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Abstract: Engineering education plays a pivotal role in cultivating the engineering capacity for
sustainable development. Nonetheless, there has been no comprehensive review that examines
sustainability as a distinct knowledge domain within engineering education. This review filled this
gap by conducting a bibliometric review to document the research landscape, analyze the intellectual
structure of the literature, and identify emerging research themes. The review sourced 2738 Scopus-
indexed documents published between 1991 and 2022. Data analyses included descriptive statistics,
co-citation analysis, and keyword co-occurrence analysis. The study identified consistent growth
in research output and geographic diversity. Four predominant conceptual themes were identified
in the literature: (1) Engineering Education Reform, (2) Engineering Competencies, Pedagogy, and
Curriculum, (3) Curriculum Assessment and Benchmarks, and (4) Sustainable Technologies. Findings
emphasize the need for defining precise engineering competencies related to sustainability, incor-
porating diverse teaching methods, and ensuring that sustainability learning outcomes align with
changing industry norms, regulations, and accreditation criteria. The study also highlights a growing
focus on the use of Industry 4.0 technologies as a means of achieving sustainability outcomes. The
review underscores the need for sustained curriculum reform to successfully transform engineering
education toward sustainability.

Keywords: engineering education; sustainability; sustainable development; education for sustainable
development; higher education; systematic review; bibliometric review; science mapping

1. Introduction

Sustainability is one of the foremost challenges of the 21st century [1–3]. The complex
and interwoven nature of sustainability challenges requires global collaboration to find
enduring solutions [2]. In response to this imperative, the United Nations General Assembly
embraced a set of Sustainable Development Goals (SDGs) in 2015 [4,5]. The SDGs represent
a collection of 17 interconnected, non-binding objectives envisioned as “a shared blueprint
for peace and prosperity for people and the planet, now and into the future” [6].

These goals encompass a broad spectrum of economic, environmental, and social
issues, including poverty alleviation, healthcare accessibility, infrastructure enhancement,
education, gender equality, and resource management [7]. The discipline of engineering
stands as a cornerstone supporting all SDGs [7]. Nonetheless, the degree to which engineer-
ing contributes to the achievement of these goals will, in turn, depend on the profession’s
ability to reorient its approach to educating, training, and developing engineers [1–3,8,9].

To prepare future engineers for sustainable development challenges, educational insti-
tutions must equip them not only with technical knowledge but also with a diverse set of
sustainability-oriented competencies and attitudes. These include skills in creative thinking,
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complex problem-solving, and interdisciplinary collaboration, as well as ethical disposi-
tions [7,9,10]. To support this transformation, educators will benefit from an organizing
framework encompassing quality assurance and accreditation processes that incorporate
sustainable development values and goals [7]. Such a framework could also bolster ef-
forts to develop more valid assessments of the skills and competencies of engineering
graduates [7].

The progression of research in engineering education for sustainability is evidenced
by the publication of several recent literature reviews [3,5,11,12]. For instance, Gutierrez-
Bucheli et al. [5] conducted a scoping review that mapped and analyzed sustainability
learning outcomes in engineering education. Mesa et al. [11] analyzed case studies and
projects related to sustainability learning in engineering preparation programs. Mesa
and Esparragoza [12] examined the literature on the implementation of circular economy
initiatives in engineering education. Thürer et al. [3] reviewed the integration of sustain-
ability criteria and content into undergraduate and postgraduate engineering education
degree programs.

While these reviews yielded valuable insights, none examined the literature from the
perspective of a ‘knowledge base’. Thus, engineering educators lack a broad view of the
scope of global research and the thematic structures that have evolved in the emerging
knowledge base on engineering education for sustainability.

This research review addressed these knowledge gaps by systematically exploring
and synthesizing the Scopus-indexed literature on engineering education for sustainability.
The review aimed to analyze the research landscape, its thematic evolution, and the forces
shaping its trajectory. Three research questions guided this review:

1. What is the research landscape concerning sustainability in engineering education,
considering factors such as document volume, growth trends, and geographical
distribution?

