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Abstract: The i-DREAMS project has a core objective: to establish a comprehensive framework that
defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial
for maintaining drivers within safe operational boundaries. The primary focus of this research is to
conduct a detailed comparison between two machine learning approaches: long short-term memory
networks and shallow neural networks. The goal is to evaluate the safety levels of participants as
they engage in natural driving experiences within the i-DREAMS on-road field trials. To accomplish
this objective, the study gathered a series of trips from a sample group consisting of 30 German
drivers, 43 Belgian drivers, and 26 drivers from the United Kingdom. These trips were then input
into the aforementioned machine learning methods to reveal the factors contributing to unsafe
driving behaviour across various experiment stages. The results obtained highlight the significant
positive impact of i-DREAMS’ real-time interventions and post-trip assessments on enhancing driving
behaviour. Furthermore, it is worth noting that neural networks demonstrated superior performance
compared to other algorithms considered within this research context.

Keywords: driving behaviour; road safety; long short-term memory network; neural network;
machine learning techniques

1. Introduction

Road safety stands as a critical worldwide concern, with an alarming annual toll
resulting in around 1.3 million lives lost and numerous injuries due to road crashes [1].
These occurrences are shaped by a variety of elements, including human conduct, road
layout, safety attributes of vehicles, environmental circumstances, and socioeconomic
differences [1]. Emphasising the crucial contribution of drivers to the happening and
intensity of road accidents is essential. A considerable part of these incidents can be linked
to driving behaviour, underscoring the pivotal role of drivers in research on traffic safety [2].
Acknowledging the seriousness of this concern, the European Union and the World Health
Organization have established ambitious objectives to halve fatal traffic accidents from
2021 to 2030. Emerging technology is anticipated to play a crucial role in realising these
advancements in road safety [3].

Road safety is influenced by a range of risk factors, encompassing the driver’s con-
dition, environmental factors, and traffic conditions. Despite progress in technology and
infrastructure, human error remains a notable contributing element to traffic collisions [4].
Nevertheless, the ongoing advancements in autonomous vehicles hold promise for en-
hancing road safety by reducing the number of crashes caused by human errors [5]. The
integration of autonomous vehicles and intelligent monitoring systems holds considerable
potential for reducing the impact of human error and establishing a safer road environment
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for all users. Numerous studies have explored the influence of various factors on unsafe
driving and have sought to develop models for detecting risky driving behaviour [6,7].

Aligned with the main objective of the i-DREAMS project, this research aims to perform
a comprehensive comparative analysis of two distinct machine learning methodologies,
namely long short-term memory networks and shallow neural networks. To achieve this
goal, the study collected a series of driving trips through the i-DREAMS on-road field
trials from a diverse sample group composed of 30 German drivers, 43 Belgian drivers,
and 26 drivers from the United Kingdom. By analysing the performance and predictive
capabilities of these models in the context of the naturalistic driving experiment, this
research endeavours to contribute novel insights into the critical factors influencing road
safety and advance the field of intelligent transportation systems.

The i-DREAMS project, funded by the European Commission’s Horizon 2020 pro-
gramme, proposes a framework to address these issues by defining, developing, testing,
and establishing a ‘Safety Tolerance Zone’ (STZ) to promote safe driving behaviour. Within
the i-DREAMS project, the STZ has been distinguished into three levels: ‘Normal’, ‘Dan-
gerous’, and ‘Avoidable Accident’, to implement interventions to keep drivers operating
within acceptable safety boundaries by continuously monitoring risk factors associated
with task complexity (e.g., traffic conditions and weather) and coping capacity (e.g., driver’s
mental state, driving behaviour, and vehicle status). With regards to the levels, the ‘Normal’
level implies a low risk of a crash, whereas the ‘Dangerous’ level indicates an elevated
potential but not certainty of a crash. The ‘Avoidable Accident’ rating indicates a high
likelihood of a collision, but it also provides enough time for drivers to act and prevent
it. The difference between the ‘Dangerous’ and ‘Avoidable Accident’ levels is that the
‘Avoidable Accident’ level requires an immediate response. In this analysis, the i-DREAMS
project provides the infrastructure and context for collecting real-world driving behaviour
data from on-road field trials used in this research.

The organisation of the paper is outlined as follows: At the beginning, a detailed
introduction about the context and objective of the study is provided. This is followed by
an extensive literature review, which attempts to highlight the gaps in the literature that
this research attempts to address. The methods utilised and the data collection process
are highlighted. Finally, the results of the analyses are presented, along with an important
discussion and conclusions.

2. Literature Review

In recent years, naturalistic driving studies (NDS) have been widely employed to
analyse unsafe driving behaviour [8]. Various factors, including traffic conditions, driver
attributes, vehicle characteristics, and environmental elements, influence the risk of driv-
ing [9]. Recent research endeavours focus on discerning driving behaviours and classifying
them as either risky or safe to enhance road safety [10]. Scholars have employed models to
assess unsafe driving behaviour, considering factors like the driver’s state [11] and specific
driver features such as demographics [12], adopting a more human-centred approach.
Additionally, other studies [9,10,13] have introduced models to identify unsafe driving
patterns based on factors like speed, time to collision, and time to headway.

Measures based on the vehicle primarily involve assessing driving performance by
examining the driver’s ability while driving. These measures encompass factors such
as vehicle speed, acceleration, steering wheel movement, lane position deviation, gear
changes, and other relevant parameters [14,15].

The measures related to the vehicle are classified into three primary categories, con-
solidating recent findings on their potential correlation with the driver’s skill level [16]:
(i) driver input to the vehicle (e.g., steering, braking); (ii) vehicle response to driver input
(e.g., velocity/acceleration, jerk); and (iii) vehicle state relative to the environment (e.g.,
headway distance, time to lane change). The first two categories can be directly measured
by sensors mounted inside the vehicle, while the third category necessitates information
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about the driving environment. These indicators offer the advantage of being real-time,
continuous, non-intrusive, and reliable [17].

