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Abstract: This paper investigates the technical efficiency of cereal production in European Union
(EU) countries from 2008 to 2018. The primary purpose is to estimate technical efficiency scores by
country and crop and explain their variation using macroeconomic and agricultural policy variables
using the stochastic frontier production function. The results indicate that the United Kingdom has
the highest efficiency in barley production, while Finland has the lowest. France exhibits the highest
efficiency in common wheat, and Romania has the lowest efficiency in grain maize production. This
study also explores the impact of various factors on technical efficiency, finding, for example, the
positive effects of female wages and foreign direct investment on barley production efficiency and the
negative effects of forest area and subsidies. Similar analyses were conducted for wheat and maize
production. The results indicate a variation in technical efficiency scores across crops and countries.
This diversity in performance not only reflects the inherent complexities within each crop but also
emphasizes the crucial role played by macroeconomic variables and agricultural policies in shaping
efficiency outcomes on a country-wide scale.

Keywords: technical efficiency; stochastic frontier; production function; cereal production;
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1. Introduction

Despite the technological advances in the past century, agriculture remains critical in
advancing and preserving human welfare. In addition, the future of humanity depends on
the stability and sustainability of agricultural production. However, the land available to
allocate to agriculture is limited, and with more urbanization, it may even shrink. Because of
this, agriculture is one of the most critical areas that policy-makers in Europe are focusing
on due to agriculture’s significant contribution to the European economy. They argue that
improving agricultural productivity is crucial for raising farmer income and the survival of
humanity [1,2]

According to Schils et al. [3], European countries are among the highest cereal produc-
ers globally, producing 20% of total global production and exporting 15% of that production.
Schils et al. [3] also mentioned that approximately one-fourth of that production is for
human consumption. Furthermore, Europe’s crop production accounts for a third of the
total agricultural land and approximately 60% of the total crops, with barley, sorghum,
and oats used for livestock feed. In contrast, wheat is used nearly equally for human use.
However, agriculture is highly dependent on land conditions, seasonal terms, and the
climate. The economies of several European Union countries are strongly reliant on agricul-
ture, and crop production is one of the most common livelihood sources in rural Europe.
Despite being developed countries, Europe’s overall gross value added to agriculture has
grown by 1.7% per year. The changes in national agricultural institutions, the effects of
globalization, and many other variables, such as the agricultural policy that the European
countries have established, have played the most significant role in this regard [4].
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Revisions to agricultural policies were made throughout the 1990s as new concerns
emerged and further information was obtained. Driven by changes in the global economy
and the sector, European countries are enacting new legislation to increase agricultural
efficiency. The government requires the private sector and producers to adhere to specific
standards [5]. In this regard, European governments designed the common agricultural
policy (CAP) to promote complementary sectors and producers via various programs
encouraging farmers to adopt sustainable and efficient farming practices. Moreover, the Eu-
ropean Union implements standards in farming (such as quality and environmental protec-
tion) and produces more outputs while using fewer inputs. As evidenced by these recent
advances, many scholars believe that sustainable agricultural and natural resource usage
are critical to many nations’ policies, particularly those of the European Union.

Since the implementation of the new rules, which also affect the private sector and agri-
cultural industry operations, agricultural efficiency has been at the center of many debates
in agricultural production. Adopting more efficient agricultural practices for the private
sector is helpful as it reduces costs. It also reduces the detrimental environmental impacts,
enhances food security, and contributes to the attainment of sustainable development goals,
with food security as a central focus. For all these reasons, measuring efficiency is as critical
to these objectives as attaining it. To elaborate, improving efficiency is essential because it
allows farmers to produce more output without using more inputs, thus reducing costs or
at least preventing an increase in the cost of production. Consequently, it is unsurprising
that much work has been dedicated to investigating farm-level efficiency in developed
and developing countries. However, if farmers are not optimally using present technology
to boost efficiency, enhancing efficiency is a more economically efficient strategy than
implementing new technologies.

Introducing the most efficient production technologies is one of the most effective
strategies to guarantee that producers can produce in the best and most lucrative manner.
Efficiency is essential due to a lack of natural endowments and financial constraints. More-
over, the efficiency evaluation is vital since it is considered the most suitable way for these
producers to evaluate how much productivity can be enhanced by optimizing the number
of resources used while at the same time boosting their production and profit. Addition-
ally, efficiency determines whether growing productivity or developing new technologies
should be the company’s primary emphasis to be the leading company in different aspects
of agricultural production [6]. In this regard, the mismanagement of resource allocation is
also emphasized since it affects productivity.

Assessing technical efficiency in developed and developing nations is still an essential
field of study [6]. Particularly relevant for the agriculture sector, when resources are limited
and subject to environmental and government regulations, greater production is driven by
improved technical efficiency. Hence, the estimation of efficiency is essential because it is
the most significant measure for productivity growth and reduction in inefficiency. For the
farmers, being aware of the efficiency levels of their production will help them allocate
resources more effectively, reduce the loss of soil quality, reduce the cost, and eventually
increase profit.

Therefore, the primary purpose of this study is to estimate the level of technical effi-
ciency for cereal products (barley, common wheat, and grain maize) across some European
countries. In addition, this study uses macroeconomic variables like GDP, unemployment
rate, and inflation and agricultural policy variables such as total direct subsidies, decoupled
subsidies, and livestock subsidies to explain the variation of the technical efficiency scores
across crops and European countries. One of the novelties of this study is that we esti-
mate technical efficiency at the country level rather than just at the firm level, providing a
comprehensive understanding of the overall efficiency landscape within a country’s cereal
production sector. This approach considers macroeconomic variables and agricultural
policies, identifying trends, patterns, and disparities in technical efficiency across countries.
It also allows for targeted policy recommendations and interventions at the national level,
leading to sustainable improvements in cereal production practices. The other novelty of
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this study is that we use machine learning techniques, specifically random forest regression,
to help us identify the most important inputs to be used as independent variables for
each crop in the estimation of the production function. This study also uses the random
forest technique to determine the economic and policy variables that enter the inefficiency
component of the production function. The random forest technique allows only the
most influential explanatory variables, saving the degrees of freedom due to the small
sample size.

Furthermore, we assess the degree of technical efficiency and its variability across var-
ious crops and countries by employing stochastic frontier analysis, incorporating a random
effect model under three distinct distributional assumptions (half-normal, exponential,
and truncated-normal). Furthermore, we also estimate the impact of macroeconomic and
agricultural policy variables on the overall level of technical efficiency across crops and
countries. Finally, using Vuong’s test [7], we compare the stochastic frontier model (a
random effect model) implied by the three distributions and determine which model best
fits the sample data.

Efficiency variations are caused by changes in the size of the operation, manufacturing
technology, operating conditions, and operational efficiency [8]. According to [9], efficiency
helps farmers increase their output without increasing or changing the number of inputs
used in the production process. The concept of efficiency also arises to avoid wasting
overexploited resources such as land, water, energy, and fertilizers. In doing so, this assists
farmers in efficiently allocating scarce inputs to be suitable for producing higher output.
Therefore, efficiency measurement is critical since farmers need to improve agricultural
production while utilizing limited resources.

Furthermore, because resources such as land, energy, water, and fertilizers are essential
in agricultural production, producers must use them efficiently to avoid overconsumption,
which wastes resources and may deplete soil quality and exacerbate scarcity of water and
food insecurity. For this reason, governments often put regulations and restrictions on
farmers to make them use resources efficiently in a suitable way for continuing popula-
tion growth, adaptation to climate change, consumption growth, and reduction in the
overexploitation of the environment. At the same time, from an economic standpoint,
governments may employ subsidies to achieve a more efficient allocation of resources by
incentivizing farmers to change production decisions or adopt more efficient production
technologies [10].

One such policy was the Common Agricultural Policy (CAP) (a collaborative and
shared policy embraced by all European Union nations, with the goal of assisting farmers
in enhancing productivity, which established a pact between agriculture and society, as well
as between Europe and its producers) instituted in 1962 by the European Union. One of the
goals of the Common Agricultural Policy (CAP) is to assist farmers, enhance agricultural
productivity, ensure a consistent supply of affordable food, and contribute to address-
ing climate change while promoting the sustainable management of natural resources
(European Commission, n.a.). One of the primary vehicles the CAP uses to achieve its
objectives is providing income support or subsidies through direct payments, decoupled
payments, livestock payments, and remunerating farmers for practicing environmentally
friendly farming.

