
Citation: Yao, K.; Chen, Y.; Li, Y.;

Zhang, X.; Zhu, B.; Gao, Z.; Lin, F.; Hu,

Y. Water Quality Prediction of

Small-Micro Water Body Based on the

Intelligent-Algorithm-Optimized

Support Vector Machine Regression

Method and Unmanned Aerial

Vehicles Multispectral Data.

Sustainability 2024, 16, 559. https://

doi.org/10.3390/su16020559

Academic Editor: Basu Bidroha

Received: 20 October 2023

Revised: 4 January 2024

Accepted: 5 January 2024

Published: 9 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Water Quality Prediction of Small-Micro Water Body Based on
the Intelligent-Algorithm-Optimized Support Vector Machine
Regression Method and Unmanned Aerial Vehicles
Multispectral Data
Ke Yao 1, Yujie Chen 1, Yucheng Li 1,*, Xuesheng Zhang 1, Beibei Zhu 1, Zihao Gao 1, Fei Lin 2,3,* and Yimin Hu 2,3

1 School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
yaoke1031@163.com (K.Y.); 17856419489@163.com (Y.C.); zhangqing8725@163.com (X.Z.);
18305508976@163.com (B.Z.); gzh195423@163.com (Z.G.)

2 Hefei Intelligent Agriculture Collaborative Innovation Research Institute, Hefei 230031, China;
ymhu@iim.ac.cn

3 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China

* Correspondence: li-yucheng@163.com (Y.L.); feilin@iim.ac.cn (F.L.)

Abstract: Accurate prediction of spatial variation in water quality in small microwaters remains a
challenging task due to the complexity and inherent limitations of the optical properties of small
microwaters. In this paper, based on unmanned aerial vehicles (UAV) multispectral images and
a small amount of measured water quality data, the performance of seven intelligent algorithm-
optimized SVR models in predicting the concentration of chlorophyll (Chla), total phosphorus (TP),
ammonia nitrogen (NH3-N), and turbidity (TUB) in small and micro water bodies were compared
and analyzed. The results show that the Gray Wolf optimized SVR model (GWO-SVR) has the highest
comprehensive performance, with R2 of 0.915, 0.827, 0.838, and 0.800, respectively. In addition, even
when dealing with limited training samples and different data in different periods, the GWO-SVR
model also shows remarkable stability and portability. Finally, according to the forecast results, the
influencing factors of water pollution were discussed. This method has practical significance in
improving the intelligence level of small and micro water body monitoring.

Keywords: UAV multispectral monitoring; water quality inversion; small and micro water bodies;
optimization algorithm

1. Introduction

Small inland water bodies are critical to agricultural production, ecosystem mainte-
nance, and the livelihood of local communities [1]. However, due to rapid social develop-
ment, excessive land development, and improper management of water resources, these
water bodies face different degrees of pollution threats. Pollution not only affects water
quality and ecosystem health but also threatens people’s water safety and health [2]. There-
fore, accurate water quality monitoring is very important for controlling and reducing water
pollution, maintaining ecological balance, and promoting sustainable development [3].

Traditional water quality monitoring methods, such as manual sampling and auto-
mated monitoring stations, are limited to point-scale measurements [4]. These approaches,
with accuracy at specific locations, are expensive, time-consuming, and insufficient for cap-
turing the continuous spatial and temporal changes in river water quality [5]. In addition,
these methods lack comprehensive insights into pollutant source control [6,7].

Remote sensing technology has been applied to water quality monitoring and assess-
ment of oceans, lakes, and rivers, which addresses the limitations of traditional monitoring
with narrow observation scales or temporal discontinuities [8]. Early qualitative analysis of
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water quality in large-scale waters mainly used low- and medium-resolution satellite sen-
sors [9]. Subsequently, high-resolution sensors for water quality monitoring such as Landsat
series and Sentinel 2 A/B multispectral instruments are widely used worldwide [10–12].
However, the limited accuracy of satellites and the long revisit cycle of satellites led to the
inability to efficiently and accurately assess small-sized water bodies [13]. In recent years,
unmanned aerial vehicles (UAVs) have been successfully used for water monitoring due
to their flexibility, low cost, and high resolution. For instance, Castro et al. compared the
performance of satellite and UAV remote sensing in the detection of Chla concentration
in small reservoirs and they found that the Chla concentration detection based on UAV
remote sensing is more accurate [14].

