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Abstract: To produce green diesel from black soldier fly larvae (BSFL; Hermetia illucens), the maxi-
mization of lipids in production and hydrodeoxygenation (HDO) reactions was investigated. In this
study, BSFL were fed 12 diets based on three different substrates (ground corn, food waste, and meat
by-product). The proximate compositions of larvae were analyzed, and rearing time, production rate,
and feeding mixture prices were also recorded. To maximize the lipid yield, the effects of growing
temperature, drying method, and extraction temperature were investigated. The HDO reaction of
BSFL oil with 1 wt % Pt/Al2O3 catalyst was carried out in a trickle bed reactor. The components of
the lipids produced under optimal conditions and the components of lipids produced through the
HDO reaction were compositionally analyzed. As a result of being fed ground corn, food waste, and
meat by-products, it was confirmed that the diet with 30% ground corn and 70% meat by-product led
to the highest lipid content in the BSFL. After considering the prices of the diets, we found that the
most ideal feeding conditions that could be applied to actual insect farming were 70% food waste and
30% meat by-products. From the perspective of the rearing period, the most appropriate BSFL-rearing
temperature was a medium temperature of 38 ◦C. After harvesting the BSFL, it was confirmed that
the lipid yield improved when extracted at a temperature of 65–75 ◦C after drying using a microwave.
The analysis results showed that the carbon distribution in hydrodeoxygenated BSFL oil offered an
advantage when used as drop-in fuel, and this represents a promising future step for the HDO of
BSFL lipids.

Keywords: black soldier fly larvae; conversion; hydrodeoxygenation; biodiesel; green diesel

1. Introduction

Biofuels are considered to be a promising way of reducing carbon dioxide emissions
and are emerging as a viable option for future energy resources intended to replace fossil
fuels [1]. The use of biodiesel, a biofuel, is growing in many countries with the expansion
of renewable fuel standards. Three generations of biofuels—1, edible plant parts [2,3];
2, non-edible plant parts [4]; and 3, algal photosynthetic microorganisms [5]—have been de-
veloped and extensively investigated for use in future energy resources. However, each has
encountered its own challenges, such as food–feed–fuel competition [6], deforestation [7],
large amounts of land use [8], and high-water consumption [9,10]. Such paradoxical sit-
uations can exacerbate climate change and potentially lead to food security issues [11].
Although vegetable oil, a raw material for biofuel, is known to be highly economical,
vegetable oil production is unevenly distributed across countries, which may give rise to a
global supply–demand problem in the near future [12].

Black soldier fly larvae (BSFL; Hermetia illucens) have garnered increased attention
in biomass research [13,14]. BSFL-derived biomass has been proposed to be a promising
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alternative due to its amenability to efficient cultivation and high growth efficiency. Insects,
in fact, produce more protein and fatty acids than mammalian livestock and can produce
fewer greenhouse gases per unit of feed consumption. In terms of bio-oil, the efficiency of
insect lipid production surpasses that of traditional forms of biomass, such as vegetable
oils and microalgae, due to its short life cycle and ability to be rapidly reproduced and the
miniaturization of breeding facilities [15,16]. Moreover, insects offer a significant advantage
of low entry energy, making self-sufficiency possible in many countries. With respect to
bioconversion, the breeding conditions of BSFL can be optimized (the type of feed used,
breeding temperature, relative humidity, sex ratio, etc.) to maximize the lipid content in
these insects [17,18]. Furthermore, the composition of a certain fraction of fatty acids in
BSFL lipids can be further optimized to maximize the yield of the desired product [19,20].
The optimized insect-derived fatty acid properties can be tuned to retain better raw material
characteristics. Regarding the fatty acids of vegetable oils, there have been difficulties in
transportation, storage, and process operation due to their low fluidity at room temperature,
as they mainly exist in the range of C16 to C18 [21]. However, fatty acids in insects are
distributed in a wide range, ranging from C12 to higher hydrocarbons, and can have
relatively high low-temperature fluidity compared to vegetable oils [22].

In this study, we attempted to optimize the productivity of BSFL lipids through
cultivation, maximize lipid yield via extraction, and explore the potential of catalytic
upgrading for green diesel production. The BSFL lipids obtained under optimal conditions
were subjected to FAME conversion for compositional analysis, and their suitability for
green diesel production was confirmed through catalytic conversion.