In-vehicle telematics is a novel technology that has the potential to enhance driving
behaviour [18]. Additionally, the ongoing advancements in Intelligent Transportation
Systems (ITS) and the growing accessibility of real-time data streams from sensors within
vehicles, GPS systems, and mobile devices have created fresh avenues for employing
machine learning models in real-time risk forecasting and Advanced Driver Assistance
Systems (ADAS). Through constant analysis of sensor data and contextual details, these
models can offer timely alerts and notifications to drivers, aid in making safer driving
choices, and play a role in averting road crashes.

In the existing literature, various methods and techniques, including artificial neural
networks, have been employed to identify risky driving behaviour [18]. For instance,
Sohn and Shin (2001) [19] employed a neural network (NN) to classify crash severity
based on road type, speed before the crash, and the use of protective devices. Zeng et al.
(2016) [20] explored the application of NNs to predict the frequency of crashes with different
severity classifications, incorporating a rule extraction methodology to understand the
model’s sensitivity to varying covariate values. Additionally, Abdelwahab and Abdel-Aty
(2002) [21] investigated the use of multi-layer perceptrons and radial basis function NNs to
analyse road safety around toll gates.

The most frequently used machine learning techniques in driver behaviour analysis
are neural networks (NNs), support vector machines (SVMs), Bayesian learners (BLs),
and ensemble learners (ELs). Commonly used neural network architectures encompass
feedforward neural networks and recurrent neural networks (RNNs), the latter of which
involves incorporating feedback into preceding layers [22,23]. Schmidhuber (2015) [24]
provides an overview of NNs with many hidden layers (i.e., deep NNs) and design elements
of contest-winning NNs (up to 2014). Furthermore, the LSTM-CNN in the deep learning
algorithm is mostly used to identify the abnormal driving behaviour of the driver and can
achieve better recognition accuracy [25].

Neural networks stand out as one of the most precise machine learning models for
analysing the Driving Events dimension. This dimension has been a focal point of active
research when examining driver behaviour through machine learning techniques, with sub-
sequent attention given to the physiological and psychological states. The evaluation of the
Driving Events dimension indicates that machine learning models exhibit arithmetic means
of accuracy ranging approximately from 73% to 98%, recall from 82% to 96%, and speci-
ficity from 84% to 97% [26]. Despite numerous research endeavours on analysing driver
behaviour through machine learning algorithms, there are currently no comparable studies
in this specific domain that investigate both machine learning (ML) and deep learning (DL)
algorithms [27]. Therefore, in this context, it is imperative to conduct experimentation and
compare the neural network and long short-term memory algorithms. This is essential to
elevating and advancing the initial idea into a forward-looking, future-proof framework
for the next generation.

Machine learning (ML) and deep learning (DL) models serve as potent instruments
for understanding, predicting, and alleviating risky driving behaviour. Their algorithms,
combined with vast datasets, possess transformative potential for initiatives aimed at
enhancing road safety. Considering the context of this paper, delving into the utilisation
and efficacy of neural networks (NNs) and long short-term memory (LSTM) models amidst
these challenges and opportunities can offer a nuanced insight into their influence on
driving behaviours across diverse cultural contexts. Sustained research and collaboration
in this domain are essential to fully leveraging the advantages of sophisticated algorithms
in enhancing driving safety, especially in the distinct driving environments of Germany,
Belgium, and the United Kingdom.
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3. Materials and Methods
3.1. Data Collection

The driving behaviour data utilised in this analysis originates from the i-DREAMS
project’s on-road field trials. Within the i-DREAMS project, a naturalistic driving experi-
ment was carried out involving 30 drivers from Germany, and a large database of 5344 trips
and 84,434 min was created. As for the Belgian drivers, the database consisted of 43 drivers,
7163 trips, and 147,337 min. Lastly, for the UK car drivers, the dataset included 26 drivers,
8226 trips, and 118,175 min. As shown in Table 1, the on-road trial experiment was carried
out in four phases.

Table 1. Phases of the on-road experiment.

Phase 1

Country Drivers Trips (Minutes)

Germany 30 1397 trips (23,617 min)
Belgium 39 1173 trips (23,725 min)

UK 25 618 trips (10,803 min)

Phase 2

Country Drivers Trips (Minutes)

Germany 30 1322 trips (19,469 min)
Belgium 43 1549 trips (31,414 min)

UK 26 2243 trips (25,151 min)

Phase 3

Country Drivers Trips (Minutes)

Germany 30 1129 trips (17,704 min)
Belgium 51 1973 trips (40,121 min)

UK 26 2198 trips (24,569 min)

Phase 4

Country Drivers Trips (Minutes)

Germany 30 1496 trips (23,644 min)
Belgium 49 2468 trips (52,077 min)

UK 26 3167 trips (57,652 min)

The on-road experiment was conducted following established principles derived
from the pertinent literature, with a specific focus on evaluating interventions designed to
enhance drivers’ adherence to safe driving practices. The experiment encompassed four
distinct phases. Phase 1, designated as the monitoring phase, spanned 4 weeks and involved
no interventions. Phase 2, spanning 4 weeks as well, introduced in-vehicle interventions
by delivering real-time warnings through adaptive Advanced Driver Assistance Systems
(ADAS). In Phase 3, also lasting 4 weeks, drivers received feedback on their driving
performance through a mobile application. In Phase 4, a 6-week period, drivers continued
to receive feedback as in Phase 3, but with the added incorporation of gamification elements.
All four phases were focused on the observation of driving behaviour and the assessment
of the impact of real-time interventions, including in-vehicle warnings, as well as post-trip
interventions like feedback and gamification, on driving behaviour.