The principle of UAV-based water quality monitoring is to use sensors combined with
drones to capture spectral information from the water body. The obtained spectral data
are subsequently processed using optical models and advanced data analysis techniques
to derive accurate concentration values for a variety of water quality parameters [15].
However, research on water quality monitoring in small-sized rivers using remote sensing
was still limited. Current studies primarily focus on larger bodies of water, with relatively
less attention given to small streams [16]. Especially small-micro bodies of water located
in typical agricultural areas, these small-micro bodies have limited surface area, making
them highly susceptible to external influences from agricultural activities and residential
living. The water quality composition is complex, with significant variations and pollution
sources being challenging to control effectively [17]. The optical characteristics of the
water exhibit nonlinear, multivariate, and non-normal distributions [18]. Traditional linear
regression models (LRM) are only capable of addressing linear relationships and struggle
to handle the complex nonlinear relationships present in the water quality monitoring of
small-micro bodies [19,20]. Simultaneously, owing to the relatively difficult acquisition
of ground real water quality data of small-micro bodies, there is a lack of sufficient data
as training samples, so it is necessary to adopt advanced models or algorithms that can
show good performance under a small amount of water quality data, for example, machine
learning algorithms.

Currently, machine learning (ML) methods have advantages in dealing with nonlinear
relationships and high-dimensional data [21]. Support vector machine regression (SVR),
a prominent machine learning algorithm, exhibits extensive application in water quality
inversion. The SVR model well adapts to the real situation and provides more accurate
prediction results by automatically learning patterns and correlations in the data without
making any assumptions about the data distribution. This holds even when handling small
sample sizes, demonstrating strong performance [22]. Despite many advantages of SVR,
there are still some limitations in inversion models, and the choice of parameters has a
large impact on the results. Inappropriate parameter selection may lead to underfitting
or overfitting, and different parameter settings could result in significant differences in
performance [23–25]. Various optimization algorithms have been used to optimize the SVR
and further improve the inversion accuracy of water quality parameters, e.g., Gray Wolf Op-
timizer Algorithm (GWO) [26], Genetic Algorithm (GA) [27], Particle Swarm Optimization
Algorithm (PSO) [28], Ant Colony Optimization algorithm (ACO) [29], Firefly Algorithm
(FA) [30], Sparrow Search Algorithm (SSA) [31], Hunter–Prey Algorithm (HPO) [32], etc.
These optimization algorithms can search for the optimal solution in the parameter space
and help to adjust the parameters of the SVR model, thus improving the inversion accuracy.

At present, for small-micro water bodies with dispersed pollution and complex spec-
tral information, an ideal model that can effectively predict water quality parameters in
the case of limited samples has not been retrieved [33]. In this paper, by combining the
multispectral data collected by UAV with the ground monitoring data, the algorithm of SVR
is optimized and the prediction model of river Chla, NH3-N, TP, and TUB concentrations
is constructed. This paper aims to provide an effective scientific method to monitor and
predict the water quality of small and micro rivers. The main research contents of this paper
include (1) enhancing the relationship between water quality parameters and unmanned
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aerial vehicle multispectral data through a band combination approach; (2) comparing the
performance of SVR optimization in water quality concentration inversion synthesis by
different optimization algorithms and selecting the optimal inversion model; (3) verifying
the stability and generalization of the optimal model with a small number of samples
and at different times; and (4) exploring the spatial distribution characteristics of Chla, TP,
NH3-N, and TUB concentrations in the study area. The influence elements were analyzed
to provide a scientific basis for pollutant source tracing and management.

2. Materials and Methods
2.1. Study Area

The selected minor tributary Yudai River was located in Feidong County, Hefei City,
Anhui province of China, with geographic co-ordinates ranging from 31◦34′ to 32◦16′ N
and 117◦19′ to 117◦52′ E selected as the study area. This river is a typical closed water body,
which was mainly influenced by surrounding drainages and rainfall.

This work mainly focuses on the lower reaches of the Yudai River with a maximum
width of no more than 15 m and the narrowest width of only 2 m. The length of the
river is approximately 3.43 km with its drainage area 0.68 km2. The downstream area
primarily encompasses the market town and agricultural planting zones, where the sewage
network infrastructure is insufficient currently, resulting in difficulties in effectively treating
domestic sewage. Potential sources of pollution in this area may include nutrient (N and P)
runoff from agricultural activities, wastewater discharge from fisheries, domestic sewage,
and livestock manure from rural farming. The sewage produced by the pollution source
finally flows into Chaohu Lake and becomes one of the pollution sources of Chaohu Lake
(Figure 1).
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2.2. Water Sample Collection and Water Quality Parameter Determination