Several studies have been undertaken to evaluate the efficiency and its determinants
among various kinds of farmers and regions (see, for example, [2,6,11–21]). These studies
aimed to explain the technical efficiency of diverse crops and farms in the same country
concerning the same inputs in general or by varying the specific inputs for each farm or
crop. Furthermore, many studies also examine the sources of the technical efficiency for
crops or farms to identify the variables, such as family labor, level of education, contract
work, farm size, and farmer age, that affect the efficiency of farms or crops. As such, crop
efficiency studies help educate us about farmer productivity and performance regarding
the inputs.
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At the same time, these studies have established that various factors cause differences
in farmers’ production efficiency. As a result, it makes sense not to limit these studies to an
analysis of only the inputs but also to include macroeconomic variables such as GDP and
inflation. In the context of Europe (see, e.g., [11,22,23]), while many studies have looked
into understanding the technical inefficiency determinants in crop production, none of
these studies have considered studying the efficiency levels for the same crops across coun-
tries and how efficiency is sensitive to macroeconomic variables and subsidies. Therefore,
this study estimates technical efficiency for various crops, including common wheat, grain
maize, and barley. It determines the level of technical efficiency using data from Europe’s
Farm Accountancy Data Network (FADN) and the World Bank. We estimate technical
efficiency using stochastic frontier analysis (SFA), and its variation is explained by macroe-
conomic and agricultural policy variables (subsidies) across different countries. In other
words, we evaluate how macroeconomic factors such as GDP, inflation, and unemployment
rate and policy variables, such as subsidies originating from the Common Agricultural
Policy (CAP), contribute to the sources of technical inefficiency. We use machine learning
techniques, specifically random forest regression, to extract the most important inputs
to be used as independent variables for each crop in the production function estimation.
This study also uses the random forest technique to determine the economic and policy
variables that enter the inefficiency component of the production function.

The rest of the paper is organized as follows. First, in Section 2, we describe the
conceptual framework. Then, Section 3 describes the data and the empirical estimation.
Finally, in Section 4, we present and discuss the results; in Section 5, we conclude and
suggest future research avenues.

2. Conceptual Framework

Coelli et al. [24] identified a production frontier curve that describes the connection
between inputs and output. Thus, the production frontier denotes the maximum output
obtained from the combination of inputs used in the production process. Graphically,
the production frontier curve can be represented in Figure 1 with the inputs, x, on the
horizontal axis, and the output level, y, on the vertical axis. Firms in the industry operate
either on the frontier if they are technically efficient or below the frontier curve if they are
not efficient for various reasons.

Figure 1. Production frontiers and technical efficiency. Source: [24].

For instance, consider point A as an inefficient position, while points B and C represent
efficient locations. Therefore, a company operating at point A is deemed inefficient since it
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has the potential to increase production to the level associated with either point B without
requiring additional inputs for higher output or using fewer inputs to produce the same
output as in point C. The diagram also conveys the concept of a feasible production set,
encompassing all conceivable input–output combinations between the production line
OF and the x axis. The subset of this viable production set that represents efficiency is
characterized by points along the production frontier [24].

More often, productivity and efficiency are used interchangeably. Productivity is the
rate at which a corporation produces outputs per unit of input or the quantity produced
about the number of resources required to generate them. On the other hand, efficiency can
be defined as completing a task without wasting resources or using fewer resources, such
as fertilizer, energy, and water [24]. Figure 2 shows the difference between productivity
and efficiency for a single-input–single-output case.

y 

F 

,QpUmal scal1e _, • 

H G D X 

Figure 2. Productivity and efficiency. Source: [25].

In Figure 2, three distinct producers are denoted as points A, B, and C. At point
A, productivity is determined by the output ratio, DA, to the input, OD, expressed as
productivity = DA

0D . To gauge productivity at a specific point, a ray originating from the
origin can be used, and its slope, represented by y

x , indicates the productivity level at that
point. For instance, if a firm moves from point A to point B, it becomes more productive,
as the slope of the ray from the origin to point B exceeds that from the origin to point A. At
point B, however, the firm is technically more efficient than at point A, operating on the
production function curve. Shifting to point C, and the ray from the origin becomes tangent
to the production frontier curve, making point C the location of the highest potential
productivity using scale economies. Point C is also at the technically optimum scale since,
at this point, the slope of productivity matches the slope of the production frontier curve.
Other positions on the graph above indicate poorer performance in productivity and
efficiency [25]. Despite using the same input, transitioning from point A to point B could
further enhance productivity. To evaluate the efficiency of point A, the ratio of point A’s
productivity to that of point B is considered, i.e., e f f iciency =

(DA
0D

)
/
(DB

0D
)
= DA

DB [25].
This efficiency is commonly referred to as technical efficiency (TE) and encompasses

both output and input technical efficiencies. In simpler terms, a producer can enhance
output using the same inputs (illustrated by output-oriented items A–B) or reduce input
while maintaining the same output through technological improvements (depicted by
input-oriented items A–E). Consequently, the curve OF in Figure 2 signifies the production
frontier, wherein all points located on it are technically efficient. Conversely, points situated
below the production frontier indicate technical inefficiency [24].
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Measuring productivity and efficiency is critical for assessing the production units for
the performance of various sectors or the general performance of the whole economy. This
allows for identifying the causes and effects of efficiency and productivity differentials,
which is critical for future policies to enhance the producer performance. For instance,
measuring productivity and efficiency can teach the producers about the inputs used in
the production process to increase their productivity concerning the farm’s performance
in specific sectors and for various sectors [26]. The departure from the frontier function
determines the technical efficiency of an individual production unit. Because this frontier
function is challenging to know in reality, it must be calculated from a sample of observed
production units for the inputs used in the production process. Furthermore, technical
efficiency assessments are usually performed using frontier methods, which move the
average response functions to the maximum output or the most efficient company [26].

According to Lovell et al. [27], two principal methodologies were utilized to estimate
the frontier function: data envelopment analysis (DEA), which uses nonparametric linear
programming, and stochastic frontier analysis (SFA), which employs parametric economet-
ric estimation. This paper follows the SFA estimation methodology using the production
function. Following Aignet et al. [28], a Cobb–Douglas production stochastic frontier
relates the output y to a vector of input x, and technical inefficiency u for a production unit
i as

ln yi = x′i β − ui f or i = 1, 2, . . . N, and ui ≥ 0 (1)

where ln is the natural logarithm function, and N is the number of production units. Aigner
et al. [29] and Meeusen et al. [30] modified the model in Equation (1) to include the random
symmetric error vi to account for statistical noise due to measurement and approximation
related to the functional form selection, omitted variables, such as weather and luck, which
are not under the control of the production units [31]. The resulting model is the stochastic
frontier analysis model because it includes both error terms: the technical inefficiency
ui that might affect production due to fluctuations in many parameters and the typical
random shock vi. In the context of panel data, the stochastic frontier model becomes:

ln yit = x′itβ + vit − uit f or i = 1, 2, . . . N, t = 1, 2, . . . , T and uit ≥ 0 (2)

The ratio of the output observed for the ith company compared to the prospective
output specified by the frontier function determines the technical efficiency as follows

TEit =
exp

(
x′itβ + vit − uit

)
exp

(
x′itβ + vit

) = exp
(
− uit

)
with uit ≥ 0 (3)

The panel data stochastic frontier model in Equation (3) has two common versions
of measuring efficiency and estimating the technical inefficiency factor: time-invariant
and time-variant technical efficiency. The first implies that the technical inefficiency of
individual producers remains constant throughout time, whereas the second allows for
variation in inefficiency throughout time [32]. In this paper, we allow the TE to be a time-
variant. In addition, uit can depend on variables, zit, that can vary over time and across
production units and affect their efficiency according to the following expression

uit = z′itδ + dit, (4)

where dit is a random variable with an assumed distribution, and δ are unknown parameters
to be estimated. Furthermore, we assume that the inefficiency component uit can follow
the half-normal, the exponential, the truncated normal, and the Gamma distribution.

3. Data and the Empirical Estimation

This section consists of two parts. The first part describes the data employed in
this analysis: data source, descriptive statistics, and some background regarding crop
production across some European countries. The second part gives the estimation strategy,
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including production model specification, inefficiency distribution specification, variable
selection, and model selection using Vuong’s test [7].

3.1. Data

This paper uses two sets of data. The first set consists of annual barley, common
wheat, and maize production and input use in some European Union countries. In ad-
dition, this set also contains some policy variables, such as subsidies. The annual data
are publicly available on the official website of the Farm Accountancy Data Network
(FADN) of the European Commission (we retrieved the data on 5 March 2023 from this
website https://agridata.ec.europa.eu/extensions/DashboardFarmEconomyFocusCrops/
DashboardFarmEconomyFocusCrops.html). The second set consists of macroeconomic
variables such as GDP, inflation, and employment rate, which are publicly available on
the World Bank’s official website. Both datasets span the period from 2008 to 2018. Table 1
presents the summary statistics of the variables used in the production function at the ag-
gregate level and the price indexes for energy, fertilizer, seeds, and machine and lubricants
used to define the quantity index for each of these variables (the total expenditure of any
variable for each year divided by the price index of the same year), aggregated across all
countries. Detailed descriptive statistics are available upon request.

Table 1. Summary statistics of variables used in SFA.