3.2. Neural Networks (NNs)

Artificial neural networks (ANNs) represent a powerful computational model capable
of capturing complex non-linear patterns within datasets. These networks emulate the
parallel processing of human neurons and are commonly employed in classification tasks.
The architecture used in this study, known as the multi-layer perceptron ANN, is composed
of three essential layers: an input layer, one or more hidden layers, and an output layer.
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In the context of analysing risky driving behaviour, the input layer functions as the initial
data receiver, encompassing various driving attributes like vehicle speed, acceleration,
and headway.

The hidden layer, featuring a variable number of neurons, conducts computations
by combining weighted inputs from these attributes. Each neuron in the hidden layer is
equipped with an activation function, introducing the necessary non-linearity to the model.
This non-linearity is crucial for capturing intricate patterns and relationships between these
attributes and the target variable, which, in this study, pertains to different levels of risky
driving behaviour. The determination of the number of neurons in the hidden layer often
involves experimentation, as it significantly impacts the network’s capacity to learn and
generalise. Simple problems may require just one hidden layer, whereas more complex
tasks might demand multiple hidden layers.

Moving to the output layer, it serves as the central hub for consolidating information
from the hidden neurons to generate the network’s final output. In the context of this classi-
fication task regarding risky driving behaviour, the output layer includes multiple neurons,
each corresponding to distinct classes or levels of risk. The choice of activation function
within the output layer depends on the specific problem. For multi-class classification, the
softmax activation function is commonly used to calculate class probabilities, aiding in the
prediction of risky driving behaviour levels.

The design and architecture of the neural network, encompassing factors like the
number of layers, neurons, and activation functions, play a pivotal role in achieving accurate
and effective classification for risky driving behaviour. Previous research in this domain
has extensively explored the benefits of multi-layer perceptron ANNs, highlighting their
ability to uncover complex patterns and associations hidden within driving data [28,29].

3.3. Long Short-Term Memory (LSTM) Networks

A long short-term memory (LSTM) network is a type of recurrent neural network
(RNN) that has emerged as a pivotal tool in various fields due to its exceptional ability
to capture and model complex sequential patterns. LSTM networks were introduced as a
solution to the vanishing gradient problem that commonly affects traditional RNNs, re-
ducing their performance in tasks demanding long-term dependencies [30]. Their intrinsic
capability to preserve data over extended periods renders them highly suitable for tasks
that require modelling sequential data.

An LSTM network is constructed from a succession of repeating modules, creating
a chain-like architectural structure [31]. The fundamental information processing compo-
nents within LSTM networks are referred to as ‘cells’, akin to the more intricate counterparts
of neurons in traditional multi-layer perceptrons (MLP). Within each LSTM cell, there exist
multiple gates, which serve the crucial function of controlling and managing the informa-
tion flow across sequences of arbitrary length. This intrinsic characteristic empowers LSTM
networks to autonomously discern the relevance of information over both long-term and
short-term contexts, rendering them a well-suited choice for a wide array of sequential
data-related tasks such as activity recognition and language translation [32].

In a typical LSTM configuration, there are three key gates:

1. The Forget Gate: Responsible for determining which information should be retained
and which should be forgotten in the cell state. This gate employs a sigmoid layer,
known as the “forget gate layer”, to make these determinations.

2. The Input Gate: This gate decides what new information should be included in the
cell state and how it should be updated. It is composed of two essential components:
an input gate layer, utilising a sigmoid function to determine what values should
be updated, and a hyperbolic tangent (tanh) layer that produces a vector of candi-
date values for potential integration into the state. Subsequently, the old cell state
undergoes an update based on these components.

3. The Output Gate: Responsible for filtering and selecting the information to be output
from the memory block at a particular time step. The output is derived from the
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cell state but undergoes filtering. An output gate, which consists of a sigmoid layer,
determines the relevant portions of the cell state to be included in the output. The
filtered cell state then passes through a tanh activation function to scale values within
the range of −1 and 1. Finally, the result is multiplied by the output of the sigmoid
gate, generating the desired output.

3.4. Performance Metrics

For the assessment of classification models, the evaluation of model performance
involved the utilisation of the confusion matrix in conjunction with various well-established
performance metrics defined by Equations (1)–(5).

Accuracy, which measures the proportion of correctly classified observations, is de-
fined as:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision, which quantifies the number of positive class predictions that actually
belong to the positive class, is defined as follows:

Precision =
TP

TP + FP
(2)

Recall, also known as true positive rate, which measures the proportion of actual
positive cases correctly identified by the model, is defined as follows:

Recall =
TP

TP + FN
(3)

The F1-score, which combines precision and recall into a single measure, is defined
as follows:

F1-score =
2x (Precision) ∗ (Recall)
(Precision) + (Recall)

(4)

The false alarm rate, which measures the proportion of negative cases incorrectly
classified as positive, is defined as follows:

False Alarm Rate =
FP

FP + TN
(5)

where true positive (TP) denotes instances belonging to class i that were accurately classified
as such. True negative (TN) refers to instances not belonging to class i and correctly not
classified as such. False positive (FP) indicates instances that do not belong to class i but
were erroneously classified as part of it. Lastly, false negative (FN) signifies instances that
belong to class i but were mistakenly not classified as such.

3.5. Methodology Analysis

The neural network model is structured as a multi-layer architecture, where each layer
is responsible for extracting and learning different levels of patterns from the input driving
data. The initial layer processes basic features, which are then passed on to subsequent
layers for more complex pattern recognition. The training process involves adjusting
the model weights based on historical driving data, enhancing its ability to differentiate
between safe and risky driving behaviours. This model’s performance is later validated
using a separate set of data to determine its predictive accuracy. The following high-level
description demonstrated in Figure 1 below presents the methodology structure.
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Figure 2. High-level algorithm description of the long short-term memory model.

