively.

3. Materials and Methods

Experimental comparison of the conventional solar still (CSS) and modified solar still
(MSS) performance for seawater desalination was implemented during August 2023 at a
latitude of (30◦35′00′′ N 32◦16′00′′ E). The conventional solar still (CSS) is used in this work
as a reference unit for a comparison with other modified solar still (MSS) units.

Each and every chemical element used in the experimental testing was of reagent
grade. Commercial Al2O3 nanoparticles with a 99.99% purity rating and an average
diameter of 45 nm were acquired from Sigma-Aldrich GmbH and placed in the base fluid.
Aluminum oxide nanofluid was chosen because of its superior Brownian motion, thermal
conductivity of higher effective, lower density, and ability to decrease sedimentation [35].
In order to disperse Al2O3 along the base fluid, distilled water, and to increase the stability
of Al2O3/seawater nanofluid, sodium dodecyl benzene sulfonate was used as a natural
surfactant [36]. Sodium dodecyl benzene sulfonate supplied the optimum stability level
for the Al2O3-seawater nanofluid. The Al2O3 nanoparticles were dispersed in water using
sonicator for 30 min in an ultrasonic bath at 3% (w/v). Model USC-1400 was used at 40 kHz
of ultrasound frequency. The Malvern Panalytical pro blue unite (Malvern Instruments,
Malvern, UK) was used to measure the zeta potential of particles in a liquid. Zeta potential
is an electric potential that exists at the interface between a particle surface and the liquid
medium in which it is dispersed. It is a key parameter in understanding and controlling
the stability of colloidal dispersions. The Zetasizer primarily uses a technique known as
electrophoretic light scattering (ELS). In this method, a laser beam was directed through
a sample containing dispersed particles. The instrument applies an electric field to the
sample, causing charged particles to move. The velocity of these moving particles is related
to their zeta potential. The velocity data are then used to calculate the zeta potential of
the particles based on the Smolu–Chowski equation, which relates the electrophoretic
mobility of the particles to the zeta potential. The Zetasizer provides results in terms of
zeta potential, which indicates the magnitude and direction of the electric charge on the
particles’ surfaces. This information is crucial for understanding the stability of colloidal
systems. Water and nanoparticles’ physical characteristics are listed in Table 1.

Table 1. Al2O3 nanoparticles’ and water’s physical characteristics.

Density, kg/m3 Specific Heat, J/kg K Thermal
Conductivity, W/m K Ref.

Al2O3 3995 880 35 [37,38]

seawater 1025 4007 0.60 [37,38]

Density ρnf and heat capacity Cnf, which may differ considerably from those of the base
fluid, are the two key nanofluid parameters that are used in the determination of the usable
thermal efficiency extracted during the heating process. Authors did not test the density
and heat capacity of Al2O3 nanofluids at different nanoparticle volume concentrations;
thus, the density and heat capacity were calculated using Equations (29)–(31) proposed by
Pak and Cho [39] and Xuan and Roetzel [40].

ρnf = (1 − ϕ)ρbf + ϕ ρp (29)
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(ρ·C)nf = (1 − ϕ)(ρ·Cp)bf + ϕ (ρ·Cp)p (30)

where base fluid, nanoparticle, and nanofluid are given the subscriptions f, p, and nf,
respectively. Using the Hamilton–Crosser projected model [41], the thermal conductivity
Knf of the nanofluid is assessed using Equation (31).

Knf /kf = kp + (n − 1)kf + (n − 1)ϕ(kp − kf )/kp + (n − 1)kf − ϕ(kp − kf ) (31)

where n denotes the particle sphericity and n = 3 denotes the particle form factor. The
sphericity values for cylinder-shaped and spherical particles are 0.5 and 1, respectively.
Due to the spherical shape of the Al2O3 nanoparticles, the value of n in the current study is,
thus, considered to be 3. Table 2 lists the thermophysical characteristics of Al2O3 nanofluids
as a function of nanoparticle volume concentration.

Table 2. Thermophysical characteristics of nanofluids, particles sizes, and zeta potentials of
Al2O3/water nanofluid at ϕ = 3%.

Property Value

Volume concentration ϕ, (% vol.) 3
Density ρ, (kg/m3) 1088
Thermal conductivity k, (W/m.K) 0.67
Average particles size, (nm) 45
Zeta potential, (mV) −27.71

Al2O3 nanoparticles acquire a negative charge on their surface due to the presence
of hydroxyl (OH-) groups. When dispersed in a water medium, these groups dissociate,
resulting in negatively charged surfaces on the nanoparticles. A high negative zeta potential
(−27.71 mV), as listed in Table 2, suggested a high degree of electrostatic repulsion between
the particles, which helps prevent their agglomeration or aggregation.