2. Materials and Methods
2.1. Meterials

The BSFL used in this study were reared at the Korea Beneficial Insects Laboratory.
Co., Ltd. (Gokseong-gun, Jeollanam-do, Republic of Korea). The BSFL were cultivated in
an experimental box with dimensions of 400 × 600 × 150 mm (length × width × height).
The initial weight of the introduced eggs, on average, was 25 g, and their initial food
supply weighed 7.5 kg. The trial colony was maintained under controlled conditions at a
temperature of 27 ± 2 ◦C, a relative humidity of 65 ± 5%, and with a natural light cycle
(16:8 L:D). Three different diets were prepared, consisting of ground corn, food waste, and
meat by-products, to formulate a total of twelve diets. Three of the diets were supplied by
local farms and facilities in Korea. Ground corn was purchased from a local feed supplier
in Yeongam-gun, Jeollanam-do, Republic of Korea. Food waste was gathered at a local
environmental waste facility in Songpa-gu, Seoul, Republic of Korea, and meat by-products
were purchased from another local feed supplier in Gimje-si, Jeollabuk-do, Republic of
Korea. The proportions of different feeding mixtures are shown in Table 1. After a period of
6 to 14 days, the larvae were harvested. The average length of the larvae was approximately
20 mm, and their width was approximately 5 mm, as shown in Figure S1.

Table 1. Proportions of different feeding mixtures.

Feeding Mixtures Ground Corn (wt %) Food Waste (wt %) Meat By-Product (wt %)

A 100 0 0
B 70 30 0
C 50 50 0
D 30 70 0
E 70 0 30
F 50 0 50
G 30 0 70
H 0 100 0
I 0 70 30
J 0 50 50
K 0 30 70
L 33 33 33
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2.2. Lipid Extraction

The collected larvae were dried using either a microwave, an oven, or a rotary dryer.
To enhance the productivity of the BSFL lipids, the influences of growing temperature,
dryer type, and extraction temperature were evaluated. The crude BSFL lipids were
stored at room temperature. The lipid content was measured using the Soxhlet extraction
method [23]. The lipid yield was calculated using the following equation:

Lipid yield (wt %) =
weight o f crude lipid

weight o f dry matter and crude lipid
× 100

2.3. Fatty Acid Methyl Ester (FAME) Production Using Extracted BSFL Lipids

The extracted BSFL lipids were analyzed for their fatty acid composition using FAME
analysis. This analysis method allowed us to determine the fatty acid composition in the
BSFL lipids [24]. A total of 10 g of BSFL lipids was transferred into 200 mL of methanol, and
10 mL of sulfuric acid was added. Additionally, 10 mL of BSFL lipids was introduced into
the flask. The mixture was then heated to 80 ◦C and allowed to react for 4 h. Subsequently,
the reaction mixture was cooled to room temperature. For the extraction of the oil, 40 mL
of hexane was added into a separate funnel. Finally, the oil layer was extracted, and the
obtained oil was further analyzed using a gas chromatography–flame ionization detector
(GC-FID) as well as gas chromatography–mass spectrometry (GC-MS).

2.4. Hydrodeoxygenation (HDO) of BSFL Lipids

In the HDO reaction, extracted BSFL lipids were used to remove and convert green
diesel. The HDO of the BSFL lipids was conducted in a trickle bed reactor, as shown in
Figure S2. In this experiment, 1 wt % Pt/Al2O3 was prepared using the procedure reported
in our previous report [25]. Approximately 180 g of the 1 wt % Pt/Al2O3 catalyst was
packed, and the H2 pressure was adjusted to 40 bar through the back pressure regula-
tor. The reaction pressure was 40 bar, and the reaction temperature was in the range of
340 to 440 ◦C. The H2-to-lipid ratio was fixed at 1000, with a weight hourly space velocity of
2.0 h−1. The liquid product obtained from the hydrodeoxygenation process was collected
in a container for liquid recovery. The overall yield of the liquid product was determined
through weight measurements.

2.5. BSFL Lipids and Hydrodeoxygenated BSFL Oil Analysis

The BSFL lipids and hydrodeoxygenated BSFL oil were characterized using elemental
analysis (EA), thermo-gravimetric analysis (TGA), GC-FID, and GC-MS.