The collection of river water samples was concurrently coordinated with UAV flights.
Sampling points were positioned in the central region of the river at regular intervals of
80–120 m, ensuring uniform collection and full reflection about the water quality of the
river (Figure 2). Meanwhile, a real-time positioning system (A8, Zhuolin Technology, Hefei,
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China) was used to record the latitudes and longitudes of each sample site. Water samples
(1.0 L) were obtained at each sampling point from a depth of 0 to 0.5 m. The water samples
were then evenly collected into two different bottles. One bottle was supplemented with
1 mL of magnesium carbonate (MgCO3) suspension to prevent any potential dissolution
of pigments caused by acidification. The other bottle was pretreated with sulfuric acid
(18.4 mol/L) to ensure a pH lower than 2.0. A total of four water quality indicators, i.e., TP,
Chla, NH3-N, and TUB, were determined. Among four water quality indicators, Chla and
TUB were tested on the same day of sampling and NH3-N and TP were tested within 72 h
in the laboratory (Table S1). Sampling procedures were strictly by Chinese water quality
sampling standards (Water Quality—Guidance on sampling techniques HJ494-2009 [34]).
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2.3. UAV Image Acquisition and Preprocessing

The Genie 4 multispectral UAV (P4M, Shenzhen, Guangdong, China) was used as
the data acquisition tool in the current study. The UAV is equipped with an all-in-one
multispectral imaging system that includes a visible camera and five multispectral cameras.
These cameras have a resolution of 2 megapixels and a global shutter function. The imaging
system, mounted on a three-axis gimbal, could provide clear and stable imaging and
acquires multispectral images in five bands: blue (B1), green (B2), red (B3), eed-edge
(B4), and near-red (B5). Moreover, to mitigate the influence of ambient light during data
acquisition, an integrated multispectral light intensity sensor was positioned atop the setup.

The UAV was subjected to uncontrollable factors during the flight, which may lead
to geometric and radiometric distortions in the images. Therefore, the raw images were
pre-pretreated (including band alignment, orthophoto mosaic, radiometric correction, and
reflectance calculation) before being used to ensure the accuracy and comparability of the
data [35–37].

This study involved two experimental sample acquisitions on 1 September 2022 and
12 February 2023 (Table 1). The data collection process was conducted under favorable
conditions (clear weather, calm winds, and excellent visibility) to guarantee the reliability
and accuracy of the data.
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Table 1. UAV flight parameters.

Time Flight Speed Flying Height Resolution Number of Photos Center Wavelength

1 September 2022 10 m/s 150 m 0.1 m 7350
B1:450 nm ± 16 nm
B2:560 nm ± 16 nm

12 February 2023 10 m/s 150 m 0.1 m 4200
B3:650 nm ± 16 nm
B4:730 nm ± 16 nm
B5:840 nm ± 26 nm

2.4. The Intelligent-Algorithm-Optimized SVR Algorithm

The SVR model was established and combined with seven hyperparametric optimiza-
tion methods to perform model optimization. Through the formulation of a multitude of
feature combinations exhibiting strong correlations, the precision of the model for river
water quality inversion is augmented (Figure 3). This method can be applied to small river
water quality inversion problems based on UAV multi-spectrum and has a certain reference
value in practical application.
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2.4.1. SVR Model

SVR is a support vector machine (SVM)-based regression algorithm for solving linear
or nonlinear regression problems. The central tenet of SVR is to construct an optimal
hyperplane in a high-dimensional space so that the distance from the hyperplane to the
training samples is as small as possible and the error does not exceed a certain tolerance [38].

The essence of the SVR algorithm lies in the manipulation of training data, involving
the transformation of data into a high-dimensional space and the identification of an optimal
hyperplane within this space. The model training process of SVR can be represented as
a convex optimization problem, whose objective is to minimize the loss function while
satisfying the constraints of the support vector. Commonly used loss functions include
linear loss function, square loss function, and absolute value loss function. After the
training is completed, SVR performs regression prediction by calculating the distance from
the test data points to the optimal hyperplane [39–41].

The optimization problem of SVR can be expressed in the following form:

min
1
2
∥w∥2 + C

n

∑
i=1

(ζi + ζ∗), i = 1, 2, · · ·n (1)

yi − w · θ(x)− b ≤ ε + ζ∗i (2)

w · θ(x) + b − yi ≤ ε + ζi (3)

ζiζ
∗
i ≥ 0 (4)
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where w is the weight vector, C is the regularization parameter, ∥w∥ is the complexity-
related term, ζi, ζ∗i the relaxation variable, θ(x) is the mapping function, and ε is the loss
function. The objective function (1) consists of two components: a regularization term
1/2 to control the complexity of the model and an error term to measure the prediction
error. Constraints (2) and (3) restrict the difference between the predicted and true values
to within ε and relax these constraints by the slack variables. The goal of the final SVR
is to find a prediction function f(x, w) = w·θ(x) + b, such that the sum of the objective
function and the error term is minimized while satisfying the tolerance limits. b is the
threshold value.