Variables Mean Std. Min Max

Barley

Total output (tons) 3991.24 3786.74 254.4 13,098.23
Total utility area (ha) 849.55 773.36 102.48 3486.9
Quantity index of fertilizer 1101.13 1041.85 57.44 4414.22
Price index for fertilizer 108.205 16.26 73.8 165.3
Quantity index of seed 477.91 410.43 37.32 1946.18
Price index for seed 106.147 10.601 77.9 141.2
Quantity index of machine and lubricants 608.44 532.93 59.55 2028.68
Machine and building upkeep (EUR 1000) 59,814.99 60,966.33 543.55 301,548.98
Price index for machine and lubricants 104.162 14.169 69.2 138.1
Quantity index of energy 104.49 104.9 0.73 550.54
Price index for energy 104.375 10.126 73.3 127
Interest payment (1000 EUR/ha) 0.03 0.05 0 0.29
Contract work (1000 EUR) 49,479.82 49,076.64 6.16 286,565.58
Rent payment (1000 EUR/ha) 0.05 0.03 0 0.18
Wage payment (1000 EUR/ha) 0.02 0.02 0 0.15
Total labor input (AWU) 891.37 906.74 77.26 3553.7
Quantity index of crop protection 595.92 715.06 5.1 3164.08
Own capital cost (1000 EUR/ha) 0.11 0.07 0 0.42
Family labor costs (1000 EUR/ha) 0.28 0.19 0 1.17

Wheat

Total output (tons) 6625.67 8781.73 298.63 40,944.64
Total utility area (h) 1153.31 1210.36 107.6 5161.39
Quantity index of fertilizer 1820.29 2410.15 109.64 12,029.78
Price index for fertilizer 108.725 15.921 73.8 165.3
Quantity index of seed 780.63 902.6 44.13 4591.1
Price index for seed 106.285 10.667 77.9 145.6
Quantity index of machine and lubricants 926.7 948.51 57.31 3780.6
Price index for machine and lubricants 104.608 14.739 64.1 166.4
Machine and building upkeep (EUR 1000) 74,964.95 99,700.05 2649.19 457,612.55
Quantity index of energy 124.37 137.04 2.91 585.07
Price index for energy 104.023 11.056 68.2 142.7

https://agridata.ec.europa.eu/extensions/DashboardFarmEconomyFocusCrops/DashboardFarmEconomyFocusCrops.html
https://agridata.ec.europa.eu/extensions/DashboardFarmEconomyFocusCrops/DashboardFarmEconomyFocusCrops.html
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Table 1. Cont.

Variables Mean Std. Min Max

Interest payment (1000 EUR/h) 0.01 0 0.01 0.02
Contract work (EUR 1000) 72,876.04 102,306.59 1009.53 498,018.12
Rent payment (1000 EUR/h) 0.01 0 0.01 0.02
Wage payment (1000 EUR/h) 0.01 0 0.01 0.02
Total labor input (AWU) 1819.73 1938.85 11.7 7503.38
Quantity index of crop protection 1419.24 2366.55 1.4 11,278.72
Own capital cost (1000 EUR/h) 0.01 0 0.01 0.01
Family labor costs (1000 EUR/h) 0.02 0 0.01 0.02

Maize

Total output (tons) 4529.62 4272.51 226.63 18,663.94
Total utility area (h) 628.21 674.66 36.39 2731.16
Quantity index of fertilizer 1075.36 1086.94 27.56 5243.49
Price index for fertilizer 109.05 13.724 76.44 165.3
Quantity index of seed 763.27 773.64 5.3 3253.04
Price index for seed 105.344 9.144 77.9 136.24
Quantity index of machine and lubricants 667.27 589.92 24.56 1988.87
Price index for machine and lubricants 104.363 14.635 64.1 166.4
Machine and building upkeep (EUR 1000) 38,976.17 47,687.85 2351.37 237,548.72
Quantity index of energy 174.07 235.93 0.53 1344.85
Price index for energy 104.206 10.839 68.2 142.7
Interest payment (1000 EUR/h) 0.01 0 0.01 0.02
Contract work (EUR 1000) 62,662.30 76,312.84 536.43 370,289.15
Rent payment (1000 EUR/h) 0.01 0 0.01 0.02
Wage payment (1000 EUR/h) 0.01 0 0.01 0.02
Total labor input (AWU) 796.76 856.17 19.19 4191.12
Quantity index of crop protection 552.76 595.31 26.57 2600.25
Own capital cost (1000 EUR/h) 0.01 0 0.01 0.01
Family labor costs (1000 EUR/h) 0.02 0 0.01 0.02

We notice that the machine, building upkeep, and contract work have the highest
expenditure for barley with EUR 59,814.99 and EUR 49,479.82, respectively. Comparatively,
wage payment and own capital costs are only 0.02 EUR/ha and 0.11 EUR/ha, respectively.
We observe the same pattern for common wheat, with an average of 1.39 EUR/ha on
capital costs. On the other hand, growing maize seems to cost less in terms of machine and
building upkeep, with EUR 38,976.17. However, the contract work and own capital costs
are similar to those for the common wheat. Table 2 presents statistical summaries across
all countries of the macroeconomic and agricultural policy variables used to explain the
inefficiency. The detailed summary statistics for each country in this study are available
upon request.

Figure 3 provides a snapshot of the barley, grain maize, and wheat output distribu-
tion for the European countries included in this study. The percentages are for the total
production of the three crops. Hence, in Figure 3A, common wheat, barley, and maize
represent 14%, 18%, and 68% of the total output from these crops across all the countries
considered. When we consider barley, Figure 3B shows that Spain, Germany, and France
are the top producers, with 25%, 22%, and 15% for each. On the other hand, the least pro-
ducers are Sweden, Romania, Italy, and Ireland, producing roughly 1%, 1%, 0.1%, and 0.2%,
respectively, of the total barley across the considered countries. For maize, Figure 3D
indicates that France and Romania produce around 33% and 36% of the total production
for each, respectively.
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Table 2. Summary statistics of macroeconomic and subsidies variables used in crops production.

Technical Inefficiency Variable Mean Std. Dev. Min. Max.

Agriculture value added (% of GDP) 2.402 1.171 0.558 6.302
Total unemployment (%) 9.604 4.765 2.24 27.47
Employment in agriculture—female (%) 5.198 6.089 0.55 32.36
Employment in agriculture—male (%) 7.665 5.31 1.38 29.95
Employment in industry—male (%) 36.408 6.795 19.93 52.48
Employment in industry—female (%) 14.602 5.294 6.91 28.63
Exports of goods and services (annual % growth) 3.967 7.169 −20.309 39.25
Exports of goods and services (% of GDP) 53.463 22.51 18.982 122.99
Imports of goods and services (annual % growth) 3.012 8.304 −30.894 32.448
Imports of goods and services (% of GDP) 51.699 19.24 23.02 105.859
Foreign direct investment (%) 3.685 8.822 −40.33 81.335
GDP growth (%) 1.249 3.835 −14.839 25.176
Industry, value added (% of GDP) 24.335 5.06 13.226 38.695
Inflation (annual %) 1.761 2.183 −9.728 16.016
Total labor force (1 million) 10.034 11.912 0.676 43.562
Population growth (annual %) 0.031 0.671 −2.258 2.039
Total population (1 million) 20.746 24.395 1.315 82.906
Urban population (%) 69.634 10.62 52.209 87.874
Rural population (%) 30.366 10.62 12.126 47.791
Agricultural land (% of land area) 43.481 16.891 7.387 73.096
Forest area (% of land area) 0.693 0.741 0.058 2.809
Wage and salaried workers—male (%) 80.583 6.706 59.49 89.27
Wage and salaried workers—female (%) 87.652 6.775 65.63 95.02
Total direct payments (EUR 1000) 16.68 19.836 0.1 83.616
Total subsidies on crops (EUR 1000) 0.815 2.093 0 17.151
Total subsidies on livestock (EUR 1000) 0.339 1.014 −0.002 5.883
Total support for rural development (EUR 1000) 2.403 3 0.002 13.819
Subsidies on intermediate consumption (EUR 1000) 0.597 1.302 0 5.859
Decoupled payments (EUR 1000) 14.733 18.504 0.09 81.799
Other subsidies (EUR 1000) 0.918 1.933 0 11.897

Figure 3. The three-crop production distribution.

In contrast, Slovenia, Slovakia, and Portugal have the lowest grain maize production
levels among European countries in the study. Regarding wheat production, Figure 3C
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shows that France has the highest production level with 50%, while the other countries
have almost the same production level share of between 0.1 and 8%.

3.2. Estimation Strategy

The estimation strategy proceeds in three steps. First, we perform a random forest
regression, a machine learning technique, to identify the variables for the production
(Equation (2)) and inefficiency (Equation (4)) models. We justify using the random forest
regression technique by saving on the degrees of freedom given the high number of
explanatory variables in both models and the small sample size. In the second step,
we estimate the production frontier using the identified covariates from the first step
under three distributional assumptions: half-normal, exponential, and truncated normal
distributions. Finally, we use the Vuong (1989) test to identify which model best fits the data.