A snippet of the code for the neural network model and long short-term memory
model has been provided in Appendix A. It is important to add that the NN model
architecture consists of two dense (fully connected) layers. The first layer has 128 units,
and the second has 64 units, all using the ReLU activation function. The output layer
is configured with the appropriate number of units based on the classes in the target
variable, utilising the softmax activation function. The model is optimised using the Adam
optimizer with a sparse categorical cross-entropy loss function. During training, the model
is optimised for 100 epochs with a batch size of 32, and 10% of the training data are reserved
for validation.

The hyperparameter values in the LSTM model were chosen based on established
practices for working with similar datasets. The LSTM model is designed for sequential
data and is composed of two LSTM layers with 128 and 64 units, respectively. Both LSTM
layers use ReLU activation. The ReLU activation function was chosen for its ability to
capture complex relationships. A dropout rate of 0.2 and a recurrent dropout of 0.2 were
implemented to prevent overfitting. The output layer, employing softmax activation, is
adapted based on the number of classes. The model is compiled with the Adam optimizer,
a learning rate of 0.001, and sparse categorical cross-entropy loss. Training occurs over
100 epochs with a batch size of 64, and 10% of the training data are set aside for validation.
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4. Results
4.1. Neural Networks (NNs) for Headway and Speeding at a Normal Level
4.1.1. German Car Drivers

In this study, neural network (NN) classification algorithms were applied as a prelimi-
nary step for subsequent LSTM classification. Two feed-forward multi-layer perceptron
models were utilised on a subset of data from 30 German car drivers and 5340 trips. These
models demonstrated exceptional accuracy, exceeding 94%, indicating their effectiveness
in real-time prediction of the STZ. This result supports the feasibility of real-time STZ
prediction. Additionally, the models exhibited a low false alarm rate, maxing out at 6%,
showcasing their ability to minimise incorrect predictions and unnecessary alerts.

Following the application of these models, a confusion matrix was generated for the
independent variables of interest, namely headway and speeding, as presented in Table 2
and the performance of neural network classification on headway and speeding STZ level
for the German car drivers is presented in Figure 3. This matrix provides valuable insights
into the classification’s performance and forms the basis for further analysis and discussion
in this study.

Table 2. Confusion data matrix for headway and speeding of neural network model of German
car drivers.

Variable TP FP FN TN Sum

Headway 33,378 0 1400 82 34,860
Speeding 2178 1987 63 30,632 34,860
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From the confusion matrix, the following metrics were estimated and are depicted
in Table 3.

Table 3. Assessment of the classification model for headway and speeding of neural network model
of German car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 95.98% 100.00% 95.97% 97.95%
Speeding 94.12% 52.29% 97.19% 68.00%
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In Figure 4, the plot titled “Model Loss” displays the progression of the model’s loss
during training and validation phases across multiple epochs. The x-axis represents the
number of training epochs, while the y-axis represents the corresponding loss values. The
blue line represents the model’s training loss at each epoch. Training loss measures how
well the model is performing on the training data. As the model learns from the training
data, the goal is to minimise this loss, indicating improved predictive performance. The
orange line represents the validation loss at each epoch. Validation loss measures how
well the model generalises to unseen data not used during training. It helps to identify
if the model is overfitting (performing well on training data but poorly on new data) or
underfitting (not capturing the underlying patterns).
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Figure 4. Model loss of the neural network of German car drivers for headway (a) and speeding (b).

A descending trend in both training and validation loss is generally desired and
achieved in Figure 4, Figure 6, Figure 8, Figure 10, Figure 12, and Figure 14 of both neural
network and long short-term memory models for all three countries for headway (a) and
speeding (b). This signifies that the model is learning and improving its predictive ability
over epochs. Both training and validation losses converge to a low value, suggesting
that the model is effectively learning from the data and generalising well. Divergence
or a significant gap between training and validation loss might indicate overfitting (high
training performance but poor generalisation) or underfitting (the model is too simple to
capture the data patterns).

The outcomes presented align closely with pertinent studies in real-time safety assess-
ments [33], as well as prior analyses conducted on simulator data in similar projects. It is
noteworthy that the lower precision and F1-score metrics can be attributed to the larger
number of instances depicting ‘normal’ STZ levels in comparison to instances representing
‘dangerous’ conditions. This prevalence of ‘normal’ instances naturally impacts the preci-
sion and F1-score values, highlighting the challenges in accurately classifying situations
with lower occurrence rates. These nuances emphasise the importance of context and
distribution in interpreting classification performance metrics.

It is important to note that model performance can vary across different countries
due to distinct driving behaviours, road conditions, and traffic regulations. The F1-score,
being a harmonic mean of precision and recall, provides a balanced measure of a model’s
accuracy, considering both false positives and false negatives. In the context of different
countries, variations in driving behaviours and environmental factors may impact the
model’s performance.

4.1.2. Belgian Car Drivers

The results obtained from the Belgian car drivers’ dataset, as illustrated in Tables 4
and 5, demonstrate the models’ strong performance. Particularly in the case of speeding
prediction, the models achieved remarkable accuracy and recall. For headway prediction,
although the accuracy is marginally lower than that of speeding, the balanced precision
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and recall values indicate the models’ ability to accurately identify true positive cases while
minimising false positives and false negatives.

Table 4. Confusion data matrix for headway and speeding of neural network model of Belgium
car drivers.