2.4.2. Algorithm Optimization

In this study, seven optimization algorithms, i.e., GWO, GA, PSO, ACO, FA, SSA,
and HPO, were employed to optimize the SVR model and enhance its predictive perfor-
mance. Modeling and forecasting were carried out using the Python programing language
(Python 3.6).

(1) Gray Wolf Optimization (GWO)

GWO is a swarm intelligence-based optimization algorithm. It simulates the collabora-
tive behavior of a gray wolf pack to solve optimization problems. GWO achieves a balance
between global exploration and local exploitation, resulting in effective and efficient opti-
mization. The population size is set to 20, the maximum number of iterations is 100, and
the convergence factor is set to 2 [42].

(2) Genetic Algorithm (GA)

GA is an efficient optimization algorithm based on genetics and natural selection. It
finds the optimal solution by simulating the process of natural evolution through genetic
operations. The population size is set to 20 and the maximum number of iterations is
100 [43–45].

(3) Particle Swarm Optimization (PSO)

PSO is a population-based optimization algorithm that uses a swarm of particles to
search for the optimal solution in a multidimensional space. It efficiently solves complex
optimization problems and provides high performance and accuracy. In this study, the
population size is set to 20, the maximum number of iterations is 100, and the individual
learning factor and social learning factor are set to 1.5 [46–48].

(4) Ant Colony Optimization (ACO)

ACO is an ant-inspired optimization algorithm that uses pheromones and positive
feedback to find the shortest path. It is adaptive, efficient, and widely used in solving
complex optimization problems. The population size is set to 20, the maximum number of
iterations is 100, the transfer probability constant is 0.2, and the pheromone evaporation
coefficient is 0.9 [49,50].

(5) Firefly Algorithm (FA)

FA is a swarm-based optimization algorithm inspired by firefly behavior. It efficiently
solves complex optimization problems by attracting individuals toward brighter solutions.
The population size is set to 20, the maximum number of iterations is 100, the phototaxis
coefficient is 0.000001, and the maximum attractiveness is 1 [51,52].

(6) Sparrow Search Algorithm (SSA)

SSA is a swarm intelligence optimization algorithm inspired by sparrows’ foraging
behavior. It utilizes discoverers and followers to optimize food acquisition efficiency
through collaboration. The population size is set to 20 and the maximum number of
iterations is 100 [53,54].
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(7) Hyperparameter optimization (HPO)

HPO is an optimization algorithm inspired by the competitive and co-operative
relationship between hunters and prey in nature. It is effective for complex optimization
problems, offering global search and convergence. The maximum number of iterations is
set to 100 and the tuning parameter is set to 0.1 [55,56].

2.5. Model Accuracy Assessment

Four metrics were employed in the model accuracy assessment, i.e., determination
(R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error
(MAE). R2 assesses the goodness-of-fit of the regression model, with values closer to 1
indicating higher predictive ability. RMSE and MSE measure the deviation between the
predicted and the measured value, with lower values indicating higher prediction accuracy
of the model. MAE quantifies the average magnitude of errors between predicted and
measured values.

R2 = 1 − ∑n
i=1(x̂i−xi)

2

∑n
i=1(xi−xi)

2 (5)

RMSE =

√
∑n

1 (xi − x̂i)
2

n
(6)

MSE =
∑n

1 (xi − x̂i)
2

n
(7)

MAE =
∑n

1 |xi − x̂i|
n

(8)

where xi is the measured value, x̂i is the predicted value, n represents the number of
samples in the dataset, and xi is the mean value of the measured concentration.

3. Results
3.1. Split of Dataset

A total of 67 samples were collected and four water quality parameters were deter-
mined (Table 2). A random sampling approach was employed to partition the entire dataset
into a training set (including 50 samples) and a test set (including 17 samples), with a ratio
of about 3:1.

Table 2. The measured concentrations of four water quality parameters.

TP (mg/L) Chla (ug/L) NH3-N (mg/L) TUB (ntu)

Mean 0.261 4.367 1.126 11.692
Max 0.351 8.726 2.492 14.987
Min 0.219 0.978 0.092 8.689

3.2. Selection of Highly Sensitive Features as Model Inputs

The reflectance values of five bands of each sampling point are obtained from the
multispectral images of the UAV, and the variation rules between the reflectance values and
the concentration of water quality parameters are analyzed (Figure 4). Strong absorption
peaks are observed in the blue and red bands, while reflection peaks are found in the green
and infrared bands. The reflectance curves near the green, red, and near-red bands show
large variations. Reflectance values from each band are combined, followed by Pearson
correlation analysis with water quality parameter concentrations (Figure 5). The combi-
nation of bands with the highest correlation is identified and used as input to the model
to enhance its predictive performance [57]. The model’s input variables are determined
by selecting the five spectral bands with the highest correlation for each water quality
parameter (Table 3).
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Table 3. The five most correlated band combinations were input into the model as feature selection.