This stabilization mechanism is crucial in nanofluid applications because it helps
maintain the dispersion stability of nanoparticles in the fluid, preventing them from clump-
ing together and thereby maintaining their desired properties and characteristics, such as
uniformity and stability of the nanofluid.

3.1. Experimental Set-Up

The conventional (CSS) and modified solar still (MSS) units utilized in this investiga-
tion are shown in Figure 2. The single slope solar still units consisted mainly of seawater
tank, glass cover, iron basin, wooden box, circulation water pump, and connection pip-
ing. The tested solar still units were erected facing south during the experiments, and
the module’s inclination was fixed at 30◦ with respect to the ground to maximize the
quantity of sunlight that hit the module’s surface. The flat-plate solar thermal collector
(FPSC) was used to warm the seawater solution (acts as a thermal carrier) flowing into
the copper collector’s tube by absorbing the incident solar radiation and transferring heat
into seawater stream. The FPSC operated under forced circulation using a 375-Watt water
circulation pump. It was placed in the south direction with a slope of 30◦ to maximize the
solar intensity and to transfer the maximum possible solar radiation.

The seawater solution examined in this experiment was characterized with around
33,162 ppm salt concentration. A plastic water tank (50 L capacity and 2 mm thick) was
fixed above iron stand to supply the solar still (SS) unit with the required water depth. The
thickness of transparent glass cover of solar still is 3 mm, having the same dimensions, as
illustrated in Figure 3. It was sealed with silicone rubber to prevent any vapor leakage. The
reflective mirror, possessing a thickness of 2 mm, was fixed perpendicular to a still glass
surface, demonstrating dimensions of 0.5 m in height and 1.5 m in length.
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The flat-plate and v-corrugated-type still basins used in this study are illustrated
in Figure 4. All still basins are fabricated from galvanized iron with the same outside
dimensions of 0.8 m width, 1.3 m length, 0.1 m depth. It should be noted here that the
inside surface area of the three solar still units used a flat-plate type basin equal to 1.04 m2.
The basin, designed in a v-corrugated type, measures 0.8 m in width, 2.4 m in length, and
stands at a height of 7 cm. This configuration is illustrated in Figure 4. The angle of bending
between two successive tops or bottoms is around 60◦, and the distance between each
two tops or two bottoms is about 8 cm (equilateral triangles) with 7 cm height. This basin
consists of 15 tunnels (tops and bottoms of corrugated shape). The depth of seawater inside
the still basin is kept at 2 cm during the experiment operating time.

The still basins were painted in black coating to enhance the heat absorption from the
sun, and each one is added separately inside a wooden box for low heat loss. A wooden
box was made from plywood material with the same outside dimensions of 1.44 × 0.94 m2

and thickness of 0.025 m. The side spaces between the still basin and the wooden box are
filled with Styrofoam (0.07 m thick and 0.04 Wm−1 K−1 thermal conductivity) and with
rock wool at the bottom basin (thick of 0.02 m and 0.0346 Wm−1 K−1 thermal conductivity).
Two openings are made at the side and bottom of still basin for entry and drainage of
seawater solution. A tube made of PVC is fixed between the sloped glass cover surface and
still basin to collect the water droplets resulting from the vapor condensation. The flat-plate
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solar thermal collector (FPSC) utilized as a heat source in this experiment was designed in
a rectangular shape, as shown in Figure 5. It consists of black aluminum absorber plate
(1 mm thick), serpentine copper tube (26 m tube length, 8 mm diameter, 30 channels with
50 mm pitch between tubes), glass cover surface (3 mm thickness), wooden box (160 cm
length, 90 cm width, 10 cm depth, 5 mm thickness, and surface area of 1.44 m2), and
insulation material.
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3.2. Solar Still Configurations