3.2.1. Random Forest Regression

Random forest is an ensemble technique described as a modification of bagging or
bootstrapping aggregation used for classification and regression (Bagging or bootstrapped
aggregation is a machine learning technique involving multiple iterations of bootstrapping
and training an estimation for each bootstrapped sample.). The random forest technique
has been shown to demonstrate exceptional prediction performance on various benchmark
datasets [33]. First, the random forest builds a series of decision trees for classification (data
with discrete labels on the outcome variable). Then, it combines them using the average to
obtain accurate results with low bias and low variance consistent with the actual dataset.
In cases with a continuous outcome variable, the algorithm still builds many decision
trees but bases the final decision on the average of all trees instead of a majority voting.
The idea of the random forest technique is to reduce the level of variance by averaging the
noise without randomization. For the mathematics of the random forest model, see [34].
The process of the random forest technique proceeds in four steps:

1. Randomly choose samples from the training dataset with replacements;
2. Grow a decision in each sample from step 1;
3. Choose the optimal split at each node among the randomly q predictors out of a total

of p predictors. The user may set the number of q predictors;
4. Repeat the steps (1–3) until the T trees are grown.

Once we have T trees, we use the aggregation techniques for a final estimate. One of
the random forest model outcomes is the variable importance measure, obtained using the
mean decrease impunity (MDI) algorithm. For estimation, we use the RandomForestRegressor
algorithm from the Python package sklearn.

3.2.2. Stochastic Frontier under Different Distributions

This research explores the production of three cereal products in various European
countries, utilizing the general panel Cobb–Douglas production function specification and
analyzing three distinct distributions: half-normal, exponential, and truncated normal (the
translog specification was not considered due to the limited sample size). The technical
inefficiency model of Equation (4) consists of macroeconomic factors like inflation, GDP,
and unemployment rate, as well as agricultural policies such as total crop subsidies, total
livestock subsidies, total rural development support, decoupled payments, intermedi-
ate consumption subsidies, and other subsidies offered by certain European countries.
For estimation, we use the command frontier from the STATA 15 software.

3.2.3. Testing between Different Specifications: Vuong’s Test

In general, Vuong’s test [7] compares non-nested models. Non-nested models can
be identified as having two or more models (or hypotheses) that can neither be derived
from the other through acceptable parametric constraints nor as a limit of a reasonable
approximation [35]. Furthermore, Vuong’s test provides the economist with the information
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necessary to identify the optimal model under the various assumptions by testing the null
hypothesis in Equation (5):

ln L
(
model j

)
− ln L

(
model k

)
= 0 (5)

against the alternative hypothesis in Equation (6)

ln L
(
model j

)
− ln L

(
model k

)
> 0, (6)

where model j and model k are any two competing models, and ln L is the log-likelihood
function. Equation (7) provides the Vuong statistic as

V =

√
n
( 1

n ∑n
i=1 mi

)√
1
n ∑n

i=1
(
mi − m̄

)2
, (7)

where mi = ln L
(
modeli,j

)
− ln L

(
modeli,k

)
and m̄ is the average of mi.

Vuong [7] has shown that V has an asymptotic standard normal distribution if the two
models are equivalent. In contrast, if V tends towards positive infinity, then modelj fits the
data better than modelk. Finally, modelk outperforms modelj if V goes to negative infinity.

4. Results and Discussion

This section will first present the random forest regression estimation results. This
step will help us choose the most important variables to estimate the production function
and the inefficiency equation. Next, we will provide the SFA estimation results under three
distributions: half-normal, truncated normal, and exponential. After that, we will present
the pairwise Vuong test results to identify the model that best suits the data for each crop.
Finally, we will discuss the results of the best model.

4.1. Random Forest Regression Results

In this research, we employed random forest regression to identify the key explana-
tory variables for estimating the production and inefficiency equations. We utilized the
RandomForestRegressor algorithm from the popular sklearn library in Python to estimate
variable importance. Breiman [33] defines variable importance as the increase in prediction
error resulting from removing a specific variable from the predictors. Before using the
importance scores, we performed model validation by splitting the sample into training
(75%) and testing (25%) sets, used the root mean absolute percentage error (MAPE), and
computed the model accuracy by subtracting the mean MAPE from 100. The accuracy
measures ranged from 89.77% for truncated normal distribution for barley to 93.23% for
half-normal distribution for wheat. We presented the variable importance results of the ran-
dom forest in Table 3 for the production function and Table 4 for the technical inefficiency
estimation under various distributional assumptions.

Our findings on barley reveal that the most significant variables that explain the
variation in barley production are the total utility area, quantity of fertilizer, amount of
seed, rent payment, crop protection, and machine and lubricants, contributing 67.33%,
18.84%, 4.99%, 3.58%, 1.11%, and 1.04%, respectively. These six variables together account
for approximately 96% of the barley production variation. Consequently, we retained
these six variables to estimate the production function under diverse technical inefficiency
distributional assumptions.
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Table 3. Random forest regression for the production function.

Variables Importance Score

Barley inputs

Total utility area (ha) 0.6733
Quantity index of fertilizer 0.1884
Quantity index of seed 0.0499
Rent payment (EUR/ha) 0.0358
Quantity index of crop protection 0.0111
Quantity index of machine and lubricants 0.0104

Common wheat input

Total utility area (ha) 0.6739
Quantity index of seed 0.1032
Quantity index of crop protection 0.0593
Rent payment (EUR/ha) 0.0578
Own capital cost (EUR/ha) 0.0231
Quantity index of energy 0.0228

Grain maize inputs

Quantity index of seed 0.6672
Total utility area (ha) 0.1772
Family labor costs (EUR/ha) 0.0266
Contract work (EUR/ha) 0.0262
Rent payment (EUR/ha) 0.0156
Quantity index of machine and lubricants 0.0150

Table 4. Random forest importance score for variables entering technical inefficiency.

Variables Importance Score

Barely

Half-normal distribution

Agriculture value added (% of GDP) 0.3309
Employment in industry—male (%) 0.0973
Agricultural land (% of land area) 0.0445
Wage and salaried workers—female (%) 0.0329
Foreign direct investment (%) 0.0299
Inflation (annual %) 0.0267

Exponential distribution

Agriculture value added (% of GDP) 0.3055
Employment in industry—male (%) 0.1027
Agricultural land (% of land area) 0.0478
Foreign direct investment (%) 0.0448
Employment in agriculture—female (%) 0.0341
Forest area (% of land area) 0.0341

Truncated normal distribution

Agriculture value added (% of GDP) 0.3315
Employment in industry—male (%) 0.0973
Agricultural land (% of land area) 0.0447
Wage and salaried workers—female (%) 0.0329
Foreign direct investment (%) 0.0301
Inflation (annual %) 0.0266
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Table 4. Cont.

Variables Importance Score

Common wheat

Half-normal distribution

Total unemployment (%) 0.0955
Decoupled payments (EUR) 0.0937
Wage and salaried workers—male (%) 0.0822
Agriculture value added (% of GDP) 0.0712
Forest area (% of land area) 0.0701
Employment in agriculture—male (%) 0.0437

Exponential distribution

Total unemployment (%) 0.1273
Wage and salaried workers—male (%) 0.1046
Forest area (% of land area) 0.0639
Other subsidies (EUR) 0.0576
Agricultural value added (% of GDP) 0.0525
Decoupled payments (EUR) 0.0462

Truncated normal distribution

Total unemployment (%) 0.0876
Agricultural value added (% of GDP) 0.0830
Decoupled payments (EUR) 0.0829
Forest area (% of land area) 0.0826
Wage and salaried workers—male (%) 0.0718
Employment in agriculture—male (%) 0.0437
Variables Importance score

Grain maize

Half-normal distribution

Employment in industry—female (%) 0.3549
Total unemployment (%) 0.099
Industry, value added (% of GDP) 0.0521
Forest area (% of land area) 0.0392
Other subsidies (EUR) 0.0358
Employment in agriculture—male (%) 0.0311

Exponential distribution

Employment in industry—female (%) 0.1985
Total unemployment (%) 0.1205
Industry, value added (% of GDP) 0.0903
Employment in industry—male (%) 0.0530
Forest area (% of land area) 0.0512
Exports of goods and services (annual % growth) 0.0397

Truncated normal distribution

Employment in industry—female (%) 0.2577
Total unemployment (%) 0.1175
Industry, value added (% of GDP) 0.0903
Industry, value added (% of GDP) 0.0799
Forest area (% of land area) 0.0426
Employment in industry—male (%) 0.0402
Exports of goods and services (annual % growth) 0.0367

Regarding common wheat, based on the random forest analysis, the largest con-
tributor to the variation in output is the total utility area, which accounts for 67.39%.
Other variables, such as seed quantity, crop protection, rent payment, cost of own capital,
and amount of energy, explain smaller percentages in the variation (10.32%, 5.93%, 5.78%,
2.31%, and 2.28%, respectively). Due to collinearity issues, we excluded the cost of own
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capital and the quantity of energy and instead included machine and building upkeep
expenses. With these changes, the specification now explains approximately 91% of the
total variation in wheat production.