2. What is the intellectual structure of the literature on engineering education for sus-
tainability?

3. How have the topical foci of research on sustainability in engineering education
changed over time, and what are the high-priority topics being studied in the recent
literature?

This review identified 2738 relevant Scopus-indexed documents on engineering educa-
tion for sustainability published between 1991 and 2022. Bibliographic data were analyzed
using Scopus analytical tools, Microsoft Excel, Tableau, and VOSviewer software (Version
1.6.18) programs. The data analyses employed descriptive statistics, co-citation analysis,
and keyword co-occurrence analysis.

This bibliometric review offers the first comprehensive analysis of the full Scopus-
indexed literature on engineering education for sustainability. The review was designed to
complement previously published research reviews on engineering education for sustain-
ability [3,5,11,12]. Furthermore, this review of research is positioned to provide empirical
reference points for future research and shed light on prospective directions for research
and practice.

2. Method

The present study adopted bibliometric review methods to analyze trends in the
research on engineering education for sustainability [13]. Bibliometric review provides
a transparent and reproducible process that reduces subjective bias in identifying and
analyzing a body of knowledge [13,14]. This differs from other review methods (e.g., scop-
ing, integrative, meta-analytic) in that it does not aim to synthesize past research findings.
Instead, bibliometric reviews analyze bibliographic associated with a set of documents in
order to gain a broad perspective on the composition of a knowledge base [14,15].
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2.1. Identification of Sources

This review relied on Scopus to identify documents, a choice substantiated by compar-
ative studies [16,17] that evaluated document databases. These studies revealed that Scopus
offers broader journal coverage than Web of Science [18]. While Dimensions and Google
Scholar are also comprehensive, they include non-peer-reviewed articles [18]. Additionally,
the application of co-citation analysis made it possible for this review to access extensive
literature outside of Scopus.

An open-ended search strategy was employed using the following search string:
(TITLE ((“engineering education” AND (sustainability or “sustainable development”) OR
KEY (“engineering education” AND (sustainability or “sustainable development”)). The
search was not limited in terms of publication year, geographic location, or document type.
The initial search yielded 2865 Scopus-indexed documents. Variations on this search were
conducted to ensure comprehensive coverage of as many relevant documents as possible.

The review database was identified, screened, and selected using the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework [19]. As
shown in Figure 1, Scopus filters limited the Scopus list to refereed conference papers,
peer-reviewed journal articles and reviews, books, and book chapters published through
the end of 2022. Since it was necessary to review some critical publications, the database
was restricted to English-language documents. Finally, duplicate documents were re-
moved based on a screening of publication titles. The final review database comprised
2738 Scopus-indexed conference papers, journal articles and reviews, books, and book
chapters published between 1991 and 2022.
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2.2. Bibliometric Data Analysis

The authors exported bibliographic data associated with the documents from Scopus
to an Excel file. Ambiguities in the data file were identified and resolved using VOSviewer
version 1.6.19 to ensure accuracy [20]. A thesaurus file (i.e., a data disambiguation instruc-
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tion file) was created and uploaded with the data file in VOSviewer software to detect and
consolidate alternative keywords or name forms [20].

The first research question was addressed using Scopus analytical tools, Microsoft
Excel, and Tableau. The authors utilized the software programs to chart the document
volume, growth trends, and geographical distribution of the knowledge base.

For the second question, author co-citation analysis in VOSviewer was used to vi-
sualize the intellectual structure—theoretical themes or lines of inquiry—of research on
engineering education for sustainability [13,21,22]. The analysis analyzed the frequency
of author citations, as well as the “co-citation” of pairs of authors in the same reference
lists. Subsequently, VOSviewer was used to create an author co-citation network map
that visualized the relationships of authors cited in the reference lists of the review docu-
ments [15]. Co-citation analysis assumes that authors who are frequently co-cited in the
same documents often share a common theoretical orientation [13,14,21]. The authors
synthesized patterns in author relationships on the network map to identify the intellectual
structure of the literature [13,14].