EA analysis (Flash 2000, Thermo Fisher Scientific K.K., Altrincham, UK) was used to
quantify the C, H, O, N, and S content in the samples. TGA (TGA N-1000, Scinco, Seoul,
Republic of Korea) was used to determine the similarity of volatile components in the
material. The hydrodeoxygenated BSFL oil was analyzed using GC-FID (iGC7200A, DS
Science, Gwangju-si, Republic of Korea) for quantification. The BSFLO was also identified
by using a GC-MS (6890N/5975C, Agilent Technologies, Santa Clara, CA, USA) instrument
to determine the composition.

3. Results
3.1. Main Effects of Parameters’ Performance
3.1.1. Effect of Feeding Mixtures

The nutrient compositions for each substrate are shown in Table 2. The effects of
different feeding mixtures on the growth performance of the BSFL and the price of the
mixtures are shown in Table 3. As a result of rearing BSFL under 12 feeding conditions,
the average crude lipid content was found to be the highest at 30.55%, corresponding to
diet G. An average crude lipid content of 29.01% was found to be the second highest lipid
content under the rearing conditions of diet F. The crude lipid content was found to be
approximately 26–27% when ground corn and food waste were mixed at 30%, 50%, and
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70%. Under the mixed feeding conditions of 30%, 50%, and 70% of meat by-products and
food waste, the crude lipid content was found to be approximately 15–21%. In the case
of diet I, where the average production rate was 5.40 kg, the crude lipid content was low,
at an average of 19.77%. There was no significant effect on the rearing period when meat
by-products were added to the food waste diet.

Table 2. Nutritional analysis of substrates used in the trial.

Crude Protein
(wt %)

Crude Lipid
(wt %)

Crude Ash
(wt %)

Crude Fiber
(wt %)

Moisture
(wt %)

Calcium
(wt %)

Phosphorus
(wt %)

Ground corn 16.0 4.0 6.0 8.0 12.0 0.70 1.20
Food waste 23.05 9.37 16.60 16.20 3.77 4.81 1.06

Meat by-product 28.34 3.43 2.50 0.19 65.03 0.018 0.13

Table 3. Effects of different feeding mixtures on larval growth performance.

Feeding Mixtures
Mean ± SE

Moisture (%) Crude Lipid (%) Period (Day) Production Rate
(kg/Clutch)

Feeding Mixtures
Price (USD/kg)

A 3.53 ± 0.3 26.92 ± 2.0 8.33 ± 0.3 3.39 ± 0.4 0.51
B 5.06 ± 0.4 26.69 ± 2.0 8.00 ± 0.5 4.54 ± 0.2 0.36
C 7.03 ± 0.4 26.27 ± 0 6.17 ± 0.3 3.57 ± 0.2 0.26
D 4.54 ± 0.1 27.19 ± 1.2 7.17 ± 0.3 3.24 ± 0.3 0.16
E 6.88 ± 0.1 27.22 ± 0.3 6.00 ± 0.5 5.23 ± 0.3 0.36
F 4.92 ± 0.2 29.01 ± 0.8 7.17 ± 0.3 3.29 ± 0.2 0.26
G 5.27 ± 0.1 30.55 ± 0.3 8.00 ± 0.5 3.63 ± 0.2 0.16
H 7.63 ± 0.2 21.28 ± 0.7 10.33 ± 0.6 3.68 ± 0.1 0.01
I 9.42 ± 0.1 19.77 ± 0.6 8.23 ± 0.9 5.40 ± 0.4 0.01
J 5.10 ± 0.2 18.24 ± 0.8 10.17 ± 0.3 4.55 ± 0.2 0.01
K 10.48 ± 0.3 15.89 ± 1.4 10.33 ± 0.3 4.63 ± 0.1 0.01
L 6.48 ± 0.1 25.81 ± 1.2 6.00 ± 0.5 4.56 ± 0.2 0.18

3.1.2. Effect of Growing Temperature

The effects of different growing temperatures are shown in Figure 1. The BSFL rearing
periods were measured at six different temperature conditions: 28 ◦C, 32 ◦C, 35 ◦C, 38 ◦C,
40 ◦C, and 42 ◦C. The results revealed that at a temperature of 38 ◦C, the average rearing time
was the shortest, amounting to 7.0 ± 0.58 days. In contrast, the longest average rearing time
was exhibited at the lowest temperature of 28 ◦C, amounting to 14.0 ± 0.58 days. At 32 ◦C,
the average rearing period was 11.7 ± 0.33 days, and at 35 ◦C, it was 8.7 ± 1.33 days. At both
40 ◦C and 42 ◦C, the average rearing period remained consistent at 7.7 ± 0.33 days. When the
temperature of the substrate exceeded 40 ◦C, the length of the rearing period increased.
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Figure 1. The effect of temperature on BSFL rearing time. 
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3.1.3. Effect of the Drying Method