For grain maize, the random forest variable importance analysis indicates that the
largest contributors to the variation in output are the seed quantity, total area, expenditure
on contract work, rent payment, and machine and lubricants quantity, which account for
roughly 93%. However, due to multicollinearity, we removed the expenditure on family
labor and added the expenditure on crop protection instead.

The random forest regression analysis findings are displayed in Table 4, examining the
impact of various macroeconomic and agricultural policies on barley output as technical
inefficiency factors. The analysis was conducted under three distributional assumptions.
The results suggest that the percentage of agriculture value added in GDP is the most
significant factor affecting the technical efficiency of barley crops, accounting for 33.09%,
30.55%, and 33.15% of the total variation for half-normal, exponential, and truncated
normal distributions, respectively. Conversely, the intermediate consumption subsidies
are the least important factor, contributing only 1.49% and 1.32% of the total variation
under half-normal and truncated normal distributions, respectively. However, for the
exponential distribution, total direct payments are the least significant factor, accounting
for approximately 1.15% of the total variation in technical efficiency.

Table 4 displays the random forest regression analysis results for technical inefficiency
variables of the common wheat crop using three distributions: half-normal, exponential,
and truncated normal. The analysis reveals that the unemployment rate (as a percentage of
the labor force) is the most significant predictor of the total technical efficiency for common
wheat. It accounts for 9.55%, 12.73%, and 8.76% of the total variation in technical efficiency
under the three distributions, respectively. Conversely, the imports of goods and services
(as a percentage of GDP) have the least impact on the common wheat crop, accounting
for only 1.05%, 1.02%, and 1.07% of the total variation in technical efficiency under the
three distributions.

The study found that female employment in the industry sector is the most crucial
variable in predicting the technical efficiency of grain maize. This variable accounts for
35.49%, 19.85%, and 25.77% for half-normal, exponential, and truncated normal distribu-
tions, respectively (refer to Table 4 for details). On the other hand, the least important
variable varies based on the distribution used. For example, the variable exports of goods
and services (as a proportion of GDP) is the least important variable under the half-normal
distribution. In the exponential distribution, the total population accounts for approxi-
mately 0.85% of the technical efficiency variation. Finally, under the truncated normal
distribution, the total labor force accounts for around 0.94% of the total variation in the
technical efficiency of grain maize. To sum up, it is important to note that the random forest
variable importance provides a ranking of the relevant variables. However, this ranking
may be deviated from when some variables have multicollinearity issues.

4.2. Stochastic Frontier Analysis Results

Tables 5–7 show the maximum likelihood results of estimating the stochastic frontier
for the three crops across the countries considered, along with the findings of the effect of
macroeconomics and agricultural policy variables on technical inefficiency.

Table 5 displays the maximum likelihood estimation results of the stochastic frontier
analysis and the impact of macroeconomic and policy variables on technical inefficiency for
barley under three different distributions: half-normal, exponential, and truncated normal.
Except for the quantity index of seed, machines, and lubricants, all coefficients exhibit
statistical significance and align with the anticipated direction.
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Table 5. Stochastic frontier results for barley.

Variable Half-Normal Exponential Truncated Normal

Production function

Intercept 2.125 *** 1.862 *** 2.782 ***
(0.233) (0.256) (0.234)

Total utility (ha) 0.835 *** 0.809 *** 0.863 ***
(0.043) (0.052) (0.049)

Quantity index of seed −0.122 *** −0.099 *** −0.098 ***
(0.045) (0.053) (0.039)

Quantity index of fertilizer 0.207 *** 0238 *** 0.092 *
(0.047) (0.049) (0.047)

Rent payment (EUR/ha) 0.203 *** 0.177 *** 0.125 ***
(0.018) (0.021) (0.031)

Quantity index of crop protection 0.139 *** 0.134 *** 0.091 **
(0.022) (0.026) (0.036)

Quantity index of machine and lubricants −0.153 *** −0.155 *** −0.056
(0.041) (0.042) (0.042)

Technical inefficiency

Intercept 28.976 ** 56.422 ** 7.431 ***
(13.094) (21.951) (1.565)

Employment in industry—male (%) −0.114 - 0.011 *
(0.088) - (0.007)

Wage and salaried workers—female (%) −0.807 *** −1.259 *** −0.126 ***
(0.259) (0.437) (0.026)

Foreign direct investment (%) −0.065 * −0.094 −0.009 *
(0.039) (0.072) (0.005)

Forest area (% of land area) 1.482 *** 1.654 * -
(0.396) (0.971) -

Employment in agriculture—female (%) −0.71 *** −0.657 *** −0.058 ***
(0.202) (0.242) (0.014)

Other subsidies (EUR) 0.498 * 0.339 −0.002
(0.278) (0.405) (0.03)

Industry, value added (% of GDP) −0.062 - −0.001
(0.072) - (0.009)

Employment in industry—female (%) 0.546 ** 0.188 -
(0.238) (0.166) -

Total labor force −0.073 ** - -
(0.032) - -

Employment in agriculture—male (%) 0.385 ** - -
(0.194) - -

Wage and salaried workers—male (%) 0.235 0.585 ** 0.051 ***
(0.17) (0.246) (0.014)

Exports of goods and services (% of GDP) 0.088 *** 0.061 ** 0.004 *
(0.031) (0.03) (0.002)

Urban population (%) 0.198 ** - -
0.092 - -

Total subsidies on crops (EUR) 0.16 * - 0.008
(0.091) - (0.01)

Inflation (annual %) −0.079 - -
(0.11) - -

Imports of goods and services 0.007 - -
(0.019) - -

Agricultural land (% of land area) - 0.019 −0.005 ***
- (0.037) (0.002)

Total unemployment (%) - 0.134 ** 0.025 ***
- (0.056) (0.005)

Total population - −0.092 *** −0.01 ***
- (0.035) (0.002)

Total support for rural development (EUR) - 0.093 -
- (0.091) -

(*): significance level at 10%; (**): significance level at 5%; and (***): significance level at 1%. Figures between
parentheses are coefficient standard errors.
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Table 6. Stochastic frontier results for common wheat.

Variable Half-Normal Exponential Truncated Normal

Production function

Intercept 9.289 *** 10.347 *** 8.611 ***
(1.642) (1.657) (2.233)

Total utility area (ha) 0.617 *** 0.538 *** 0.632 ***
(0.046) (0.046) (0.056)

Quantity index of seed 0.07 0.141 *** 0.037
(0.045) (0.046) (0.049)

Quantity index of crop protection 0.522 *** 0.587 *** 0.462 ***
(0.09) (0.093) (0.122)

Rent payment (EUR/ha) −5.101 *** −5.734 *** −4.379 ***
(0.939) (0.97) (1.245)

Machine and building upkeep (EUR/ha) 0.171 *** 0.16 *** 0.167 ***
(0.021) (0.022) (0.025)

Technical inefficiency

Intercept 1.583 3.313 −0.883
(1.583) (2.866) (0.667)

Decoupled payments (EUR) 0.272 −0.023 * 0.037 *
(0.186) (0.012) (0.019)

Total labor force 1.758 *** - 0.187 ***
(0.424) - (0.051)

Total direct payments (EUR) −0.393 ** - −0.053 ***
(0.193) - (0.021)

Total population −0.812 *** - −0.086 ***
(0.198) - (0.023)

Employment in agriculture—female (%) −0.37 *** - -
(0.14) - -

Urban population (%) 0.075 ** - 0.02 ***
(0.032) - (0.004)

Wage and salaried workers—male (%) −0.202 *** −0.105 *** −0.105 ***
(0.049) (0.031) (0.004)

Agriculture value added (% of GDP) 0.258 - -
(0.289) - -

Forest area (% of land area) −0.412 - 0.138 **
(0.515) - (0.068)

Total support for rural development (EUR) 0.067 - -
(0.104) - -

Employment in industry—male (%) 0.108 * 0.091 * 0.024 ***
(0.06) (0.054) (0.009)

Employment in agriculture—male (%) 0.373 ** - 0.013 *
(0.147) - (0.008)

Agricultural land (% of land area) −0.041 * −0.043 ** −0.005 *
(0.022) (0.017) (0.003)

Total unemployment (%) 0.084 ** 0.124 *** 0.024 ***
(0.041) (0.039) (0.004)

Other subsidies (EUR) 0.308 * - 0.037 *
(0.187) - (0.021)

Industry value added (% of GDP) 0.125 * - 0.007
(0.075) - (0.008)

Imports of goods and services −0.004 0.009 -
(0.016) (0.018) -

Total subsidies on livestock (EUR) - 0.545 * 0.11 ***
- (0.319) (0.042)

Employment in industry—female (%) - −0.076 0.002
- (0.08) (0.011)

Population growth - −0.632 * -
- (0.379) -

Foreign direct investment (%) - 0.01 −0.001
- (0.038) (0.003)

(*): significance level at 10%; (**): significance level at 5%; and (***): significance level at 1%. Figures between
parentheses are coefficient standard errors.