The third research question was explored through keyword co-occurrence analysis
(co-word analysis), also carried out in VOSviewer [15,23,24]. First, keyword analysis was
employed to pinpoint the most prevalent keywords associated with the review documents.
This analysis yielded insights into the topics that have garnered significant attention in the
literature on engineering education for sustainability [25].

Next, the authors used VOSviewer to construct a co-word network map with a tem-
poral overlay that visualized connections among various keywords and topics [13,23,24].
Similar to co-citation analysis, co-word analysis examines the ‘co-occurrence’ of pairs of
keywords within the reviewed documents, offering insights into keyword relationships
based on frequency and occurrence patterns. The temporal co-word network map was also
created to visualize the evolution of themes within the literature over time. In this analy-
sis, VOSviewer analyzed the distribution of publication dates associated with keywords
extracted from the review documents [13,15,20]. This enabled the authors to analyze the
topical development of the literature and identify emerging topics [13,26].

3. Results
3.1. Descriptive Analysis of the Review Database

The 2738 Scopus-indexed documents in the review database were comprised of con-
ference papers (73%), peer-reviewed articles and reviews (24%), book chapters (2%), and
books (1%) published between 1991 and December 31, 2022. The trend lines in Figure 2
show that interest in sustainability among engineering educators emerged gradually, with
an average of 11 indexed documents published annually during the 1990s. The annual rate
of publication increased to 64 publications per year between 2000 and 2010 and 166 from
2011 through 2022. Nearly 90% of the literature has been published since 2005 (see Figure 2).
Increased interest could have been stimulated by the United Nations’ proclamation of the
Decade of Education for Sustainable Development in 2005 [3,27].

The Scopus-indexed literature on engineering education for sustainability includes
publications from scholars located in 104 nations. Seventy-five percent of the publications
originated in developed nations, and 25% in developing societies. Scholars from the United
States (37%), Europe (37%), and Asia (18%) largest contributed most substantially to this
knowledge base (see Figure 3).
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Figure 3. Geographical distribution of Scopus-indexed publications on engineering education for
sustainability, 1991–2022 (n = 2738). Map created in Tableau software (https://www.tableau.com/).

3.2. Intellectual Structure of Research on Engineering Education for Sustainability

VOSviewer was used to generate an author co-citation network map containing
144 influential authors (see Figure 4). Node size in the network map suggests the citation
frequency of an author in the reference lists of the review documents. Both the density
of links and the proximity between authors reflect the degree of intellectual affinity [15].
Colored clusters on the network map represent the ‘schools of thought’ [13] that comprise
the intellectual structure of this literature [14,22].

https://www.tableau.com/
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As shown in Figure 4, the co-citation network map visualizes four clusters of authors
based on their patterns of co-citation by other scholars. The four schools of thought include
(1) Engineering Education Reform toward Sustainability, (2) Engineering Competencies,
Pedagogy, and Curriculum for Sustainability, (3) Engineering Curriculum Assessment and
Benchmarks for Sustainability, and (4) Sustainable Technologies in Engineering Education.
The intellectual foci of the four schools were identified by examining the publications of
the affiliated authors [13].

The largest school (red cluster) is comprised of 62 authors who have focused on
Engineering Education Reform toward Sustainability. This school is led by Allenby (193 co-
citations), Allen (179), Davidson (175), Bielefeldt (158), Mihelcic (148), Lucena (128), Felder
(117), Hendrickson (104), Crittenden (101), and Riley (101). Scholars in this school have
been among the most active proponents for incorporating sustainability into engineer-
ing education programs [28–30]. Their research reflects the growing societal attention to
environmental issues and increased funding for measures to support sustainable engineer-
ing [31,32].

Scholars in this scholarship have explored challenges and barriers to the successful
integration of sustainability in engineering education curricula [33–37]. This includes the
difficulty of displacing existing curricular objectives [33,34], lack of resources, suitability
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of existing teaching methods and materials [34,35,37], and a lack of familiarity with social
dimensions of sustainability in engineering [33,35].