In the current experiment, as elucidated schematically in Figure 6, the cold seawater
solution (pointing out as a blue solid line in the figure) flowed from the feeding tank to
the iron basin after opening the control valve (7). The control valve (7) was left open until
the still basin filled up with cold seawater solution at the required depth; then, it closed
to prevent more water flowing into the basin. After that, the cold seawater solution in
the basin began to warm up and convert to a hot solution (red solid line in the figure)
by the solar rays transmitted through the glass cover surface and absorbed by the linear
black basin. The hot seawater solution starts to evaporate and produce a vapor at the hot
water surface to remove salts. After that, the generated vapor molecules transferred by a
convection mode towards the interior cold glass cover surface. Then, it condensed and
turned into pure water droplets. The water droplets moved down on the interior glass
cover surface under a gravitational effect and collected as distilled water in the vessel
(green solid line in the figure). To maintain the depth of water constantly in the still basin
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during the experiment, the control valve (7) was opened once again to compensate any
shortage in water depth as a result of evaporation process.
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 Figure 6. The schematic diagrams illustrating the (a) CSS, (b) v-corrugated basin still, (c) reflecting

mirror still and (d) FPSC still with and without nanofluids used in this investigation: (1) seawater tank,
(2) iron stand, (3) glass cover, (4) flat-plate-type still basin, (5) seawater, (6) wooden box, (7) control
valve (1), (8) connecting pipe, (9) distillate PVC tube, (10) distilled water vessel (11) v-corrugated-type
still basin, (12) reflecting mirror, (13) water pump, (14) control valve (2), (15) flat-plate solar thermal
collector, (16) control valve (3).

The same steps were repeated in case of solar still (SS) unit equipped with a solar
thermal collector with (FPSC nanofluid) and without nanofluids (FPSC still), as illustrated
in Figure 6d, except the cold seawater stream entering first into the solar thermal collector
by using a water circulation pump (375 Watt) after opening the control valve (14) for
preheating. The control valve (14) was left open until the cold seawater solution completely
filled the copper collector’s tube closing at the same time as the control valve (16). After the
cold seawater solution filled the copper collector’s tube and was heated up by absorbed
solar radiation, the control valve (16) opened gradually to allow the preheated seawater
solution to flow and fill the still basin with a tested depth; then, it closed once again. The
above-mentioned steps were repeated until the collection of pure fresh water in the vessel.

Al2O3/seawater nanofluid with various nanoparticle concentrations is pushed through
the solar collector’s tube in order to remove the surplus heat produced by the flat-plate
solar collector, as shown in Figure 6d. By providing direct contact continuous heating, the
temperature of the surface of the pipe will be controlled by the Al2O3/seawater nanofluid,
significantly improving the extraction of heat from the surface solar collector system. In
Figure 6d, the hot Al2O3/seawater nanofluid is directed to the solar still (SS) unit for
usage after leaving the solar collector. To achieve an accurate nanofluid mass flow rate,
the rotameter is calibrated using the usual weighing approach with the assistance of a
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stopwatch using the estimated nanofluid density, and the mass flow rate of the nanofluid is
also obtained in the current study.

3.3. Solar Still Performance Parameters

(a) Solar still productivity (Pd)

The Pd of the solar still could be calculated by using Equations (32) and (33) [42,43].

Pd =
Qe,w−gi × ∆T

Lw
(32)

Pd =
he,w−gi × Ab ×

(
Tw − Tgi

)
Lw

× 3.6 (33)

where Pd is the hourly still productivity (kgh−1), Ab is the basin surface area (m2), ∆T is the
temperature difference between the hot water and the cold glass cover (◦C), Qe,w−gi is the
evaporative heat transfer rate (Wm−2), he,w−gi is the evaporative heat transfer coefficient
from the water surface to the glass cover (Wm−2 ◦C−1), and Lw is the latent heat of water
(≈2434 kJ kg−1).

(b) Solar still thermal efficiency (ηth)

The ηth of solar still could be determined mathematically using Equation (34) [42–45].

ηth =
Pd·Lw

Ag·I · 3600
× 100 (34)

where Lw is the latent heat of water (J kg−1) at average water temperature (Tw), Ag is
the glass cover surface area (m2), and I is the solar radiation incident on the glass cover
surface (Wm−2).

In case of single slope solar still with the support of a flat-plate solar collector (FPSC),
the solar still thermal efficiency must consider the solar collector’s energy gain as an energy
entry. Its hourly thermal efficiency (ηFPSC) could be determined mathematically using
Equations (35) and (36).

ηFPSC =
Pd·Lw[

Ag·I · 3600
]
+ Qex

× 100 (35)

Qex = m · C · (Tin − Tout)× 100 (36)

where Qex is the energy supplied by the nanofluid circulated in the copper tubes of solar
collector to saline water (J/h), m is the flow rate of seawater with and without nanofluids
(≈ 0.0075 kg/s), c is the specific heat of seawater with and without nanofluids (≈3959 and
3900 J/kg·K), and Tin and Tout are the inlet and outlet temperatures (◦C), respectively, in
the FPSC still with and without nanofluids in 1 h.