Sustainability 2024, 16, 546 17 of 27

Table 7. Stochastic frontier results for grain maize.

Variable Half-Normal Exponential Truncated Normal

Production function

Intercept −14.174 *** −12.28 *** −10.974 **
(3.134) (3.176) (5.392)

Quantity index of seed 0.062 *** 0.077 *** 0.052 **
(0.023) (0.025) (0.025)

Total utility area (ha) 0.888 *** 0.893 *** 0.917 ***
(0.056) (0.058) (0.059)

Contract work 0.047 0.075 *** 0.008
(0.029) (0.027) (0.035)

Rent payment (EUR/ha) 10.796 *** 9.416 *** 8.889 ***
(2.077) (2.100) (3.363)

Quantity index of machine and lubricants 0.019 0.013 0.035
(0.039) (0.045) (0.038)

Quantity index of crop protection −0.896 *** −0.823 *** −0.741 ***
(0.156) (0.163) (0.271)

Technical inefficiency

Intercept 13.391 6.261 3.429 *
(11.414) (15.188) (1.769)

Employment in industry—female (%) 0.126 0.195 * 0.028 ***
(0.077) (0.112) (0.01)

Employment in industry—male (%) 0.269 *** 0.294 *** 0.041 ***
(0.08) (0.100) (0.013)

Employment in agriculture—male (%) 1.221 *** 1.505 *** 0.199 ***
(0.294) (0.395) (0.051)

Total support for rural development (EUR) 0.615 ** 0.546 0.068
(0.311) (0.36) (0.048)

Employment in agriculture—female (%) −1.185 *** −1.438 *** −0.195 ***
(0.326) (0.43) (0.055)

Wage and salaried workers—male (%) 0.473 *** 0.644 *** 0.089 ***
(0.158) (0.228) (0.028)

Wage and salaried workers—female (%) −0.778 *** −1.004 *** −0.145 ***
(0.257) (0.371) (0.046)

Agricultural land (% of land area) −0.055 ** −0.069 ** −0.008 **
(0.028) (0.031) (0.004)

Total direct payments (EUR) −1.269 - 0.001
(1.220) - (0.188)

Total subsidies on crops (EUR) 0.160 - −0.122
(1.590) - (0.215)

Other subsidies (EUR) 1.211 - 0.027
(1.220) - (0.19)

Decoupled payments (EUR) 1.298 - 0.003
(1.220) - (0.188)

GDP growth (annual %) −0.124 * −0.188 −0.017 **
(0.070) (0.122) (0.008)

Total unemployment (%) 0.007 - -
(0.052) - -

Inflation (annual %) 0.090 0.121 -
(0.104) (0.151) -

Agriculture value added (% of GDP) - −0.285 -
- (0.417) -

Exports of goods and services (annual % growth) - 0.044 -
- (0.05) -

Foreign direct investment (%) - −0.012 -
- (0.032) -

Total subsidies on livestock (EUR) - - −0.053
- - (0.284)

(*): significance level at 10%; (**): significance level at 5%; and (***): significance level at 1%. Figures between
parentheses are coefficient standard errors.

Assuming all other factors remain constant (ceteris paribus), the results indicate that
a 1% increase in total utility area leads to a 0.835% increase in total barley production for
the half-normal distribution. Similarly, a 1% increase in the fertilizer quantity index would
result in a 0.207% increase in the overall barley production. Moreover, a 1% increase in rent
payment and crop protection quantity index would increase the total barley production by
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0.203% and 0.139%, respectively. However, a 1% rise in the seed quantity index reduces
barley production by 0.122%, while a 1% increase in the quantity index of machines and
lubricants will reduce the barley production by 0.153%.

Under the exponential distribution, a 1% increase in total utility area results in a 0.809%
increase in overall barley production. Similarly, a 1% increase in the fertilizer quantity
index would result in a 0.238% increase in the overall barley production. In contrast,
a 1% increase in rent payment and crop protection quantity index resulted in 0.177% and
0.134% increases in the total barley production, respectively. However, a 1% rise in the seed
quantity index lowers the barley production by 0.099%, while a 1% increase in the quantity
index of machines and lubricants results in a 0.155% reduction in overall barley production.

Finally, under the truncated normal distribution, the results show that a 1% increase in
total utility area enhances the overall barley production by 0.863%. Similarly, a 1% increase
in the fertilizer amount index results in a 0.09% increase in barley production. Additionally,
a 1% increase in rent payment and crop protection quantity index increased the total barley
production by 0.125% and 0.091%, respectively. However, a 1% increase in the seed quantity
index reduces barley production by 0.098%, while a 1% increase in the quantity index of
machines and lubricants resulted in a 0.056% decrease in barley production.

Table 5 illustrates the influence of different macroeconomic and subsidy variables
on the technical efficiency of barley production under three distributional assumptions.
The findings indicate that certain variables significantly impact the overall technical effi-
ciency of barley production, while others demonstrate no effect.

In the context of the half-normal distribution, factors such as male employment in
the industry, industry value added as a percentage of GDP, male waged and salaried
workers, inflation, and imports of goods and services exhibit no statistically significant
impact on technical efficiency. Conversely, variables like female wage and salaried workers,
female employment in agriculture, and the total labor force show a negative yet statistically
significant effect on technical inefficiency. This suggests that these variables contribute to
enhancing the technical efficiency of barley production.

Conversely, factors such as forest area, other subsidies, female employment in industry,
male employment in agriculture, exports of goods and services as a percentage of GDP,
urban population, and total crop subsidies demonstrate a statistically significant adverse
impact on the technical efficiency of barley production. Furthermore, under the half-
normal distribution, variables like male employment in industry, industrial value added as
a proportion of GDP, male wages, inflation, and imports of goods and services do not exert
a significant effect on technical efficiency and inefficiency in barley production.

In the context of exponential distribution, the findings indicate that female wages,
female employment in agriculture, and the total population exhibit a statistically significant
positive impact on the technical efficiency of barley production. Conversely, factors such as
forest area, male wages, the total unemployment rate, and exports of goods and services as
a percentage of GDP have a statistically significant adverse effect on the technical efficiency
of barley production. Additionally, variables like foreign direct investment, other subsidies,
female employment in the industry, total support for rural development, and agricultural
land as a percentage of total land do not exert a significant influence on technical efficiency
in barley production.

The regression analysis presented in Table 5 also examines the impact of macroeco-
nomic and policy variables on technical efficiency within the truncated normal distribution.
The results suggest that female wages, foreign direct investment, female employment
in agriculture, agricultural land as a percentage of total land, and the total population
demonstrate a statistically significant positive effect on the technical efficiency of barley
production. Conversely, factors such as male employment in the industry, male wages, ex-
ports of goods and services as a percentage of GDP, and the total unemployment rate have
a statistically significant negative impact on the technical efficiency of barley. Additionally,
other subsidies, industry value added as a percentage of GDP, and total crop subsidies
significantly influence the technical efficiency.
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Table 6 illustrates the regression of frontier analysis and the influence of macroeco-
nomic and policy variables on technical efficiencies for common wheat in some European
Union member nations using the maximum likelihood estimator under the three distri-
butional assumptions. The estimation results show that, except for the quantity index of
seed under the half normal and truncated normal distribution, all inputs are statistically
significant for wheat production. On a ceteris paribus basis, a 1% increase in total utility
area results in a 0.617% increase in total wheat production under half-normal. Moreover,
a 1% increase in the seed quantity index increases wheat production by 0.07%. Addition-
ally, a 1% increase in the crop protection index results in a 0.522% increase in total wheat
production. In comparison, a 1% increase in the machines and buildings’ upkeep yields a
0.171% increase in the total wheat production. However, a 1% increase in the rent payment,
on the other hand, reduces the total wheat production by 5.101%.

The estimation under exponential distribution shows that increasing the total utility
area by 1% boosts the overall wheat production by 0.538%. Besides that, increasing the seed
quantity index by 1% increases the wheat production by 0.141%. Furthermore, increasing
the quantity index crop protection by the same amount results in a 0.587% increase in total
wheat production. In contrast, a 1% increase in rent payment resulted in a reduction in total
wheat production of 5.734%. Additionally, a 1% increase in the machines’ and buildings’
upkeep implies a 0.16% increase in total wheat production.

Table 6 also provides the estimation results for the production frontier for the wheat
under a truncated normal distribution. The results, ceteris paribus, reveal that a 1% increase
in total utility area increases wheat production by 0.632%. At the same time, the same
increase in the seed quantity index results in a 0.037% increase in total wheat production.
Besides that, a 1% increase in the quantity index of crop protection yields a 0.46% increase
in wheat production. However, raising the rent payment by 1% decreases the wheat
production by 4.379%. The same increase in the machines and buildings’ upkeep resulted
in a 0.167% decrease in the total wheat production.