In response, they have proposed instructional strategies such as empowering par-
ticipants through guided practice and providing learning activities and tools that can
be tailored to the unique learning environments of particular institutions [35–37]. Ap-
proaches include incorporating sustainable engineering principles into elective and core
courses [33,38,39], fostering educational innovation through student-to-student networks
between partner universities [38], and cultivating faculty expertise through the develop-
ment and dissemination of learning materials and practices [37,38].

Scholars in this school have also investigated ethical and social issues taught in
engineering education programs [40–43]. This research highlights a need for engineering
programs to promote attitudes and practices that prioritize the safety, health, and welfare
of the public [42]. Cultural influences on ethics-related education outcomes have also been
explored, comparing the teaching of ethics in programs from different countries [40,43].

The second largest school of thought (green cluster) is comprised of 48 authors associ-
ated with Engineering Competencies, Pedagogy, and Curriculum for Sustainability. This
school is led by Mulder (330 co-citations), Segalàs (224), Lozano (200), Ferrer-Balas (198), De-
sha (146), Kolmos (143), Svanström (136), Wiek (126), Huisingh (122), Hargroves (101), and
Sterling (107). These researchers have emphasized the importance of defining the desired
attributes and competencies of engineering graduates prior to redesigning the curriculum
and selecting pedagogical methods aimed at enhancing sustainability outcomes [8,44–47].
Moreover, their research highlights the need to develop an engineering program’s vision
of sustainability based on input and standards from industry, accreditation bodies, and
professional societies [8,44,46]. They also advocate for alignment with the Sustainable
Development Goals [8,47,48] as a guiding framework for incorporating sustainability into
engineering education.

Researchers in this school have explored a range of relevant pedagogical strategies, in-
cluding problem-based learning, project-based learning, team-based learning, and commu-
nity service learning [49–53]. Educators have also experimented with other active learning
approaches, such as challenge-based learning [54,55], design-based learning [56,57], and
inquiry-based learning [58,59]. The use of these methods has been motivated by the desire
of engineering educators to engage learners in real-world problems and apply knowledge
to a broader set of educational outcomes.

Lastly, studies in this school have examined the renewal of engineering curricula
and the development of educational capacity for sustainability-oriented teaching and
learning [3,60–63]. These studies have focused on industry engagement, instructor skill
enhancement, and the development of curriculum and teaching resources [60,62–65]. This
research has identified a need for timely engineering curriculum renewal to keep pace with
changes in industries, regulations, and accreditation standards [61,65,66].

The third school (blue cluster) includes 48 authors associated with Engineering Cur-
riculum Assessment and Benchmarks for Sustainability. This school is led by Azapagic
(103 co-citations), Watson (102), Sutherland (93), Perdan (84), Pierrakos (84), Haapala
(74), Noyes (71), Rodgers (71), Pappas (68), and Shallcross (60). Scholars located in this
school have focused on evaluating the effectiveness of efforts to embed sustainability into
engineering education programs [67–72].

Their studies have utilized surveys to evaluate students’ development in concep-
tual knowledge, design capabilities, and attitudes toward sustainability [67–69,71]. This
research has validated survey scales and scoring rubrics for use in assessing students’
knowledge, skills, and attitudes [67,71]. For example, the Sustainability Tool for Assessing
University’s Curricula Holistically (STAUNCH®), Sustainable Design Rubric, and Concept
Maps have been employed to gauge the impact of engineering courses on key learning
outcomes [67–69,71–73]. The findings suggest that while students accept the importance
of sustainability values and goals in engineering, they encounter challenges in applying a
sustainability mindset to engineering practice [74–76].
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Surveys have also assessed the integration of sustainability topics in engineering
education programs [68,74]. These surveys have revealed a predominant emphasis on the
relationship between engineering and the environment, with less attention on the social and
economic dimensions of sustainable development [68,74]. Moreover, engineering students
often lack familiarity with environmental legislation, policy, and standards [74]. This
underscores the need for more systematic and balanced coverage of sustainability-related
topics within the engineering curriculum.