(c) Basin surface area (Ab)

The surface area of rectangular flat-plate-type still basin (Ab-flat) = Length × Width,
while, in case of a v-corrugated-type still basin (Ab-corrugated) = area of one tunnel × number
of tunnels (Figure 4).

3.4. Experimental Proceedings and Measurements

Experiments started at 7:00 h and continued up to 18:00 h during August 2022. The
velocity of wind (W), ambient temperature (Tao), and solar intensity (R) was measured
experimentally using meteorological station (Vantage Pro 2, Davis, USA). Additionally,
water (Tw), vapor (Tv), and inner glass cover (Tgi) temperatures are recorded by utilizing
thermocouples (Lab-Jack logger, powered by USB cable, supply 5 volt, USA). The ther-
mocouples are connected to a data-logger system to display and record the data during



Sustainability 2024, 16, 655 13 of 23

the experimental period. The output data were recorded every five minutes and averaged
every one hour during daylight.

4. Uncertainty Analysis

The features of each measuring instrumentation are shown together with the standard
uncertainty in Table 3. According to [46], the usual standard uncertainty of each piece of
equipment is defined using Equation (37).

u = a/
√

3 (37)

where a is the instrumentations accuracy [47,48].

Table 3. Instrumentation accuracy and uncertainty.

Instrumentations Measurable Variable Accuracy Rang Standard Uncertainty

Pyranometer solar intensity 0.04 W/m2 0–2300 W/m2 2.36 × 10−2 W/m2

Thermocouples Nanofluid temperatures ±0.17 ◦C (0–150) ◦C 7.3 × 10−2 ◦C
Infrared thermometer SS surface temperature ±0.12 ◦C (−10–200) ◦C 4.88 × 10−2 ◦C

Rotameter Nanofluid flow rate 0.03 L/min 0.01–0.5 L/min 0.001 L/min

The uncertainty of the function X may be predicted if it is a function of ‘n’ independent
linear parameters, as in X = f (β1, β2,. . ., βn) [49] using Equation (38).

∂X =

√(
∂X
∂β1

∂β1

)2
+

(
∂X
∂β2

∂β2

)2
+ · · ·+

(
∂X
∂βn

∂βn

)2
(38)

The maximum solar still productivity uncertainty, Pd, was determined using Equation (39)
as the focal point.

Pd = f
(

h f g, ∆T, Qe,w−g

)
= ±

√√√√(−δh f g

h f g

)2

+

(
δ∆T
∆T

)2
+

(
δQe,w−g

Qe,w−g

)2

=± 0.033 (39)

The greatest error in the estimation of thermal efficiency was noted as 0.026, as detailed
in Table 3.

The highest absolute uncertainty of the parameters was calculated to be less than 4%,
showcasing the reliability of the assessed parameters.