Parameter Feature Input

TP (B1 + B2 + B4)/(B2 + B3) (B2 + B3)/(B2 + B4) (B4 + B5)/(B3 + B5) B4/(B3 + B4) B4/B3
NH3-N (B1 + B3)/(B1 + B4) B4/B1 B4/B3 (B1 + B4)/(B1 + B3) B4/(B1 + B3)

Chla (B2 + B4)/(B1 + B2 + B3) B4/(B1 + B2 + B3) B4/(B1 + B3) B4/B1 B4/B3
TUB (B2 + B4)/(B1 + B2 + B3) (B1 + B4)/(B1 + B3) (B2 + B4)/(B2 + B3) B4/(B3 + B4) B4/(B1 + B3)

3.3. Predictive Performances

Seven intelligent optimization algorithms were used to optimize the established SVR
model. The independent variable of the model was a combination of bands with high
correlation after feature selection, and the dependent variables were the concentrations
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of Chla, TP, NH3-N, and TUB. The predicted values were visualized and compared with
the measured values through scatter plots to assess the fitting ability of the model. The
optimized SVR model’s accuracy could be more effectively gauged by analyzing the errors
between the predicted and measured values.

3.3.1. Chlorophyll (Chla)

Compared with the unoptimized SVR model (Figure 6), the R2 values of the SVR
model optimized by both GWO and GA algorithms exceed 0.910, while the SVR model is
only 0.762. Various optimization algorithms have enhanced the performance of the SVR
model, with the GWO-SVR model exhibiting superior performance in Chla prediction.
Compared with the SVR models, the R2 values of SVR models optimized by GWO, GA,
PSO, ACO, FA, SSA, and HPO improved by 20.08%, 19.82%, 14.30%, 5.64%, 8.14%, 5.64%,
and 11.02%, respectively. Meanwhile, the reductions in RMSE values were 23.34%, 16.94%,
15.42%, 11.11%, 14.79%, 11.00%, and 24.90%, respectively. The reductions in MAE values
were 46.61%, 30.67%, 27.72%, 17.70%, 22.71%, 17.70%, and 47.78%, respectively.
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Comparing the GWO algorithm with other optimization algorithms (GA, PSO, ACO,
FA, SSA, and HPO) led to improvements in R2 by 0.22%, 5.05%, 13.67%, 11.04%, 13.67%,
and 8.16%. Simultaneously, RMSE witnessed reductions of 7.76%, 9.42%, 13.80%, 10.09%,
13.92%, and −0.02%, while MAE decreased by 22.98%, 26.12%, 35.13%, 30.92%, 35.13%,
and −2.26%.

According to the fit plots of predicted and true values, it is evident that the optimized
SVR model shows excellent model fit in Chla prediction (Figure 7). The predicted and
measured values are uniformly distributed around a 1:1 straight line, indicating that the
optimized SVR model shows good fitting ability for Chla. These results suggest that the
SVR model optimized with the GA algorithm and GWO algorithm performs well in terms
of Chla prediction capability.
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3.3.2. Total Phosphorus (TP)

For TP prediction, the SVR models optimized by the GWO and GA algorithms perform
well, with their R2 values greater than 0.820 (Figures S1 and S2). In particular, the GWO-SVR
model shows the best results in terms of fitting the measured data (R2 = 0.827, RMSE = 0.068,
MSE = 0.005, MAE = 0.005). In contrast, the prediction performance of the unoptimized
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SVR model is the worst (R2 = 0.621, RMSE = 0.102, MSE = 0.010, MAE = 0.010). In general,
its fitting ability is decreased when compared to that of the Chla (R2 = 0.762).

For GWO algorithm, when compared with GA, PSO, ACO, FA, SSA, and HPO, R2

increases by 0.00%, 2.87%, 2.35%, 2.99%, 2.61%, and 2.61%. Correspondingly, RMSE
witnessed reductions of −1.49%, 5.56%, 4.23%, 5.56%, 4.23%, and 4.23%, while MAE
decreased by 0.00%, 28.57%, 28.57%, 28.57%, 28.57%, and 28.57%.

3.3.3. Ammonia Nitrogen (NH3-N)

From the performance and prediction results of the model for predicting NH3-N
concentration (Figures S3 and S4), notably, the SVR models, subjected to refinement via the
GWO, PSO, and HPO optimization algorithms, have exhibited commendable performance,
each boasting an R2 value surpassing 0.83. The SVR model optimized by GA and SSA
algorithms also showed a strong fitting ability, and, overall, the PSO-SVR model has the
best performance in the prediction of Chla (R2 = 0.846, RMSE = 0.171, MSE = 0.029, and
MAE = 0.136), followed by the GWO-SVR model (R2 = 0.838, RMSE = 0.145, MSE = 0.021
and MAE = 0.111). However, compared with the predictive performance of TP and Chla,
the performance of the SVR model for NH3-N prediction still needed further improvement.