The fourth school (yellow cluster) includes 14 authors associated with Sustainable
Technologies in Engineering Education (STEE). At the forefront of this cluster is Q. Zhang
(80 co-citations), followed by Y. Wang (69), Y. Chen (64), Y. Zhang (55), J. Lee (53), J. Li
(52), X. Wang (49), L. Zhang (47), L. Wang (44), and Y. Liu (41). The STEE cluster is located
at a greater distance and shows fewer author co-citation links to the other three clusters.
These visual features highlight the distinctive nature of this school of thought, comprised
predominantly of Chinese authors.

These scholars have studied the efforts of engineering programs to integrate new
technologies designed to reduce carbon emissions and promote clean energy [77–79]. This
research has also examined curricular approaches that focus on industry responses to envi-
ronmental regulation [80–82] and the implementation of sustainable manufacturing [83,84].
Findings from these studies underscore the role of government support, industry partner-
ships, and interdisciplinary collaboration when engineering programs seek to incorporate
cutting-edge innovations [78,80,85–87].

Research in this domain has also explored the transformative impact of information
and communication technology (ICT) on sustainability-focused engineering education, par-
ticularly in the development of smart campuses [85,88,89]. Scholars have identified five ICT
drivers behind this change [85]: (1) data computing and storage technologies (e.g., cloud
and edge computing) [90,91]; (2) Internet of Things technologies (e.g., smart sensors and
communication protocols) [92–94]; (3) intelligent technologies (e.g., artificial intelligence,
machine learning, and computation intelligence) [95–97]; (4) immersive technologies (e.g.,
augmented and virtual reality) [98–101]; and (5) mobile technologies (e.g., mobile phones
and tablets) [100,102]. These studies shed light on the transformative potential of these
technologies, offering data-driven insights into their pivotal role in shaping the future of
sustainability-focused engineering education programs.

The concentration of Chinese scholars in this school suggests the significant emphasis
Chinese policymakers have placed on leveraging innovative technologies to tackle sus-
tainability challenges [4,78,85,86]. Notably, the network map highlights both the physical
isolation of this school as well as limited connections between the Chinese scholars and
scholars in the other schools. These features of the network map suggest that, to some
extent, this school is evolving in parallel with the other schools. The field will benefit from
strengthening these linkages.

3.3. Topical Analysis of Engineering Education for Sustainability

The final research question was tackled through keyword co-occurrence analysis (co-
word analysis) conducted in VOSviewer [15,23,24]. In the first step, the authors identified
the most frequently occurring keywords in this literature. These included engineering
curriculum (2631 occurrences), curriculum development (854), professional competen-
cies (279), distance learning (199), education computing (196), education systems (191),
environmental problems (179), project management (165), product design (161), surveys
(158), societies and institutions (156), pedagogical approach (149), higher education (146),
personnel training (140), design (129), economic and social effects (128), innovations (127),
technical presentation (125), problem-solving (124), computer-aided instruction (119) and
multi-disciplinary (117). These keywords offer insight into the sustainability-related topics
most frequently studied by engineering educators.

Next, a temporal co-word network map [13,15] was created using VOSviewer (see
Figure 5). When creating the network map, the authors used a threshold of 26 keyword
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occurrences to strike a balance between frequency (i.e., popularity) and comprehensiveness
of topical coverage [25]. Similar to the co-citation network map, the size of the nodes
representing keywords on the co-word network map corresponds to the relative frequency
of their appearance in the document list. Links and proximity among the keywords
are also interpreted using similar guidelines. On this network map, the color coding of
keywords reflects the relative recency of scholarly interest in the topics. The brighter-colored
keywords are associated with topics of most recent interest. Darker-colored keyword nodes
are associated with topics that were more popular in past decades. Thus, the temporal
co-word network map highlights keyword recency, frequency, and relationships.
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1991–2022 (Threshold of 26 occurrences, display 147 words from 13,085 keywords). Map generated
in VOSviewer.