Variable TP FP FN TN Sum

Headway 37,517 0 80 7915 45,512
Speeding 30,069 0 0 6193 36,462

Table 5. Assessment of the classification model for headway and speeding of neural network model
of Belgium car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 77.19% 77.64% 77.19% 76.90%
Speeding 83.51% 80.71% 83.51% 79.78%

These findings strongly suggest the models’ effectiveness in classifying instances
related to headway and speeding. The speeding model, in particular, exhibited exceptional
performance in detecting positive cases. It is noteworthy that both cases showed an
absence of false positives (FP = 0), a significant accomplishment indicating a minimal rate
of incorrectly identified positive cases. Additionally, a performance of neural network
classification on headway and speeding STZ level for the Belgium car drivers is presented
in Figure 5.
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From the confusion matrix, the following metrics were estimated and are depicted
in Table 5.

A descending trend in both training and validation loss is achieved in the neural
network of Belgium car drivers for headway (a) and speeding (b) as demonstrated in
Figure 6 below.
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Figure 6. Model loss of the neural network of Belgian car drivers for headway (a) and speeding (b).

Upon analysing the results, it is evident that the models performed exceptionally well,
particularly in forecasting instances of speeding. The model not only showcased impressive
accuracy, reflecting the overall correctness of its predictions, but also demonstrated a high
recall rate. This heightened recall indicates the model’s successful identification of the
majority of actual positive cases of speeding. Likewise, in headway prediction, although
the accuracy was slightly lower than that of speeding, the model maintained a delicate
balance between precision and recall. This equilibrium signifies the model’s ability to
accurately identify true positive cases without generating an excessive number of false
positives or missing actual positive instances.

These results underscore the models’ robustness and effectiveness in accurately classi-
fying instances of speeding and headway, emphasising their potential for practical appli-
cations in real-world scenarios, particularly in the context of enhancing road safety and
traffic management.

4.1.3. UK Car Drivers

The examination of the results reveals a commendable performance by the models,
particularly in the prediction of instances related to headway and speeding. The model
exhibited a high level of accuracy, indicating the overall correctness of its predictions in both
scenarios. Furthermore, the model demonstrated an impressive recall rate, especially in
the case of headway prediction, where it accurately identified a substantial majority of the
actual positive cases, balancing precision effectively. Similarly, in the context of speeding
prediction, the model maintained a delicate equilibrium between precision and recall,
ensuring accurate identification of true positive cases without generating an excessive
number of false positives or missing actual positive instances.

These findings, as presented in Tables 6 and 7, highlight the models’ reliability and
effectiveness in classifying instances of headway and speeding. These results not only
showcase their potential for real-world applications but also emphasise their significance
in the realm of road safety and traffic management. The absence of false positives in both
cases (FP = 0) is a notable achievement, signifying a minimal rate of incorrectly identified
positive cases. This reinforces the models’ utility in making precise predictions, thereby
contributing significantly to the enhancement of road safety standards.

Table 6. Confusion data matrix for headway and speeding of neural network model of UK car drivers.

Variable TP FP FN TN Sum

Headway 33,617 0 0 6510 40,063
Speeding 21,149 0 1 10,854 32,003
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Table 7. Assessment of the classification model for headway and speeding of neural network model
of UK car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 80.98% 81.37% 80.98% 80.83%
Speeding 79.89% 79.13% 79.89% 74.95%

From the confusion matrix, the following metrics were estimated and are depicted
in Table 7.

A performance of neural network classification on headway and speeding STZ level
for the UK car drivers is presented in Figure 7.
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Figure 7. Performance of the neural network classification for headway and speeding.

A descending trend in both training and validation loss is achieved in the neural network
of UK car drivers for headway (a) and speeding (b) as demonstrated in Figure 8 below.
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The analysis of headway and speeding prediction models across different countries,
namely Germany, Belgium, and the UK, provides valuable insights into their effectiveness
in real-world driving scenarios. The German drivers’ model exhibited exceptional accuracy,
precision, and recall for headway prediction, indicating its robust ability to accurately
identify safe following distances. However, in the case of speeding prediction, while the
accuracy was high, the model struggled with precision, resulting in a notable number of
false positives. This suggests the need for fine-tuning to reduce incorrect identifications
of speeding.

In Belgium, the models demonstrated a balanced performance for both headway
and speeding predictions. The accuracy and recall rates were consistent, signifying the
models’ ability to maintain accuracy while identifying a significant portion of positive
cases. Precision values, especially in the context of speeding, demonstrated commendable
outcomes, signifying an effective balance between accurate positive identifications and
minimising false positives. For UK drivers, the headway prediction model showcased
strong accuracy, precision, recall, and F1-score, indicating its effectiveness in recognising
safe following distances. The speeding prediction model, while maintaining relatively
good accuracy and precision, struggled with recall, indicating a challenge in identifying
all positive speeding cases. Fine-tuning efforts could enhance the model’s sensitivity in
detecting speeding instances.

The successful application of these neural network models paves the way for the
implementation of LSTM-based approaches, which can leverage the temporal nature of
the data to potentially enhance the precision and reliability of the STZ prediction. The
upcoming subsection will delve further into the LSTM classification, building upon the
foundations established by the neural network models.

4.2. Long Short-Term Memory (LSTM) for Headway and Speeding
4.2.1. German Car Drivers

Building upon the foundations laid by the previously mentioned neural network
models, the subsequent subsection focuses on the application of long short-term memory
(LSTM) classification for real-time prediction of the STZ. The LSTM approach capitalises
on the temporal nature of the data to potentially enhance the precision and reliability of
the STZ prediction. The LSTM models were trained and evaluated using a subset of the
German car drivers’ dataset, consisting of data from 30 drivers and 5340 trips.

The LSTM models, while showing a lower level of accuracy and precision compared
to the previous neural network models, still exhibit a fair level of performance in predicting
headway and speeding incidents.