In the comparison of the GWO algorithm with other optimization algorithms (GA,
PSO, ACO, FA, SSA, and HPO), R2 advanced by 8.11%, 7.24%, 8.11%, 6.95%, 7.53%, and
0.76%. Concurrently, RMSE witnessed reductions of 5.07%, 1.29%, 16.07%, 8.79%, 9.75%,
and 0.39%, while MAE decreased by 13.75%, 8.73%, 36.81%, 21.59%, 27.06%, and 1.99%.

3.3.4. Turbidity (TUB)

The prediction performances of the SVR model optimized by the GWO and HPO
algorithms for TUB are the most outstanding, with R2 > 0.790 (Figure S5). The SVR model
optimized by the other five optimization algorithms also depicts a strong fitting ability
(Figure S6). The GWO-SVR algorithm performs the best in the prediction performance of the
TUB-measured data (R2 = 0.809, RMSE = 0.809, MSE = 0.655, and MAE = 0.400). Meanwhile,
the R2 of the basic SVR algorithm is only 0.620, which is inferior to the optimization
algorithms.

When the GWO algorithm was compared with other optimization algorithms (GA,
PSO, ACO, FA, SSA, and HPO), its R2 exhibited improvements by 4.10%, −0.95%, 6.75%,
9.83%, 4.62%, and 0.60%. Simultaneously, RMSE witnessed reductions of 15.20%, 15.20%,
42.00%, 41.53%, 44.44%, and 16.67%, while MAE decreased by 18.38%, 18.38%, 43.37%,
40.96%, 43.37%, and 28.39%.

3.3.5. Comparison of the Performances of Eight SVR Models

The results of this study show that the GA-SVR and GWO-SVR models perform
optimally in the prediction of Chla, with improvements in R2 values of 19.81% and 20.08%,
reductions in RMSE values of 16.94% and 23.39%, and MAE values reduced by 30.68%
and 46.61%, respectively, compared to the basic-SVR model. In terms of the prediction
performance of TP, the SVR model optimized by the GA algorithm and the GWO algorithm
also performs well, with the R2 values improved by 33.17% and 33.17%, the RMSE values
reduced by 33.34% and 33.33%, and the MAE values reduced by 47.80% and 47.80%,
respectively. For the prediction of NH3-N, the SVR model optimized by PSO and GWO
algorithms also performs well, with their R2 values improved by 24.5% and 24.3%, the
RMSE values reduced by 41.43% and 50.34%, and the MAE values reduced by 56.92% and
47.02%, respectively. For TUB prediction, the SVR models optimized by the HPO algorithm
and the GWO algorithm also perform well, with increases in R2 values of 28.47% and
29.45%, decreases in RMSE values of 36.30% and 36.83%, and the MAE values reduced
by 45.08% and 44.08%, respectively. In summary, the optimized SVR model significantly
improves the accuracy of the SVR model. This could be because, when building the
model, its core function and penalty settings need manual adjustments. Different datasets
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might require different parameter setups and it is challenging to manually find the best
parameters. This is consistent with previous research.

The prediction performance of eight models is compared and it is found that GA-SVR
performed the best in TP (R2 = 0.827). However, the prediction performances of TUB
(R2 = 0.740) and NH3-N (R2 = 0.805) are relatively poor, ranking fourth and fifth among
eight models. Such results indicated that GA-SVR has certain instability in the prediction
of water quality indicators in the Yudai River. The differences in performance may be
because the GA is sensitive to its settings, needing manual adjustments. GA mimics genetic
processes, which have randomness, leading to unpredictable results. Moreover, GA tends
to require a lot of training data to work well on complex problems [58]. The PSO-SVR
model demonstrated excellent predictive performance regarding NH3-N (R2 = 0.846), yet
it fell short in predicting other water quality parameters; perhaps it has fallen into a local
optimum when predicting NH3-N [59]. While the GWO-SVR model does not exhibit the
best predictive performance for TP (R2 = 0.827) and NH3-N (R2 = 0.838) among the eight
models, it consistently ranked second in eight models. Moreover, it showcased the best
predictive performance for Chla (R2 = 0.915) and TUB (R2 = 0.800), highlighting its stability
in predicting water quality concentrations for small-scale rivers. Thus, considering all
aspects, the GWO-SVR model demonstrated the most excellent performance among the
eight models.