The temporal co-word network map presents the evolution of research on sustainabil-
ity in engineering education in terms of three distinct periods. These were labeled ‘Early
Adopters’ (1990s–2000s), ‘Middle Period’ (2005–2015), and the ‘Research Front’ (2016–2022).
It should be noted that the time periods are only approximations. This is because, in
temporal co-word analysis, VOSviewer creates a ‘time distribution’ for each keyword based
on the publication years of its associated documents. Thus, for example, a keyword with a
yellow node has a distribution that is centered during the most recent period.

In the Early Adopters period, represented by the dark purple nodes, researchers
primarily directed their attention toward identifying the professional competencies required
by engineers to effectively address sustainability challenges. For example, they identified
the following knowledge, skill, and attitude domains: interdisciplinary knowledge, holistic
and integrative approaches, critical and systems thinking abilities, effective collaboration
and communication skills, creativity and innovation, capacity for change, and ethical
responsibility [103–105]. During this period, researchers tended to concentrate on the
integration of sustainability into specific engineering subjects such as project management,
civil engineering, environmental engineering, and chemical engineering [106,107]. This
research tended to focus on undergraduate engineering education [108,109].



Sustainability 2024, 16, 641 10 of 18

During the Middle period, denoted by dark and light green nodes, scholars tended to
focus on topics related to pedagogy and curriculum development for
sustainability [49,52,60,61,110]. For example, significant research began to accumulate
on the use of problem-based learning, project-based learning, team-based learning, and
community service learning in teaching and learning for sustainability in engineering
programs [49,52,53,110]. This period also witnessed an expansion of engineering education
for sustainability into new fields, including manufacturing, electrical engineering, and
software engineering [111,112]. Concurrently, educators evidenced increasing interest in en-
vironmental sustainability topics such as climate change, energy efficiency, and renewable
energy [112–114]. Additionally, this phase of research showed growing attention toward
the integration of sustainability topics into capstone and first-year engineering courses, as
well as the exploration of distance learning methodologies [114,115].

The network map shows that the ‘research front’ (yellow nodes) is concentrated at the
intersection of sustainability, engineering education, and Industry 4.0 technologies. This re-
search has explored the application of artificial intelligence, the Internet of Things, machine
learning, and virtual reality to advance environmental, social, and economic sustainabil-
ity [96,116–118]. Notably, the surfacing of these topics reprises the yellow cluster on the
author co-citation network map, which focused on sustainable technologies. This body of
research delves into the integration of sustainability principles through the lens of Industry
4.0 technologies [116,119,120]. This encompasses various facets, including the develop-
ment of inclusive learning environments tailored for Industry 4.0 adaptive learners and
the sustainable utilization of digital technology in long-term teaching strategies [119,120].
Lastly, these studies address the barriers, challenges, and opportunities associated with the
incorporation of digital technology into sustainable manufacturing practices [120,121]. Sup-
plementary Materials files can be accessed through the link provided under the sub-heading
“Supplementary Materials”.

4. Discussion

In this concluding section, the authors acknowledge the limitations of our review,
synthesize the key findings, and highlight implications for future research and practice.

4.1. Limitations of the Review

The initial limitation stems from relying on Scopus as the sole source for review
documents. While Scopus is recognized for its comprehensive coverage of educational lit-
erature [16–18], it is important to acknowledge that it may not encompass every potentially
relevant document. Nonetheless, the analysis of the 2738 documents in this review repre-
sents a substantial sample of published research on engineering education for sustainability
and the largest body of documents featured in any bibliometric review of this literature
identified at the time of this study [122,123]. That being said, future studies could enhance
the comprehensiveness of this research review by incorporating other review databases to
identify eligible documents.

The second limitation arises from the inconsistent use of terminology associated with
sustainability or sustainable development within engineering education [124,125]. This
limitation could have resulted in the inadvertent exclusion of pertinent documents that uti-
lized alternative, less-frequently-used terms (e.g., environmental stewardship, renewability,
and eco-friendliness). Subsequent research endeavors could broaden the review by incor-
porating additional search terms, thereby balancing comprehensiveness and inclusivity.