For headway prediction, as presented in Table 8, the model accurately identifies
approximately 58.17% of instances, which is a significant improvement from random
chance. The precision of 42.44% indicates that when the model predicts a positive case, it is
correct 42.44% of the time. The recall of 58.17% implies that the model captures 58.17% of
all actual positive cases. The F1-score of 43.86% signifies a balanced measure of precision
and recall.

Table 8. Assessment of the classification model for headway and speeding of LSTM of German car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 58.17% 42.44% 58.17% 43.86%
Speeding 73.50% 54.03% 73.50% 62.28%

In the case of predicting speeding, the model performs better with an accuracy of
73.50%. The precision of 54.03% indicates that nearly half of the positive predictions made
by the model are accurate. The recall of 73.50% shows that the model captures 73.50% of
all actual speeding cases. The F1-score of 62.28% indicates a balanced trade-off between
precision and recall.
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Compared to the previous neural network models, these LSTM models show a lower
level of accuracy and precision. However, it is crucial to note that LSTM models are
particularly valuable in capturing sequential patterns and temporal dependencies in data.
Despite the decrease in accuracy and precision, the LSTM models might excel at capturing
nuanced patterns in the data, especially temporal ones.

Additionally, a performance of LSTM on headway and speeding STZ level for the
German car drivers is presented in Figure 9.
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Figure 9. Performance of the LSTM model for headway and speeding at a normal level of German
car drivers.

A descending trend in both training and validation loss is achieved in the LSTM of
German car drivers for headway (a) and speeding (b) as demonstrated in Figure 10 below.
The Divergence or this significant gap between training and validation loss in Figure 10a
might indicate overfitting (high training performance but poor generalisation).
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4.2.2. Belgian Car Drivers

It is important to consider that an accuracy below 60% may not be satisfactory for a
high-performance intervention system, as it could result in a relatively high number of
false alarms or missed detections. However, the required level of accuracy depends on
the specific use case and the associated risks. For instance, in a system aimed at detecting
potential crashes or safety hazards, a higher level of accuracy may be necessary to ensure
the safety of drivers and other road users.
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The LSTM models for Belgium show moderate performance in predicting headway
and speeding incidents, as presented in Table 9 below. For headway prediction, the model
achieves an accuracy of 58.12%, indicating it correctly classifies approximately 58.12% of
the instances. The precision of 35.65% suggests that when the model predicts a positive
case, it is correct 35.65% of the time. The recall of 58.12% signifies that the model captures
58.12% of all actual positive headway cases. The F1-score of 37.33% reflects a balance
between precision and recall.

Table 9. Assessment of the classification model for headway and speeding of LSTM of Belgium
car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 58.12% 35.65% 58.12% 37.33%
Speeding 48.27% 25.75% 48.27% 32.59%

In the case of predicting speeding, the model performs slightly lower with an accuracy
of 48.27%. The precision of 25.75% indicates that only a quarter of the positive predictions
made by the model are accurate. The recall of 48.27% shows that the model captures 48.27%
of all actual speeding cases. The F1-score of 32.59% indicates a trade-off between precision
and recall.

The LSTM models in Belgium exhibit moderate performance, especially in identi-
fying headway incidents. While they demonstrate a capacity to capture positive cases,
there is room for improvement, particularly in reducing false positives and enhancing
precision. Further refinements in model architecture, feature selection, or additional data
pre-processing techniques might be necessary to enhance the accuracy and reliability of the
LSTM models for both headway and speeding predictions.

A performance of LSTM on headway and speeding STZ level for the Belgium car
drivers is presented in Figure 11.
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A descending trend in both training and validation loss is achieved in the LSTM of
Belgium car drivers for headway (a) and speeding (b) as demonstrated in Figure 12 below.
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The Divergence or this significant gap between training and validation loss in Figure 12b
might indicate overfitting (high training performance but poor generalisation).
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4.2.3. UK Car Drivers

It is crucial to acknowledge that an accuracy level falling below 60% might not meet
the requirements for a high-performance intervention system. Such low accuracy can lead
to a considerable number of false alarms or missed detections. However, the necessary
accuracy threshold depends on the specific use case and associated risks. For instance,
in systems designed to detect potential crashes or safety hazards, a higher accuracy level
becomes imperative to ensure the safety of drivers and other road users.

Looking specifically at the LSTM models implemented in the UK, their performance
in predicting headway and speeding incidents appears to be moderate, as showcased in
Table 10. For headway prediction, the model achieves an accuracy of 54.45%, correctly
classifying approximately 54.45% of the instances. The precision, indicating the accuracy
of positive predictions, stands at 33.72%. This suggests that the model accurately predicts
positive cases only 33.72% of the time. Additionally, the recall rate is 54.45%, indicating that
the model captures 54.45% of all actual positive headway cases. The F1-score, reflecting a
balance between precision and recall, is 40.20%.

Table 10. Assessment of the classification model for headway and speeding of LSTM of UK car drivers.

Variable Accuracy Precision Recall F1-Score

Headway 54.45% 33.72% 54.45% 40.20%
Speeding 49.51% 29.58% 49.51.% 35.22.%

In the case of predicting speeding, the model performs slightly lower with an accuracy
of 49.51%. The precision, indicating accurate positive predictions, is at 29.58%, implying
that only a quarter of the positive predictions made by the model are accurate. The recall
rate is 49.51%, suggesting that the model captures 49.51% of all actual speeding cases. The
F1-score, representing the trade-off between precision and recall, is 35.22%.

A performance of LSTM on headway and speeding STZ level for the UK car drivers is
presented in Figure 13.
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5. Discussion

The objective of this study was to create and compare machine learning techniques
for the detection of risky driving behaviour. The dataset used consisted of trips taken by
30 German drivers, 43 Belgian drivers, and 26 UK drivers. Two machine learning classifiers,
LSTM and a neural network, were developed for the analysis.