To enhance the crude lipid yield, three different drying methods were applied to the
harvested BSFL to analyze the lipid extraction efficiency. As shown in Table 4, when a
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hot air dryer was used, the larvae were dried at around 50–65 ◦C for 36 h. The extraction
yield under this condition was the lowest, amounting to 40.8%. In contrast, using a rotary
dryer with hot air at temperatures of 110–120 ◦C for 1 h resulted in an extraction yield of
57.9%, which was approximately 18% higher than that obtained with the hot air dryer. In
the case of the microwave, the larvae were dried for 15 min, and the extraction lipid yield
was found to be 67.7%, which was the highest among the three drying methods. These
results indicate that microwave drying was the most efficient method for lipid extraction,
followed by the use of the rotary dryer, while the hot air dryer yielded the lowest extraction
efficiency.

Table 4. Effects of different drying methods on lipid yield in BSFL.

Mean ± SE
Hot Air Dryer Rotary Dryer Microwave

Crude lipids (g) 123.73 ± 6.82 176.86 ± 3.40 206.96 ± 3.46
Dry matter (g) 183.59 ± 8.79 130.46 ± 5.60 100.36 ± 5.69

Lipid Yield (wt %) 40.83 ± 2.83 57.95 ± 1.80 67.66 ± 1.83

3.1.4. Effect of Extraction Temperature

Table 5 shows the effect of extraction temperature. When the BSFL were extracted
under temperature conditions of 22–25 ◦C, the lipid extraction yield from the BSFL aver-
aged 39.7%. However, when the extraction process was conducted at temperatures ranging
from 35–45 ◦C, the lipid extraction yield increased to an average of 53.6%. This represents a
significant improvement of 13.6% compared to the treatment at room temperature. Further-
more, when the dried insects were subjected to an extraction process at temperatures of
65–75 ◦C, the lipid extraction yield averaged 67.6%. This indicates a substantial increase of
27.9% compared to the room temperature treatment and a 14.0% improvement over the
35–45 ◦C treatment.

Table 5. Effect of extraction temperature on lipid yield in BSFL.

Mean ± SE
25–30 ◦C 35–45 ◦C 65–75 ◦C

Crude lipids (g) 120.31 ± 5.58 160.56 ± 5.68 203.86 ± 6.52
Dry matter (g) 187.01 ± 3.39 143.76 ± 6.49 100.46 ± 5.67

Lipid Yield (wt %) 39.73 ± 1.09 53.6 ± 2.09 67.6 ± 1.83

3.2. Characterization of BSFL Lipids and Hydrodeoxygenated BSFL Oil
3.2.1. Hydrodeoxygenation of BSFL Lipids

Figure S3 shows both the BSFL lipids and hydrodeoxygenated BSFL oil. The hy-
drodeoxygenation reaction using 1 wt % Pt/Al2O3 resulted in liquid product yields
ranging from 82.28% to 87.83%. Figure S3a shows the crude BSFL lipid fraction, and
Figure S3b shows the hydrodeoxygenated BFFL oil. A change in the color of the BSFL oil
from dark brown to yellow after undergoing the hydrodeoxygenation reaction is evident.
Table 6 shows the results of an elemental analysis, indicating a reduction in oxygen content
from 12.42 to 0.30 after the deoxygenation reaction. Figure 2 shows the TGA results for
commercial diesel, BSFL lipids, and hydrodeoxygenated BSFL oil. In the case of commer-
cial diesel, weight loss began at 50 ◦C and ended at 300 ◦C. In the case of BSFL lipids,
the weight loss amounted to approximately 10% at 300 ◦C. When the temperature was
subsequently increased, a weight loss of up to 90% occurred at a temperature range from
300 ◦C to 350 ◦C. The hydrodeoxygenated BSFL oil showed similar weight-loss behavior
to commercial diesel, with most of the weight loss occurring at 250 ◦C. The temperature
at which 99% weight loss occurred was found to be 300 ◦C, similar to that for commercial
diesel.
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Table 6. Elemental composition of the BSFL lipids and hydrodeoxygenated BSFL oil determined
using elemental analysis.