The third limitation is tied to the quantitative methodology employed in this review.
As previously mentioned, this study neither assessed the quality of individual studies nor
their findings. Consequently, the insights derived from bibliometric analysis complement
the results of other reviews. Future qualitative research reviews, such as scoping reviews,
can also offer additional and valuable perspectives on the knowledge base.
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4.2. Interpretation of the Results

The descriptive analyses conducted for this review described the evolving landscape of
research on sustainability in engineering education. The fact that nearly 90% of the sourced
publications have emerged since 2005 underlines the growing relevance of sustainability
issues in the engineering profession. Moreover, this body of literature represents a global
effort. Scholars from the United States, Europe, and Asia, especially China, have played
pivotal roles in shaping this discourse. However, the dominance of developed nations in
contributing to this knowledge base suggests a need for additional focus on educational
trends in developing societies. This will ensure that the knowledge base on sustainability
education in engineering yields solutions that are relevant to societies throughout the world.

The author co-citation network map revealed four distinct clusters of authors who
evidenced shared intellectual affiliations. These four schools of thought encompass (1) Ed-
ucation Reform Toward Sustainability, (2) Engineering Competencies, Pedagogy, and
Curriculum for Sustainability, (3) Engineering Curriculum Assessment and Benchmarks
for Sustainability, and (4) Sustainable Technologies in Engineering Education. The identifi-
cation of these schools of thought provides a set of rubrics that educators can use to guide
not only their reading of the literature but also future research and development activities.

The relevance of these intellectual foci was reinforced by the co-word network map,
which featured many similar co-occurring keywords derived from the text of the documents.
For example, take the second school of thought, Engineering Competencies, Pedagogy,
and Curriculum for Sustainability. The co-word network map highlighted frequently co-
occurring keywords such as engineering curricula, curriculum development, professional
competencies, pedagogical approach, project-based learning, problem-based learning,
learning experiences, active learning, and experiential learning. The emergence of these
keyword patterns on the co-word network map offers additional credibility to the authors’
interpretations of the author co-citation network map.

Together, the co-citation and co-word analyses underscore several priorities for advanc-
ing the integration of sustainability in engineering education. These include the necessity
of defining clear sustainability-related competencies needed by practicing engineers, ex-
ploring diverse pedagogical approaches, and regularly updating curricula to enhance
sustainability learning outcomes and align with evolving industry trends, regulations, and
accreditation standards [49,52,61,65,66].

The conjoint findings also highlight the increasingly important role that technology
will play not only in developing engineering solutions to sustainability challenges [77,78,97]
but also in the delivery of engineering education for sustainability [57,88,112,119]. Specifi-
cally, the current research trajectory within this field seems to concentrate on the effective
utilization of Industry 4.0 technologies to attain sustainable development goals, bolster
sustainability in manufacturing processes, and cultivate innovation competencies within
engineering education [117–119]. These findings emphasize the importance of incorporat-
ing these elements into educational strategies and curricular innovations in engineering
programs.

Lastly, this review of research uncovered significant challenges and potential solutions
for integrating sustainability into engineering education curricula [37,85,91,120]. The
obstacles include the complexities of replacing existing content, resource limitations, a
limited understanding of sustainability’s social and economic dimensions, and the practical
application of sustainability principles in engineering practice [12,72,107]. Scholars have
also put forth strategies such as guided practice and tailored tools for diverse institutional
environments. They advocate for the infusion of sustainable engineering principles into
core and elective courses, promoting innovation through inter-university collaboration, and
enhancing faculty expertise via resource sharing [37,38,70]. Collaboration with industry,
accreditation bodies, and professional societies is also seen as crucial to overcoming these
challenges and advancing sustainability in engineering education [61,65,66].
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4.3. Implications of the Findings

The geographic concentration of this review database in developed nations emphasizes
potential disparities in access to engineering education. This also highlights the immediate
need for international collaboration and knowledge exchange in enhancing sustainability
education. Indeed, educators in both developing and developed nations can gain valuable
insights through international partnerships [126,127]. The potential benefits of this type
of mutual exchange can also foster inclusivity and comprehensiveness in sustainability
education, contributing to a more equitable and sustainable future.