The effectiveness of the neural network models in predicting headway and speeding
levels is encouraging. The high accuracy, precision, and recall rates observed, especially in
Germany, demonstrate the potential of these models for real-world applications. Belgium’s
NN models, while strong, present difficulties in achieving high precision, especially for
headway incidents. As for the UK’s NN models, the speeding and headway level metrics
showcased similar results, with the headway incidents having slightly higher results. The
LSTM models in both countries show potential for capturing temporal patterns, but they
currently lag behind the NN models in terms of overall accuracy and precision–recall
balance. Upon comparing the results of the LSTM model with the earlier neural network
models, it is clear that the LSTM model exhibits inferior performance in terms of accuracy,
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precision, recall, and F1-score. The LSTM model achieves a test accuracy that falls below
the accuracy achieved by the previously mentioned neural network models. Similarly, the
precision, recall, and F1-score metrics also indicate poorer performance when compared to
the previous models.

Neural network (NN) and long short-term memory (LSTM) models offer distinct
advantages in capturing patterns within data. A NN, with its feed-forward structure, excels
at discerning intricate relationships, making it effective when temporal dependencies are
not prominent. In contrast, LSTM models are designed for time-series data, leveraging
their strength in capturing sequential patterns. In our driving behaviour dataset, where
temporal dependencies may not heavily influence outcomes, the feed-forward structure of
a NN could be more effective in processing contextual information.

The application of LSTM models, despite showing a slightly lower level of accuracy
and precision compared to neural networks, presents an intriguing avenue for future
research. The ability of LSTM models to capture temporal dependencies and sequential
patterns could prove invaluable in predicting. Further optimisation and exploration of
LSTM architectures may enhance their performance and reliability in driver behaviour
analysis. The smaller dataset size may contribute to the observed inferior performance of
the LSTM model. LSTM models often require larger datasets to fully leverage their capacity
for learning sequential dependencies. Achieving a balance between model complexity and
available data is crucial, and this intricate relationship could be a contributing factor to the
observed performance differences.

The models performed well across the board, with each country presenting unique
challenges. The variation in road conditions, driving behaviours, and traffic regulations
among these countries likely influenced the models’ performance disparities. It is crucial to
consider these nuances when applying similar predictive models in different geographical
contexts. The findings underline the need for continuous refinement and adaptation of
machine learning algorithms to address diverse driving environments effectively.

Furthermore, variations in road conditions, infrastructure, and traffic regulations
among different countries contribute to divergent driving behaviours. The quality of
roadways and adherence to specific rules impact the performance of predictive models,
as these models are trained on data that reflect the unique characteristics of each region.
Moreover, differences in regulatory environments, including variations in traffic laws and
law enforcement practices, can significantly affect driving behaviour. Distinct levels of
enforcement for speeding or differing rules regarding headway contribute to the observed
disparities in model performance.

In Zou et al. (2022) [34], a controlled experiment was used to predict the drivers’
acceleration using both Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM),
and the experimental results verified the usefulness of the MHMM in personalised driving
behaviour analysis and also showed that the performance of GRU is better than that of
LSTM. To support the results of the current study, Abdelrahman (2022) [35] presented
different machine learning models based on the dataset of a naturalistic driving study.
Upon comparison, these models demonstrated the superior performance of the Random
Forest Classifier over the Deep Neural Network. Concerning this observation, despite the
proven modelling power of DNNs, they seem to show their full potential when dealing
with highly non-linear modelling problems with a large number of features and a very
large number of training samples (big data). A possible reason why the RF classifier
outperformed the DNN in this classification problem may be attributed to the size of the
utilised dataset (intermediate size) and the relatively small feature space since only the
14 original features were used to train the DNN.

The results underscore the potential of predictive models for enhancing road safety.
However, continuous monitoring, evaluation, and adjustment are essential to ensure their
reliability and applicability across diverse driving scenarios.

Numerous noteworthy studies with notable findings are available in this field, as
previously mentioned. For instance, Chen et al. (2018) [36] employed a combination of PCA



Sustainability 2024, 16, 518 19 of 23

and multiple linear regression, achieving an impressive accuracy of approximately 97%.
Similarly, in [35], the authors utilised the Strategic Highway Research Program 2 (SHRP2)
naturalistic driving study (NDS) dataset, comparing various algorithms. They concluded
that the Random Forest classifier, with a 10-fold cross-validation, achieved an average
accuracy of around 90% and an average F1-score of 0.945. Additionally, Abdelrahman et al.
(2019) [37] employed the same SHRP2 NDS dataset, and their proposed RF classifier
demonstrated an accuracy of 93.2%, precision of 95.08%, and recall of 93.5%. Furthermore,
Chen et al. (2019) [38] conducted a comparative analysis of diverse machine learning
algorithms using data acquired through an OBD II decoder in a single car. Their findings,
based on the empirical data collected, revealed that the top three ML algorithms were RF,
decision tree, and gradient boosting, all achieving validation (test) accuracy above 95%.

In the study by Cura A. et al. (2021) [39], LSTM and CNN-based neural network
models were developed to classify and assess bus driver behaviour characterised by decel-
eration, engine speed pedalling, corner turn, and lane change attempts. CNN architecture
indicated better performance indices for the identification of aggressive driving compared
to the LSTM network for behavioural modelling, introducing additional results to new
models in the field. Furthermore, Parsa et al. (2019) [40] utilised real-time data along
with LSTM and GRU (two deep learning techniques) to detect accidents. In the results of
this study, the GRU model is observed to perform slightly better than the LSTM model
concerning detection rate, showcasing the current models being examined and having
enhanced results in the literature in the later years.