3.4. Stability Analysis of GWO-SVR Model

To further explore the stability of the GWO-SVR model under fewer samples in this
study, 30% (n = 20), 50% (n = 34), and 70% (n = 47) of the total number of samples (n = 67)
are randomly selected as new training samples, there is no alteration in the test data. By
analyzing the prediction results of the model on the test set under training with fewer
samples, the stability of the model is evaluated.

The experimental results show that the prediction of TP and NH3-N are influenced
by the number of samples, and the prediction accuracy of the model has improved as the
number of samples increases (Figure 8 and Table 4). In contrast, the prediction results
of Chla and TUB are affected by the sample size less and their prediction accuracies are
relatively high and stable. Such difference may be because both Chla and TUB are optically
sensitive parameters, there is a clear correlation with the spectral responses in the water
body, and this correlation is more accurate to capture [60]. However, non-optically sensitive
parameters, e.g., TP and NH3-H, may be affected by hydrodynamic changes in water,
temperature, pH, etc. Consequently, the retrieval of TP and NH3-N of the SVR model only
shows a certain degree of instability, especially under the constraint of a limited sample
size [61,62].

Table 4. Model accuracy of different data volumes.

Sample Size Evaluation Index Chla TP NH3-N TUB

30%

R2 0.846 0.513 0.547 0.753
MAE 0.517 0.022 0.323 1.340
MSE 0.706 0.130 1.117 2.208

RMSE 0.840 0.361 1.057 1.486

50%

R2 0.862 0.704 0.708 0.753
MAE 0.512 0.012 0.254 0.703
MSE 0.461 0.008 0.059 0.823

RMSE 0.679 0.091 0.243 0.907

70%

R2 0.908 0.803 0.808 0.763
MAE 0.445 0.012 0.213 0.684
MSE 0.353 0.005 0.030 0.634

RMSE 0.594 0.072 0.172 0.796
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3.5. Applicability of GWO-SVR Model

To validate the applicability of the GWO-SVR model to the same watershed at different
times, new data are introduced. The UAV images of the Yudai River captured on 1 Septem-
ber 2022 are inputted into the constructed model to obtain the corresponding predicted
values, and then they are compared to the corresponding measured values (Figure 9).
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In general, a consistent correspondence between the predicted Chla, TP, NH3-N, and
TUB values via GWO-SVR models and their measured values is observed. Although minor
discrepancies were recorded at several specific points, the applicability of the model is not
significantly undermined. Consequently, the established GWO-SVR model demonstrates
strong applicability for water quality inversion across various time intervals.

3.6. Inversion Results of the Lower Reaches of the Yudai River Based on the GWO-SVR

The established GWO-SVR model is applied for the inversion of Chla, TUB, TP, and
NH3-N concentrations in the Yudai River (Figure 10). According to the results, the levels of
Chla, TP, NH3-N, and TUB ranged from 0.980 to 7.726 ug/L, 0.219 to 0.351 mg/L, 0.185 to
2.057 mg/L, and 8.689 to 14.987 ntu, respectively. The inversion results are well consistent
with the measured values, indicating the validity of the inversion models.
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It is found that some water areas are overgrown with weeds near the shore and trees
are standing around, and these factors may influence the spectral characteristics of the
water bodies during the inversion and cause deviations. However, such deviations are still
within the acceptable range and do not significantly affect the quality of the inversion of
the selected river section.

4. Discuss
4.1. Potential Pollution Source Analysis

The downstream of the Yudai River is selected as the study area and it is divided into
five sub-areas, i.e., Region A, B, C, D, and E (Figure 11). The inversion results reveal that
the concentrations of TP, Chla, NH3-N, and TUB are relatively higher in Regions B, D, and
E. Regions A and C are in a medium to low concentration. Such a phenomenon may be due
to the following reasons: (1) the existence of agricultural cultivation areas around Region B
may result in the massive loss of nitrogen and phosphorus from soil and entering into the
water body via runoff and (2) Region D, as a typical residential area, where the untreated
domestic wastewater, domestic garbage, and animal manure washed into the river during
rainfall events, thus resulting in increased concentrations of nitrogen and phosphorus
elements. These elements also accelerated the growth of algae and contributed to the higher
Chla concentrations in the water body. In Region E, the high concentrations of NH3-N, TP,
and TUB could be attributed to the previous presence of free-range livestock. Runoffs from
livestock and feed residues are entered into the water body, as well as domestic wastewater
from the neighboring residential areas that flow into the river. In addition, the narrow
channel and slow flow of the river are preferential for the growth of algae, and thus high
concentrations of Chla are observed.
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The levels of water quality parameters in Region A were maintained at moderate levels.
This might be because Region A is an inlet to the Chaohu Lake with a wide watercourse
and strong liquidity and the water body has relatively higher self-purification capacity [63].
However, during the long-term monitoring, the water quality remained in the range of
Class IV water standards (China Environmental Quality Standard for surface water. GB
3838-2002 [64]), indicating the relatively serious pollution status of this river. This indicated
to some extent that untreated domestic sewage, livestock breeding effluent, and nitrogen
and phosphorus loss from agricultural processes are the main sources of pollution in the
lower Yudai River.