This was particularly evident in the domain of sustainable technologies. While the
author co-citation network map revealed intellectual leadership in this domain by Chi-
nese scholars, connections with scholars elsewhere in the world were quite sparse. This
highlights an urgent need for collaboration so that engineering programs elsewhere in the
world can learn from their experiences.

The identification of four distinct schools of thought within sustainability in engineer-
ing education offers a roadmap for future research and curriculum development. These
clusters encompass essential dimensions of sustainability education, such as the reform,
development, and assessment of engineering curricula and the integration of advanced tech-
nology. Researchers and educators should consider these clusters as foundational elements
when designing sustainability-focused curricula and pedagogical approaches, aiming to
produce well-rounded engineers capable of addressing sustainability challenges effectively.

The intellectual clusters further underscore the importance of continuous research
on the integration of sustainability within engineering education. Specifically, researchers
must delve deeper into individual clusters while exploring intersections and synergies
between them to foster a more integrated, comprehensive, and well-balanced approach to
sustainability education. These clusters also serve as valuable resources for educators seek-
ing to enhance sustainability education in their engineering programs, enabling institutions
to develop more effective strategies for integration.

Notably, this research review did not uncover themes related to the theoretical foun-
dation in engineering education for sustainability. This is in line with findings from prior
reviews, which found limited use of theoretical and model-driven frameworks [9]. Ad-
ditionally, the decision-making processes for education for sustainability in engineering
heavily rely on policy recommendations and practitioner intuition [128]. This underscores
the need for future research to adopt a theoretical and model-driven approach to elucidate
this unique phenomenon and provide insights to guide subsequent studies and practices
in the field of sustainability within engineering education.

The results of the analyses further offer significant implications for the advancement of
sustainability education in engineering. Firstly, the findings reinforce the continuing need
to define and refine engineering competencies in sustainability education [1,8,44,103,119].
This implies that educational institutions and engineering programs should clearly articu-
late the knowledge, skills, and attitudes students need to develop in sustainability-related
areas [56,104,105,129]. Secondly, the emphasis on diverse pedagogical approaches high-
lights the importance of innovative teaching methods to engage students in addressing
sustainability challenges [53,54,56,69,124]. Engineering educators should explore various
strategies and combinations of strategies to make sustainability education more engaging
and impactful [49,50,55,57,58].

Thirdly, the regular updating of curricula to align with industry trends, regulations,
and accreditation standards is imperative. This implies that engineering programs should
maintain flexibility and adaptability to ensure students are well-prepared for evolving
sustainability challenges in their future careers. Fourthly, the integration of technology,
particularly Industry 4.0 technologies, underscores the potential of digital tools and ap-
proaches to enhance sustainability education. Engineering institutions should invest in
technological resources and training now to leverage these advancements for better sustain-
ability learning outcomes. Considering the heightened focus on Industry 4.0 technologies,
it is also recommended that a more comprehensive exploration of upcoming trends be
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conducted. This examination should delve into how these technologies might persist in
influencing sustainability within the realm of engineering education.

Finally, this research review highlights the need to address challenges impeding the
seamless integration of sustainability principles into engineering education. To overcome
these barriers, considerable investments, well-structured policies, and robust support from
industry, government agencies, and higher education institutions are necessary. Main-
streaming sustainability throughout engineering programs, encompassing both core and
elective courses, is also essential to equip all students with a comprehensive understand-
ing of sustainability’s relevance [5,33,44,103]. Additionally, fostering collaboration with
industry, accreditation bodies, and professional societies is vital for aligning engineering ed-
ucation with industry standards and accessing valuable guidance and resources, ensuring
that graduates are prepared to contribute to a more sustainable and equitable future.

Supplementary Materials: The following supporting information can be downloaded at: https:
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