Regarding the technical efficiency, Table 6 outlines the impact of various macroeco-
nomic and subsidy factors on the technical efficiency of wheat production under different
distributional assumptions. Several variables exhibit a statistically significant effect, while
others show no discernible impact. For instance, within the half-normal distribution,
total direct payments, total population, female wages, female agricultural employment,
and agricultural land as a percentage of total land all exert a statistically significant positive
influence on the technical efficiency of wheat production. Conversely, the total labor force,
urban population, male employment in the industry, male employment in agriculture, total
unemployment rate, other subsidies, and industry value added as a percentage of GDP
demonstrate a statistically significant negative effect on the technical efficiency of wheat
production. Furthermore, decoupled payments, agricultural value added as a percentage
of GDP, forest area as a percentage of total land area, total support for rural development,
and imports of goods and services for annual growth do not exhibit a significant influence
on technical efficiency for wheat production under a half-normal distribution.

Furthermore, the results within the exponential distribution framework reveal that
male wages, agricultural land as a percentage of total land, and annual population growth
display a statistically significant positive impact on the technical efficiency of wheat pro-
duction. Conversely, male employment in the industry, the overall unemployment rate,
and total subsidies on livestock exhibit a statistically significant negative effect on the
technical efficiency of wheat production. Additionally, the imports of goods and services,
female employment in the industry, and foreign direct investment do not exert a significant
influence on the technical efficiency of wheat production.

The regression outcomes presented in Table 6 further illustrate the impact of macroeco-
nomic and policy variables on technical efficiency under the normal truncated distribution.
The results reveal that total direct payments, total population, male wages, the forest area
as a percentage of total land area, and agricultural land as a percentage of total land all
exhibit a statistically significant positive effect on the technical efficiency of wheat pro-
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duction. Conversely, decoupled payments, the total labor force, urban population, male
employment in the industry, male employment in agriculture, the total unemployment
rate, other subsidies, and total subsidies on livestock demonstrate a statistically significant
negative influence on the technical efficiency of wheat production. Furthermore, industry
value added as a percentage of GDP, female employment, and foreign direct investment do
not show a significant influence on the technical efficiency of wheat production.

Regarding the grain maize results, Table 7 provides the results of the SFA and ineffi-
ciency estimates. All inputs in grain maize production are statistically significant except
for contract work, the quantity index of machines and lubricants under half-normal and
truncated normal distributions, and the quantity index of machines and lubricants under
the exponential distribution. According to this research, a 1% increase in the quantity
index of seed under half-normal distribution results in a 0.062% increase in total grain
maize production. At the same time, a 1% increase in total utility area results in a 0.888%
increase in the total grain maize production. Furthermore, a 1% increase in contract work
and rent payment increased grain maize production by 0.047% and 10.796%, respectively.
The same increase in the quantity index of machines and lubricants will increase the grain
maize production by 0.019%. However, a 1% increase in the crop protection quantity index
reduces the output of grain maize by 0.896.

Additionally, under exponential distribution, the regression findings indicate that
increasing the quantity index of seed by 1% increases the output of grain maize by 0.077%.
Moreover, increasing the total utility area by 1% increases the grain maize production by
0.893%. Furthermore, increasing contract work, rent payment, and the quantity index of
machines and lubricants by 1% improves grain maize production by 0.075, 9.416, and 0.01%,
respectively. In comparison, a 1% increase in the quantity index of crop protection leads to
a 0.82% decrease in grain maize production.

For the regression under a truncated normal distribution, the results indicate that a
1% increase in the quantity index of seed enhances the grain maize production by 0.05%.
Similarly, a 1% increase in total utility area enhances it by 0.917%. Furthermore, increasing
the contract work by 1% will increase the grain maize output by 0.008%. Furthermore,
an increase in rent payment and machine lubricant quantity index by 1% will increase
overall grain maize production by 8.889% and 0.035%, respectively. Finally, a 1% increase
in the crop protection quantity index will reduce the grain maize production by 0.741%.

Concerning the estimation of the inefficiency equation, Table 7 delineates the impact
of various macroeconomic and subsidy variables on the technical efficiency of grain maize
production under different distributional assumptions. Most variables exhibit a statisti-
cally significant effect, while others show no discernible impact. For instance, within a
half-normal distribution, male employment in the industry, male employment in agricul-
ture, total support for rural development, and male wages all demonstrate a statistically
significant positive effect on the technical efficiency of grain maize production. However,
female employment in agriculture, female wages, agricultural land as a percentage of total
land, and GDP all reveal a statistically significant negative effect on the technical efficiency
of grain maize production. Furthermore, female employment in the industry, total direct
payments, total subsidies on crops, other subsidies, decoupled payments, the total unem-
ployment rate, and inflation do not exhibit a significant effect on the technical efficiency of
grain maize production.

In the context of exponential distribution, male wages, female employment in the
industry, male industry employment, and male employment in agriculture all exhibit a
statistically significant positive impact on technical efficiency. Furthermore, employment in
agriculture and female wages demonstrate a statistically significant negative influence on
the technical efficiency of grain maize production. Additionally, the total rural development
support, male wages, GDP annual growth, inflation, agricultural value added as a percent-
age of GDP, exports of goods and services, annual growth, and foreign direct investment
do not have a significant effect on the technical efficiency of grain maize production.
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Under truncated normal distribution, the results reveal that male employment in
agriculture, male wages, female employment in the industry, and male employment in
the industry significantly positively affect the overall technical efficiency of grain maize
production. However, female employment in agriculture, agricultural land as a percentage
of total land, GDP annual growth, and female wages significantly negatively impact
the technical efficiency of grain maize production. Moreover, total support for rural
development, total direct payment, total subsidies on crops, other subsidies, decoupled
payments, and total subsidies on livestock do not have a significant effect on the technical
efficiency of grain maize production.

4.3. Vuong Test Results

In this part, we report the results of Vuong’s test to compare the non-nested models.
We carry this test for each crop. Table 8 provides the pairwise comparison between the
three distributional specifications. Given that the half-normal model outperforms the two
other models, we conclude that the estimation under half-normal fits the data better for the
three crops considered. In what follows, we will limit our discussion of the results implied
by half-normal distribution.

Table 8. Vuong test results.

Barley

Null hypothesis Vuong statistic Distribution retained

Half-normal equivalent to exponential 17.368 Half-normal
Half-normal equivalent to truncated normal 24.069 Half-normal

Common wheat

Null hypothesis Vuong statistic Distribution retained

Half-normal equivalent to exponential 25.684 Half-normal
Half-normal equivalent to truncated normal 23.804 Half-normal

Gain maize

Null hypothesis Vuong statistic Distribution retained

Half-normal equivalent to exponential 24.113 Half-normal
Half-normal equivalent to truncated normal 20.918 Half-normal

If −1.96 < V < 1.96, the two models are equivalent. If V > 1.96, the first model outperforms the second.
If V < −1.96, the second model outperforms the first.

4.4. Efficiency Results

When averaging across all countries and years, the estimates for barley’s technical
efficiency scores range from 0.803 under the half-normal distribution to 0.835 under the
exponential distribution, with a mean score of 0.812 (refer to Table 9). For wheat, the figures
are slightly higher, with average technical efficiency scores of 0.855 under the half-normal
distribution, 0.843 under the exponential distribution, and 0.825 under the truncated normal
distribution. However, maize exhibits the lowest technical efficiency scores, with values of
0.716, 0.774, and 0.755 under half-normal, exponential, and truncated normal distributions,
respectively.

Table 9. Average technical efficiency over countries and years.

Barley Wheat Maize

Distribution Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Half-normal 0.812 0.149 0.855 0.141 0.716 0.182
Exponential 0.835 0.152 0.843 0.142 0.774 0.163
Truncated normal 0.803 0.183 0.825 0.181 0.755 0.187
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Table 10 presents the technical efficiency estimates distribution for barley, wheat,
and maize across the countries considered in this study under the half-normal distribution.
The highest efficiency level is in the United Kingdom, while Finland has the lowest technical
efficiency. Specifically, the average level of technical efficiency estimates for the United
Kingdom is 0.98, with a minimum of 0.97, a maximum of 0.99, and a standard deviation of
0.077. For Finland, the average is 0.65, with a minimum of 0.58, a maximum of 0.74, and a
standard deviation of 0.050. It is surprising that other countries, such as Estonia, Lithuania,
Romania, and Spain, have technical efficiencies lower than 0.70.

Table 10. Average technical efficiency across countries.