4.2. Compare with Other Studies

In comparison with previous research results (Table 5), the water quality parame-
ter inversion based on UAV multispectral images in this study showed an R2 value of
0.8–0.915 range, while the water quality parameter inversion based on satellite data on
oceans and lakes showed a lower fitness (R2 in the range of 0.69–0.83). For example, Kim
et al. [65] employed Sentinel-2 data and machine learning algorithms to assess chlorophyll-
a (Chla) in coastal areas. The best-performing model achieved an R2 of 0.75. Wu et al.
predicted the chlorophyll-A concentration in the Ulansu Sea using the GA-SVR model and
its R2 = 0.87 [66]. Ren et al. employed a GWO-SVR model in conjunction with Sentinel-2
satellite data to predict chlorophyll-a in Tangdao Bay, achieving an R2 of 0.71 [67]. During
the acquisition of spectral data, satellite remote sensing is susceptible to atmospheric scat-
tering and surface light from the water body, and these influences cannot be eliminated [68].
In contrast, UAV remote sensing can eliminate atmospheric interference and efficiently cap-
ture water spectral parameters. To sum up, water quality inversion based on UAV remote
sensing achieves higher accuracy [69,70]. Meanwhile, compared with other widely used
machine learning models, for instance, Chen et al. used the GA-XGBoost model to invert
water quality parameters of small and medium-sized rivers, and the R2 values of their mod-
els were in the range of 0.597 to 0.855 [71]. Leong et al. predicted water quality based on
Least Square-Support Vector Machine (LS-SVM), achieving an R2 of 0.92 [72]. Zhang et al.,
through a comparative analysis of several SVR models for predicting dissolved oxygen,
found that GS-SVR and GA-SVR exhibited the best performance, with R2 values reaching
0.81 and 0.84, respectively [73]. In Sections 3.4 and 3.5, the stability of the GWO-SVR
model has been confirmed under limited samples, demonstrating excellent adaptability
across different periods. Such results suggested that the GWO-SVR model has an excellent
performance in the estimation of water quality parameters in small-sized rivers.
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Table 5. Comparison with previous research results.

Study Water Quality Parameter Methodology Study Area R2

Kim et al. [65] Chla Light Gradient
Boosting Machine

Lakes and coastal areas
of Korea 0.75

Wu et al. [66] Chla GA-SVR Ulansuhai Lake 0.87
Ren et al. [67] Chla GWO-SVR Tangdao Bay 0.71

Chen et al. [71] Chla, TP, TN, NH3-N and TUB GA-XGBoost Nanfei River 0.597 to 0.855
Leong et al. [72] water quality index LS-SVM Perak River 0.92
Zhang et al. [73] water quality index GA-SVR Hanjiang 0.84

4.3. Limitations and Future Perspectives

In this study, the application of unmanned aerial vehicle (UAV) multispectral data and
the Grey Wolf Optimizer-Support Vector Regression (GWO-SVR) model in the water quality
monitoring of small-micro water bodies, particularly for parameters such as chlorophyll-a
(Chla), total phosphorus (TP), ammonia nitrogen (NH3-N), and turbidity (Turb), has shown
promising results. However, further exploration is needed to assess the applicability of
GWO-SVR in different types of water bodies and for estimating various water quality
indicators. Additionally, due to the relatively small sample size in this study and the
limitation of having water quality data for only one season, understanding the temporal
variations in river water quality necessitates further investigation. Future work will focus
on expanding the database by integrating water quality data from multiple seasons to
achieve a more comprehensive understanding of the dynamic changes in water quality [74].
This provides significant inspiration for our research and we plan to apply this approach in
our study area, aiming to establish a comprehensive monitoring system integrating aerial
and ground observations [75].

5. Conclusions

In conclusion, based on the multispectral UAV images and ground monitoring data,
the SVR model optimized by seven intelligent algorithms and the initial SVR model were
constructed to predict the water quality parameters (Chla, TP, NH3-N, and TUB) of small-
micro rivers, and their prediction effects were compared. The experimental results show
that the GWO-SVR model has the most significant prediction effect on the four water
quality indicators of Yudai River, and its R2 values are all greater than 0.80. Meanwhile, by
reducing the sample size of the training set and validating the dataset directly for different
periods, the GWO-SVR model still exhibits significant stability and applicability. The results
show that the GWO-SVR model has a high prediction accuracy for the water quality of
small rivers, which can provide a scientific basis for the monitoring and prevention of
small-micro water pollution.
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