5. Results and Discussion
5.1. Comparative Temperature Analysis of Solar Still Configurations

The hourly variations of basin water (Tw), inner glass cover (Tgi), and vapor (Tv) tem-
peratures for conventional solar still (CSS), v-corrugated basin, reflecting mirror, FPSC still,
and FPSC nanofluids are shown in Figure 7a–c. Investigations were carried out at an aver-
age ambient temperature of 30.9 ◦C, average solar radiation intensity of 506.9 W/m2, water
depth of 2 cm, and salt concentration of 33,162 ppm. The obtained results demonstrated that
a v-corrugated basin, reflecting mirror, FPSC still, and FPSC nanofluids obviously upgraded
the performance of the solar distillation unit in comparison with the conventional solar still
(CSS). As shown in Figure 7a, the advanced basin water temperature (Tw) fulfilled with dif-
ferent enhancement techniques around the daytime compared to the conventional solar still
(CSS) unit was associated mainly with a considerable increase in absorbed solar radiation
and a heat loss reduction to the surrounding environment compared with conventional so-
lar still (CSS) unit. The excessive energy losses took place in the case of a conventional solar
still (CSS) unit, leading to a visible basin water temperature (Tw) decline. The enhanced
basin water temperature (Tw) of a v-corrugated-type still basin was attributed to an increase
in the surface area of heat and mass transfer (1.92 m2) corresponding to only 1.04 m2 in
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the case of a flat-plate-type still basin of a conventional solar still (CSS) unit. Additionally,
placing a mirror on the vertical side of the glass cover of the still helped in reflecting all
the incoming solar radiation onto the seawater surface. As a result, this action elevated the
temperature of the basin water (Tw). In the FPSC still and FPSC nanofluids, it was observed
that the water temperature (Tw) consistently exceeded that of the conventional solar still
(CSS) unit. This was attributed to a preheated water supply and a specific fin arrangement.
The elevation in temperatures of the inner glass cover (Tgi), illustrated in Figure 7b, was
predominantly attributable to distinct enhancement techniques applied during daylight
hours. This rise was chiefly a consequence of a heightened rate of vapor condensation
occurring on the interior glass cover surface, a phenomenon that differed significantly from
the conventional solar still (CSS) unit. The use of FBSC nanofluid exhibited a significant
increase in vapor temperature, reaching up to 100 degrees Celsius at 14:00, in contrast to
the 70 degrees Celsius observed with the conventional CSS configuration (Figure 7c). As
listed in Table 4, it was noted that a v-corrugated basin, reflecting mirror, FPSC still, and
FPSC nanofluids completely affected the average basin water (Tw), inner glass cover (Tgi),
and vapor (Tv) temperatures of the solar distillation unit. As an example, in comparison
with the conventional solar still (CSS) unit, noticeable increases of around 11.53%, 22.45%,
33.89%, and 60.67% observed in average basin water temperature (Tw) for a v-corrugated
basin, reflecting mirror, FPSC still, and FPSC nanofluids, respectively. Also, the average
still glass cover temperature (Tgi) was raised by 6.96%, 16.46%, 25.14%, and 50.19% rela-
tive to the conventional solar still (CSS). Likewise, compared with the conventional solar
still (CSS) unit, a v-corrugated basin, reflecting mirror, FPSC still, and FPSC nanofluids
incremented the average vapor temperature (Tv) by nearly 12.38%, 23.22%, 33.79%, and
60.55%, respectively.

Table 4. The average basin water (Tw), inner glass cover (Tgi), vapor (Tv) temperatures in ◦C for
different solar still configurations.

Various Solar Still Configurations
Average Different Temperatures (◦C)

Tw Tgi Tv

CSS 54.03 42.95 51.57
v-corrugated basin still 60.72 45.94 57.52
Reflecting mirror still 66.58 50.02 63.15
FPSC still 72.29 53.75 69.05
FPSC nanofluids 86.75 64.51 82.86

5.2. Comparative Productivity Analysis of Solar Still Configurations

The resulting data presented in Figure 8 elucidated the impact of a v-corrugated
basin, reflecting mirror, FPSC still, and FPSC nanofluids on the accumulated daily distillate
productivity (Pd) of the solar distillation unit compared with a conventional solar still (CSS)
unit. Figure 8 shows that a v-corrugated basin, reflecting mirror, FPSC still, and FPSC
nanofluids greatly enhanced the still daily productivity (Pd) by roughly 22.39%, 41.72%,
70.10%, and 104.13%, respectively, compared with the conventional solar still (CSS) unit.
The improved accumulated daily distillate productivity (Pd) was ascribed to a considerable
augmentation in the temperature difference between the hot water and the cold glass
cover (∆Tw-gi) by around 34.33%, 52.32%, 77.37%, and 112.87% on average around the
daytime compared to the unit of a conventional solar still (CSS), in which a high thermal
capacity was the main reason for a productivity (Pd) decrease, as illustrated in Figure 9.
Additionally, the improved accumulated daily productivity (Pd) in the case of the FPSC
still and FPSC nanofluids could be translated by increasing the heat transfer rate from the
hot water surface to the inner cold glass cover surface via convective, evaporative, and
radiative forces.
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Figure 9. The hourly variation of the temperature difference (∆Tw-gi) for different solar still configurations.