Barley Wheat Maize

Country Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Austria - - - - 0.908 0.066 0.776 0.975 0.931 0.047 0.815 0.968
Bulgaria - - - - 0.919 0.038 0.86 0.967 0.598 0.133 0.397 0.819
Croatia - - - - 0.863 0.084 0.708 0.951 0.731 0.153 0.437 0.952
Czech Republic - - - - 0.86 0.079 0.658 0.942 - - - -
Denmark 0.883 0.095 0.651 0.966 0.972 0.007 0.961 0.981 - - - -
Estonia 0.692 0.135 0.431 0.883 0.609 0.101 0.499 0.818 - - - -
Finland 0.656 0.050 0.586 0.744 0.571 0.062 0.421 0.647 - - - -
France 0.921 0.047 0.82 0.979 0.993 0.001 0.981 1 0.994 0.004 0.986 1.000
Germany 0.942 0.042 0.835 0.971 0.991 0.013 0.953 0.999 0.941 0.036 0.851 0.972
Greece - - - - 0.562 0.086 0.404 0.657 0.969 0.013 0.945 0.983
Hungary - - - - 0.923 0.039 0.859 0.965 0.704 0.130 0.434 0.868
Italy 0.826 0.056 0.741 0.921 0.962 0.017 0.918 0.976 0.941 0.027 0.885 0.967
Latvia - - - - 0.732 0.089 0.595 0.872 - - - -
Lithuania 0.69 0.129 0.444 0.919 0.821 0.085 0.683 0.925 - - - -
Poland 0.844 0.116 0.674 0.964 0.769 0.058 0.659 0.845 0.679 0.081 0.508 0.774
Romania 0.683 0.170 0.511 0.968 0.814 0.121 0.628 0.963 0.484 0.162 0.244 0.850
Slovakia - - - - 0.838 0.114 0.616 0.957 0.655 0.149 0.466 0.855
Slovenia - - - - - - - - 0.862 0.107 0.619 0.949
Spain 0.697 0.136 0.491 0.885 0.716 0.121 0.535 0.903 0.977 0.007 0.961 0.984
Sweden 0.807 0.132 0.56 0.944 0.882 0.079 0.702 0.947 - - - -
United Kingdom 0.985 0.007 0.972 0.994 0.985 0.008 0.971 0.994 - - - -

For wheat production, France has the highest technical efficiency, while Greece has
the lowest. Using a half-normal distribution, France’s average level of technical efficiency
is 0.993, with a minimum of 0.981 and a maximum of 1. Within the same distribution,
however, the average for Greece is 0.56, with a range of 0.40–0.65 and a standard deviation
of 0.086. The United Kingdom has an average efficiency of 0.985, with a minimum of 0.971,
a maximum of 0.994, and a standard deviation of 0.008.

Regarding the grain maize, France has the highest technical efficiency, while Romania
has the lowest. France’s average level of technical efficiency, using a half-normal distribu-
tion, is 0.994, with a minimum of 0.986 and a maximum of 1. The average for Romania is
0.48, ranging from 0.244 to 0.850. Bulgaria is another country with low technical efficiency
in producing grain maize. Over the years, the TE averages 0.598, with a minimum of 0.397
and a maximum of 0.819. On the other hand, Poland and Slovakia’s maize productions
exhibit a TE lower than 0.70.

However, the results provide a different story when examining the variation across
the countries and years, as summarized in Figures 4–6. The advantage of boxplots over
summary statistics is that the former provide more information on the distribution and
variability of the variable under consideration. For example, the boxplot provides informa-
tion on the minimum, the maximum, the median, the first quartile, and the third quartile.
It also provides information on the presence of outliers, the symmetry and skewness of the
distribution, and whether the data are tightly grouped or not. Figure 4 gives the boxplot
of barley’s technical efficiency score estimates under the half-normal distribution across
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the countries considered in the study. In the case of this study, the boxplot graph for each
country provides the distribution of the technical efficiency score estimates over the years.

1.0 

0.9 

0.6 

0.6 

0.0 

DEN C£R ESP EST FRA IRE ITA 

Country_Code 

LIT POL ROM AN LJ{ 

Figure 4. A boxplot for common barley under half-normal distribution across countries.

Examining the boxplot above, we notice a significant variability in the technical
efficiency estimates. For example, the U.K. has the shortest boxplot, implying that there
has not been a lot of variation in technical efficiency scores over the years. On the other
hand, countries such as Poland, Romania, Spain, and Sweden have comparatively taller
boxplots, indicating the higher variation of the technical efficiency estimates over the
years. Another striking result is the inequality of the median values of the technical
efficiency score estimates. Western European countries, such as the U.K., Germany, Ireland,
and France, show high median values compared to Eastern European countries, such as
Estonia, Lithuania, Romania, and Poland. The technical efficiency estimates are lower for
Spain than other Western European countries, with scores as low as 0.491 compared to
0.972 in the U.K., 0.835 in Germany, or 0.820 in France.

Figure 5 provides the boxplot for technical efficiency for wheat across producing
countries in Europe. We observe that countries such as the UK, Germany, France, and Italy
show slight variations in technical efficiency scores over the years. In contrast, countries
such as Spain, Greece, Estonia, Croatia, Lithuania, Latvia, Romania, and Slovakia exhibited
high variability in technical efficiency scores over the years. It is also striking to observe that
Spain and Greece, which have been part of the European Union since the 1980s, produce
common wheat at a lower technical efficiency than countries such as Lithuania, Latvia,
Croatia, and Romania, which recently joined the union.
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Figure 5. A boxplot for common wheat under half-normal distribution across countries.

Regarding the variability of the technical efficiency scores, Figure 6 displays their
boxplots under the half-normal distribution. We notice that countries such as Germany,
France, Spain, Austria, and Greece have their score values oscillating between 0.9 and
1 over the years, with a small amount of variance. In comparison, Romania’s technical
efficiency scores vary considerably over the years between 0.24 and 0.65.

Figure 6. A boxplot for grain maize under half-normal distribution across countries.

5. Conclusions

The objective of this study was to assess the technical efficiency scores for three crops—barley,
wheat, and maize—across European countries. The research unfolds in three stages. Ini-
tially, a random forest algorithm is employed to pinpoint the most influential variables
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that account for variations in the production function and inefficiency levels. Subsequently,
these identified variables are utilized to estimate the production function and technical effi-
ciency scores under half-normal, exponential, and truncated normal distributions. Lastly,
this study employed Vuong’s (1989) test to determine the model that best aligns with the
available data.

For barley, the random forest estimation results indicate the most important variables
explaining that the variation in production is the total utility area, the quantity of fertilizer,
the quantity of seed, rent payment, crop protection, and machine and lubricants. For wheat,
the total utility area is the most important variable, followed by the quantity of seed, crop
protection, rent payment, the cost of the own capital, and the quantity of energy. For maize,
the most important variables are the seed quantity, total area, expenditure on family labor,
expenditure on contract work, rent payment, and the machine and lubricant quantity.

For the technical inefficiency results, the random forest findings indicate that, for
barley, the most important variable affecting technical efficiency is agriculture value added
as a percentage of GDP. For wheat, the unemployment rate as a percentage of the labor
force is the most influential predictor of total technical efficiency. For maize, the most
crucial variable in predicting the technical efficiency of grain maize is female employment
in the industry.

When considering the average level of technical efficiency across all countries and
years, the study shows that barley’s technical efficiency score ranges from 0.803 to 0.835,
while wheat has a higher score of 0.855. However, maize has the lowest score, ranging from
0.716 to 0.774. The UK has the highest technical efficiency score for barley, while Finland
has the lowest. France demonstrates the highest technical efficiency score for common
wheat and grain maize, while Greece and Romania exhibit the lowest scores, respectively.

Various macroeconomic and subsidy variables affect the technical efficiency of barley
production. Factors such as female wages, foreign direct investment, and total population
have a positive effect, while forest area, other subsidies, and total unemployment rate
have a negative effect. Other variables have no significant effect on technical efficiency
in barley production. For wheat production, factors such as agricultural employment,
wages, forest area, and total direct payments have a positive effect on technical efficiency,
while factors such as urban population, unemployment rate, and subsidies have a negative
effect. Decoupled payments have varying effects under different distributions. For maize
production, factors such as employment in the industry and wages for males have a
positive effect, while factors such as employment in the industry for females, wage for
females, and agricultural land have a negative effect. Total support for rural development
has a positive impact on the technical efficiency of grain maize production under the
half-normal distribution.

In summary, the study unveils a variation in the technical efficiency scores across
diverse crops and countries, revealing the complex nature of agricultural productivity. This
disparity underscores the significance of considering unique challenges and opportunities
inherent in the cultivation of different crops within specific national contexts. Furthermore,
the impact of macroeconomic variables and agricultural policies on these efficiency scores
becomes evident, highlighting the need for tailored strategies to optimize production
capabilities and address sector-specific challenges across various nations. Such insights
are pivotal for policymakers aiming to enhance the overall agricultural efficiency and
sustainability on a global scale. However, it is essential to acknowledge that this study
is not without limitations. The scope of our research does not encompass an exhaustive
exploration of all potential influencing factors, and thus, some aspects may not have
been fully addressed. While recognizing these shortcomings, the current study serves
as a valuable foundation, and future research may delve deeper into specific unexplored
dimensions for a more comprehensive understanding of technical efficiency in cereal
production at the national level.
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