Content (wt %)
N C H S O

BSFL lipids 0.48 74.67 12.43 0.04 12.42
Hydrodeoxygenated BSFL oil 0.56 83.93 15.21 Trace 0.30
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3.2.2. Composition Analysis

The characterization of BSFL lipids and hydrodeoxygenated BSFL oil was completed
using GC-FID and GC-MS. Figure 3 shows a GC-FID chromatograph of FAMEs in the BSFL
oil. Table 7 presents the chemical compositions of FAMEs in the BSFL oil. The major peaks
that appeared within the C12 to C20 range are shown [26]. The BSFL-derived fatty acid was
composed of seven types of FAMEs, and the major constituents of the FAMEs were methyl
laureate (C12:0, 25.723%), methyl palmitate (C16:0, 16.946%), and 8,11-Octadecadienoic acid,
methyl ester (C18:2, 39.764%). These findings align closely with the values reported in previous
research [24]. According to Park et al. [24], the compositions of FAMEs in BSFL oil were
as follows: methyl laureate (C12:0, 23.6%), methyl oleate (C18:1, 23.2%), methyl palmitate
(C16:0, 20.3%), and methyl linoleate (C18:2, 15.9%). In this study, C18 FAMEs showed a peak
area corresponding to 8,11-Octadecadienoic acid, with an area percentage of 39.764%. It is
possible that the C18:1 and C18:2 co-eluted. Subsequently, a GC-FID analysis was conducted
after the hydrodeoxygenation of the BSFL lipids. Figure 4 shows a GC-FID chromatograph
of hydrodeoxygenated BSFL oil. The products obtained after hydrodeoxygenation were
predominantly of carbon chain length, in the range of C9 to C20. Figure 5 shows the chemical
composition of hydrodeoxygenated oil from BSFL. Normal alkanes made up approximately
90% of the composition. The C17 normal alkane displayed the highest quantity (17.96 wt %)
among the normal alkanes. The iso-alkanes constituted 6% of the composition, while cyclo-
alkanes and aromatic compounds made up 3% and 1%, respectively.
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Table 7. Fatty acid composition of BSFL lipids.

Peak No. Retention Time (min) Area (%) FAME Species Compound Name

1 10.16 0.970 10:0 Decanoic acid, methyl ester
2 12.25 25.723 12:0 Dodecanoic acid, methyl ester
3 13.87 4.691 14:0 Tetradecanoic acid, methyl ester
4 15.27 3.459 16:1 9-Hexadecenoic acid, methyl ester
5 15.51 16.946 16:0 Hexadecanoic acid, methyl ester
6 16.85 39.764 18:2 8,11-Octadecadienoic acid, methyl ester
7 17.01 4.326 18:0 Octadecanoic acid, methyl ester
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4. Discussion
4.1. Process Performance

Black soldier fly larvae (BSFL) have been reported to consume a wide range of organic
substrates and have been used for small-scale waste disposal purposes, including compost,
straw, and food waste [27]. BSFL are also considered an alternative for animal feed due to
their high protein and lipid content when fed plant-based waste. The lipids of BSFL are
important feedstocks for green diesel production, as they are used in catalytic reactions [28].
In our study, four parameters were investigated to enhance the lipid yield for the mass
production of BSFL oil. The lipid composition of BSFL, one of the parameters for increasing
the lipid yield, can be modified through diet. As shown in Table 3, the most optimal
insect production diet is E (an average rearing period of 6 days and a production rate
of 5.23 kg), but the price of the substrate is high, so it is not economically feasible. The
second dietary condition (with an average rearing period of 6 days and a production rate
of 4.51 kg) does offer some potential for shortening the rearing period but still presents
economic concerns in the context of overall feed efficiency. The most ideal feeding condition
that can be applied to actual insect farming production is dietary condition I (an average
rearing period of 8 days and a production rate of 5.40 kg). Diet I has advantages in terms
of feed efficiency, reducing the rearing period, and insect yield. When the proportion of
meat by-products exceeds 30%, a disadvantage appears in the form of increased viscosity,
which leads to a lower larvae collection rate. Therefore, the appropriate mixing ratio for
meat by-products is less than 30%. The effect of growing temperature indicates that as the
substrate temperature increases from 28 ◦C to 38 ◦C, the rearing period is progressively
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shortened [29]. Therefore, the most suitable rearing temperature for BSFL appears to be a
substrate temperature of 38 ◦C, which, in this case, resulted in the shortest rearing period.
Hence, larvae rearing management should ideally be carried out within the range of 35 ◦C to
40 ◦C. For maintaining increased lipid yields during large-scale production and processing,
it should also be considered that yields can be maximized by changing the drying method
applied to the BSFL or the temperature at which they are extracted [30]. We confirmed that
the extraction yield is maximized when a microwave is used for drying. In addition, it was
confirmed that the lipid extraction yield increased under conditions of 65–75 ◦C when dried
BSFL were introduced into the extractor. We suggest that the introduction of a separate,
continuous boiling system may be necessary in order to maintain an increase in the lipid
extraction yield during mass production and processing. Considering the potential for
reducing rearing time and increasing production during the rearing and lipid extraction
processes, it is expected that lipid extraction will be economically feasible.