5.3. Comparative Thermal Efficiency Analysis of Solar Still Configurations

Figure 10 displays that the positive influence of a v-corrugated basin, reflecting mirror,
FPSC still, and FPSC nanofluids for the average daily thermal efficiency (η) is 22.01%,
26.71%, 39.57%, and 56.21%, respectively. The achieved augmentation in the average
thermal efficiency (η) could be explained due to two reasons: firstly, increasing water evap-
oration and condensation processes thanks to various improvement techniques contrasted
to the conventional solar still (CSS); secondly, a large amount of thermal energy added
during sunshine hours until sunset by virtue of integrating the solar thermal collector into
the solar distillation unit. Meanwhile, a decline happened in the average thermal efficiency
(η) of a conventional solar still (CSS) unit, attributed mainly to a high specific heat capacity
and lower distillate productivity (Pd).
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6. Comparative Assessment with Current Study

Table 5 presents comparisons of productivity (Pd) and thermal efficiency (η) between
the single slope solar still tested in the current experimental study and previous solar
still unit studies. The utilization of Al2O3 water-based nanofluid in the solar collector
(FPSC) within this study demonstrated a notable and substantial enhancement in both ther-
mal efficiency (56.21%) and productivity (104.13%) when compared to previous research.
The incorporation of Al2O3 nanoparticles into the water-based nanofluid significantly
augmented the heat transfer characteristics within the collector. This enhancement can
be attributed to the improved thermal conductivity and convective heat transfer proper-
ties of the nanofluid, facilitating better heat absorption and transfer within the system.
Consequently, the increased thermal efficiency of the solar collector led to a substantial im-
provement in the overall productivity of the system. The findings suggest that employing
Al2O3 water-based nanofluid in the solar collector configuration represents a promising
advancement, offering an effective means to significantly enhance both thermal efficiency
and productivity, thus contributing to the potential advancement of solar energy utilization
for various applications.

Table 5. A comparative study between the current investigation and previous studies on solar distil-
lation techniques, including V-corrugated basin, reflecting mirror, FPSC still, and FPSC nanofluids.

References Various Enhancements of Solar
Still Configurations

Improvement in
Productivity (%)

Thermal
Efficiency (%) Operating Conditions

Current
study

V-corrugated basin 22.39 22.01
Average Tao = 30.9 ◦C, average

I = 506.9 W/m2, water depth = 2 cm,
Seawater salinity = 33,162 ppm,

single slope solar still.

Internal reflecting mirror 41.72 26.71

FPSC still 70.10 39.57

FPSC nanofluids (Al2O3/water) 104.13 56.21

[9] V-corrugated basin 21 41

Wind speed = 0.4 to 4.3 m/s, solar
intensity = 20 to 1100 W/m2. Water
depth = 50 mm, quantity of saline
water =30 and 50 L, single slope

solar still.

[50] Internal reflecting mirror 75 56 Saline water depth = 5 mm, stepped
solar still.

[11] FPSC still

20.8 20.4 Fresh tap water, V-shaped glass
solar still.

24.1 23.6 Saline water concentration = 5%,
V-shaped glass solar still.
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Table 5. Cont.

References Various Enhancements of Solar
Still Configurations

Improvement in
Productivity (%)

Thermal
Efficiency (%) Operating Conditions

[13] FPSC still 36 -- Water depth = 2 cm, single slope
solar still.

[45]
Fresnel lens concentrator
nanofluids (Al2O3–Therminol-55
nanofluid (nHTF))

-- 53.55

Flow rate of nHTF = 0.5 L/min,
saline water depth = 25 mm, solar

intensity = 764 to 770 W/m2, single
slope solar still.

[51]

Blackened stainless steel balls:
1. 10 mm diameter 38.07 27.81 Brackish water salinity = 1850 ppm,

water depth = 15 mm, single slope
solar still.2. 5 mm diameter 31.41 26.56

Internal reflecting aluminum foils 14.87 23.32

[52] Nano Fe2O3 particles (NALSS) 53.49 30.76

Ferric oxide density = 5.24 g/cm3,
solar irradiation varied from 125 to
712 W/m2, water depth = 0.5 cm,

single slope solar still.

[53]

Different heat localization
materials:
1. (HSHLM)-exfoliated graphite
flakes with wick (Type A)

34.48 37.68

Maximum solar
irradiation = 950 W/m2 (at 12:30 p.m.),

average air temperature = 32 ◦C,
saline water from Mediterranean Sea,

water depth = 1 cm, single slope
solar still.

2. (HSHLM)-carbon foam with
wick (Type B) 28.57 28.89

Maximum solar
irradiation = 945 W/m2 (at 12:30 p.m.),

average air temperature = 25 ◦C,
saline water from Mediterranean Sea,

water depth = 1 cm, single slope
solar still.

3. (HSHLM)-exfoliated graphite
flakes with wick and carbon foam
(Type C)

51.78 47.24

Maximum solar
irradiation = 970 W/m2 at 12:30 p.m.,
average air temperature = 31 ◦C saline
water from Mediterranean Sea, water
depth = 1 cm, single slope solar still.