4.2. Production for Green Diesel

Green diesel is produced via a process that converts fatty acids into hydrocarbon com-
pounds by removing the oxygen contained within them [31]. In this study, the possibility
of producing green diesel using a BSFL lipid hydrodeoxygenation reaction was confirmed.
HDO, performed here using BSFL lipids, is a reaction that removes the oxygen contained
in fatty acids in the form of CO2, CO, and H2O and reduces the number of carbon atoms
converted to carbon dioxide (decarboxylation) and carbon monoxide (decarbonylation) [32].
The results of the EA demonstrated that the O content of hydrodeoxygenated BSFL oil
decreased and that the HDO progressed in a continuous reaction over the catalyst. It was
confirmed by the TGA results that the oil produced through HDO, but not crude oil, was
similar to commercial diesel. This fuel, with a medium-chain range of distribution of hydro-
carbons such as C10 to C14, was observed to reduce the melting point to a greater extent than
other HDO products [33,34]. Thus, it has the advantage of improving cold flow properties.
In previous research, vegetable oils were made to undergo HDO and were converted into
normal alkanes to produce green diesel [35]. The vegetable oils used in previous studies
were mainly composed of C16 and C18 fatty acids [32,36]. Therefore, the main composition
of normal alkanes derived from vegetable oils consisted of a long-chain-range hydrocarbon
distribution, such as C15 to C18. Srifa et al. reported that palm oil is composed of oleic
acid (C18:1, 45.8%), palmitic acid (C16:0, 37.4%), and linoleic acid (C18:2, 11.1%) [37]. The
authors also suggested that the liquid product of palm oil hydrodeoxygenation exhibited a
distribution in the C15 to C18 range of normal alkanes. In the study by Liu et al., Jatropha
oil was found to contain high percentages of oleic acid (C18:1, 38.3%), linoleic acid (C18:2,
36.2%), and palmitic acid (C16:0, 14.8%) [38]. The hydrodeoxygenation of Jatropha oil re-
sulted in yields of C15 to C18 normal alkanes ranging from 53.63% to 78.37%. These normal
alkanes became unsuitable for satisfying the cold flow properties as their concentration
increased [35,39]. One distinguishing feature of BSFL oil, as compared to vegetable oils, is
the presence of lauric acid (C12:0, 25.723%). The hydrodeoxygenated BSFL oil contained
26.50% normal alkanes with carbon chains ranging from C10 to C14 and 41.33% normal
alkanes with carbon chains ranging from C15 to C18. HDO products derived from BSFL
lipids were found to contain C11 alkane originating from C12 fatty acids. Furthermore,
C15 alkane and C17 alkane were found to be derived from long-chain-range fatty acids also
present in BSFL oil. Therefore, the utilization of hydrodeoxygenated BSFL oil, which was
simultaneously converted into both low- and high-boiling-point hydrocarbons, reduced
post-treatment processes such as distillation. It also demonstrated economic viability as a
drop-in fuel compared to the conversion of vegetable-based oils.

5. Conclusions

In this study, we focused on investigating the optimal growth conditions for BSFL
oil production to maximize the extraction of insect lipids. We analyzed the BSFL oil with
the highest yield and conducted hydrodeoxygenation reactions to assess its potential for
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utilization as a green diesel. The results of the HDO process demonstrated that the carbon
distribution of BSFL lipids exists within a similar range to the carbon distribution of diesel.
Consequently, the composition of hydrodeoxygenated BSFL oil may contribute to green
diesel production as a type of drop-in fuel. To the best of our knowledge, the HDO of
BSFL oil has not yet been investigated as a method of green diesel production, and the
optimization of the reaction system and separation/purification conditions should be
explored in future research.
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