[54]

Various corrugated absorber shapes:
1. Flat absorber (HSD-FA) 16.67 --

Brine water, water depth = 1.5 cm,
average solar intensity = 654 W/m2,

average climate
temperatures = 38.9 ◦C,

hemispherical solar still (HSD).

2. Square corrugated absorber
(HSDSA) 27.08 --

3. Semi-circular corrugated
absorber (HSDSCA) 39.58 --

4. Triangular corrugated absorber
(HSDTA) 48.96 --

[55]

1. V-corrugated iron tray HSD 42.85 48.28
Average solar

intensity = 619.3 W/m2, average air
temperature = 38.2 ◦C, and

hemispherical solar still (HSD).

2. Flat iron tray HSD 14.30 38.72

3. Wick materials with
v-corrugated iron tray 83.12 61.67

4. Wick materials with flat tray -- 52.16
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Table 5. Cont.

References Various Enhancements of Solar
Still Configurations

Improvement in
Productivity (%)

Thermal
Efficiency (%) Operating Conditions

[56]

Different porous absorbing materials:
1. Natural luffa fiber (NLF) 56.14 21.22

The solar radiation ranged from 400 to
995 W/m2, seawater

salinity = 15,300 ppm, single slope
solar still.

2. Black luffa fiber (BLF) 77.61 24.71

3. Fine steel wool (FSW) 98.29 28.60

4. Steel wool pads (SWP) 134.18 32.74

[57]

Thermal CPC collector,
photovoltaic panel, TES (quartz
sand) and distiller basin material
(tarnished copper)

91 --

Maximum solar irradiation of
845 W/m2 at 12 p.m., average air

temperature = 18 ◦C, seawater mass
of 35 kg, single slope solar still.

[58]

Various energy storage materials:
1. 5 kg of fine sand (0.125–0.25-mm
grain size)

-- 50.69
Average solar irradiance = 680, 683,

and 689 W/m2, daily average
ambient temperature during the

experimentations is between 35 and
37 ◦C, water depth = 0.5 cm, tubular

solar still (TSS).

2. Small gravels (20–30 mm) -- 61.13

3. Black granite (5-mm thickness)

10.5 (compared
to gravel)

67.09
32.3 (compared

to sand)

7. Conclusions

In the current work, a v-corrugated basin, reflecting mirror, FPSC still, and FPSC
nanofluids deeply improved the solar still distillate productivity (Pd) and thermal efficiency
(ηth) compared with a conventional solar still (CSS) unit. This was owing to significantly
increasing the temperature difference between the two hot water and cold glass cover
surfaces (∆Tw-gi). Under an average ambient temperature of 30.9 ◦C, average solar radiation
intensity of 506.9 W/m2, water depth of 2 cm, and salt concentration of 33,162 ppm, the
solar still distillate productivity (Pd) was upgraded by nearly 22.39%, 41.72%, 70.10%, and
104.13% by virtue of a v-corrugated basin, reflecting mirror, FPSC still, and FPSC nanofluids,
respectively, compared with the conventional solar still (CSS) unit. This was ascribed to
a considerable augmentation in the temperature difference between the two hot water
and cold glass cover surfaces (∆Tw-gi) by around 34.33%, 52.32%, 77.37%, and 112.87%,
respectively, compared with the conventional solar still (CSS), in which a high thermal
capacity leads to a productivity (Pd) decrease. Also, the v-corrugated basin, reflecting mirror,
FPSC still, and FPSC nanofluids greatly upgraded the average solar still thermal efficiency
(ηth) by about 22.01%, 26.71%, 39.57%, and 56.21%, respectively. The results demonstrated
that integrating a v-corrugated basin, reflecting mirror, FPSC still, and FPSC nanofluids
into combined active solar distillation units significantly enhanced the performance of the
solar distillation unit. These combined configurations effectively raised the temperature of
the basin water (Tw) and increased the temperature difference between the hot water and
the inner cold glass cover surfaces (∆Tw-gi), thereby resulting in improved performance of
the solar still.
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Nomenclature

a Accuracy of instrument
Ab Basin surface area (m2)
Ag Glass cover surface area (m2)
Aw Water surface area (m2)
Cpw Specific heat of seawater (J/kg·K)
Cpb Basin specific heat (J/kg·K)
Cpg Glass cover specific heat (J/kg·K)
Fc Convective fraction
Fe Evaporative fraction
Fr Radiative fraction
K Thermal conductivity (W/m.K)
kg Glass cover thermal conductivity (W/m.K)
kin Insulation thermal conductivity (W/m.K)
n Particle shape factor
I Solar radiation flux incident on the basin (Wm−2)
Lw Latent heat of vaporization (kJ kg−1)
m Flow rate of seawater with and without nanofluids (kg/s)
mb Basic mass (kg)
mc Mass of condensated water (kg)
mg Mass of the glass cover (kg)
mw Water mass (kg)

Qex
Energy supplied by the nanofluid circulated in the copper tubes of solar collector
to saline water (J/h)

Qe,w−gi
Evaporative heat transfer rate within still from the water surface to the interior
surface of the glass cover (Wm−2)

qb Conductive heat transfer rate from the basin bottom to the atmosphere (Wm−2)
qbwb Convective heat transfer rate from the black basin liner to the water surface (Wm−2)

qcga
Convective heat transfer rate from the exterior surface of the glass cover to the
atmosphere (Wm−2)

qcw
Convective heat transfer rate within still from the water surface to the interior
surface of the glass cover (Wm−2)

qrgs
Radiative heat transfer rate from the exterior surface of the glass cover to the
sky (Wm−2)

qrwb
Radiative heat transfer rate within still from the water surface to the interior
surface of the glass cover (Wm−2)

q1
Total value of the energy transfer within the still from the water surface to the
interior surface of the glass cover (Wm−2)

q2
Total value of the energy transfer from the exterior surface of the glass cover to
the atmosphere (Wm−2)

hbw
Convective heat transfer coefficient from the black basin liner to the water
surface (Wm−2 ◦C−1)

hcga
Convective heat transfer coefficient from the exterior surface of the glass cover
to the atmosphere (Wm−2 ◦C−1)

hcw
Convective heat transfer coefficient from water surface to the interior surface
of the glass cover (Wm−2 ◦C−1)

hew
Evaporative heat transfer coefficient from water surface to the interior surface
of the glass cover (Wm−2 ◦C−1)

he,w−gi Evaporative heat transfer coefficient from water surface to glass cover (Wm−2 ◦C−1)
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hrgs
Radiative heat transfer coefficient from the exterior surface of the glass cover
to the sky (Wm−2 ◦C−1)

hrw
Radiative heat transfer coefficient from the water surface to the interior surface
of the glass cover (Wm−2 ◦C−1)

h1
Total internal heat transfer coefficient from the water surface to the interior surface
of the glass cover (Wm−2 ◦C−1)

h2
Total external heat transfer coefficient from the exterior surface of the glass cover
to the atmosphere (Wm−2 ◦C−1)

Tw Basin water temperature (◦C)
Tin Inlet temperature in the FPSC still with and without nanofluids in 1 h (◦C)
Tout Outlet temperature in the FPSC still with and without nanofluids in 1 h (◦C)
Tao Ambient temperature (◦C)
Tv Vapor temperature (◦C)
Tsky Sky temperature (◦C)
Tgo Outer glass cover temperature (◦C)
Tgi Inner glass cover temperature (◦C)
u Standard uncertainty

∆Tw-gi
Temperature difference between the hot basin water surface and the interior
cooling glass cover surface (◦C)

Ug
Conductive heat transfer coefficient through the thickness of the still cover
Wm−2 ◦C−2

W Vel◦City of wind (m/sec)
xg Glass cover thickness (m/s)
xin Insulation thickness (m/sec)
Pd Hourly condensate (distillate) production from the still (kgh–1)
Pgi Partial pressure of water vapor at inner glass temperature within the still (Nm−2)
Pwb Partial pressure of water vapor at water temperature within the still (Nm−2)

Abbreviations
SS Solar still
CSS Conventional solar still
MSS Modified solar still
FPSC Flat-plate solar collector
HDH Humidification-dehumidification
MSF Multi-stage flash
MED Multi-effect distillation
VC Vapor compression
Subscripts
bf base fluid
nf nanofluid
p nanoparticle
u useful
Greek letters
ηth Solar still thermal efficiency (%)
ηFPSC Solar still-solar collector thermal efficiency (%)
ρ Density of fluid (kg/m3)
ϕ Concentration ratio by volume of nanoparticles

εeff
Shape factor of diffuse radiation between the water surface and the glass cover
(effective emissivity)

σ Stefan -Boltzmann constant (Wm−2 K−4)
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