The empirical study from Shaanxi Province [41], focusing on distracted driving be-
haviour using a hybrid neural network (DBRPNN), offers valuable insights complementary
to this paper’s findings. While our study demonstrates the efficacy of neural networks in
predicting risky driving behaviour, the Shaanxi study, with its unique focus on distracted
driving, further corroborates the superiority of advanced neural network models. Notably,
their DBRPNN model outperformed Bi-LSTM models by 5.42% in accuracy, particularly
in short-term predictions. This aligns with our results, where neural networks showed
significant predictive accuracy. Both studies underscore the importance of model selection
in traffic safety applications and highlight the potential of neural networks in different yet
related contexts.

In light of these comparative insights, it becomes clear that, while this study contributes
valuable findings, particularly regarding the efficacy of neural networks, the potential of
LSTM models in this domain remains an area ripe for future exploration. This aligns with
the broader research trajectory, as noted by Philippe Barboda et al. (2023) [33], emphasising
continuous innovation and optimisation in machine learning applications for road safety.

Utilising a combination of machine learning algorithms and i-DREAMS data to identify
safe driving behaviour holds the promise to transform road safety interventions. Through
the utilisation of data-driven insights and advanced analytics, this method has the poten-
tial to enhance road safety significantly, leading to a decrease in crashes and, ultimately,
preserving lives.

6. Conclusions

The outcomes of this study hold significant implications for road safety interventions.
Utilising machine learning algorithms and data-driven insights can facilitate the identi-
fication of safe driving behaviour, enable prompt feedback to drivers, and foster a safer
driving environment. The insights derived from this study play a pivotal role in refining
the capabilities of the STZ by providing a deeper understanding of driving behaviour
dynamics and improving the prediction of risky driving scenarios. Further research av-
enues should concentrate on evaluating the long-term effects of interventions, assessing
real-time systems, and considering human factors and driver engagement. Additionally,
investigating the generalisability and scalability of the developed models and interventions
across diverse populations, geographic regions, and vehicle types is vital to ensuring their
widespread impact on enhancing road safety.
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Acknowledging the study’s limitations is crucial. The dataset, drawn from 30 German
car drivers, 43 Belgian car drivers, and 26 UK car drivers, may not fully capture the diversity
of driving behaviours across various regions and populations and may pose limitations
on the generalisability of conclusions on a global scale. While the study provides valuable
insights into driving behaviour within the selected regions, it is crucial to acknowledge
the potential diversity in driving behaviours across different countries and populations.
Moreover, the performance of the LSTM model was comparatively lower than that of
the neural network model, suggesting the need for additional optimisation and tuning to
enhance outcomes.

Regarding the observed disparities among different countries, it is indeed impera-
tive to address this aspect in the context of future modelling efforts. The varying road
conditions, traffic regulations, and driving behaviours across different regions emphasise
the importance of considering geographical context-specific attributes. This approach en-
sures that safety interventions and predictive models are tailored to the unique challenges
presented by diverse driving environments.

In summary, this study highlights the potential of machine learning techniques, es-
pecially neural networks, in identifying risky driving behaviours and improving road
safety. The implementation of real-time applications based on these techniques can offer
drivers instant feedback and guidance, enabling them to make informed decisions, enhance
their driving habits, and reduce the risk of crashes. While the LSTM model exhibited
inferior performance when compared to earlier neural network models, it is important to
recognise that each model type has its strengths and limitations. It is really important to
acknowledge that no single model may be universally superior for all aspects of driving
behaviour prediction.

For future research, a deeper exploration of dataset characteristics, particularly the
strength of temporal dependencies, could guide the selection of appropriate models and
aim for broader data inclusion to enhance the external validity of the findings and ensure a
more comprehensive understanding of global driving behaviour patterns. Investigating
the interplay between dataset size, model architecture, and the unique attributes of driving
behaviour data is essential for refining model choices. Despite the current performance
disparities, the application of LSTM models presents an intriguing avenue for future re-
search, with the potential for further optimisation and exploration of LSTM architectures
to enhance their reliability in driver behaviour analysis. Additionally, future research
endeavours should focus on integrating contextual information such as weather conditions,
road infrastructure, and traffic patterns to enhance the accuracy and applicability of the
models. Furthermore, running the same analysis using methods from the updated liter-
ature will enhance and strengthen the findings of similar research. Personalised driver
modelling, accounting for individual characteristics, can lead to more effective behaviour
change interventions. Addressing these areas will advance the comprehension of safe
driving behaviour identification, refine intervention systems, and ultimately contribute
to enhancing road safety, lowering the occurrence of crashes, and preventing injuries on
the roads.
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Appendix A

Code Snippet for the Neural Network model

#Define and compile the neural network model
model = keras.Sequential([
keras.layers.Dense(128, activation=‘relu’, input_shape=(X_train.shape[1],)),
keras.layers.Dense(64, activation=‘relu’),
keras.layers.Dense(len(label_encoder.classes_), activation=‘softmax’) # Output layer with
appropriate number of classes])
model.compile(optimizer=‘adam’,

loss=‘sparse_categorical_crossentropy’,
metrics=[‘accuracy’])

# Train the model
history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.1)
Code Snipper for the LSTM model
#Define the LSTM model with additional details
model_lstm = Sequential()
model_lstm.add(LSTM(128, input_shape=(1, X_train.shape[1]), activation=‘relu’, dropout=0.2,
recurrent_dropout=0.2))
model_lstm.add(LSTM(64, input_shape=(1, X_train.shape[1]), activation=‘relu’, dropout=0.2,
recurrent_dropout=0.2))
model_lstm.add(Dense(len(label_encoder.classes_), activation=‘softmax’))
# Compile the LSTM model with specific learning rate
optimizer = Adam(learning_rate=0.001)
model_lstm.compile(optimizer=optimizer,

loss=‘sparse_categorical_crossentropy’,
metrics=[‘accuracy’])

# Train the LSTM model with a specified batch size
history_lstm = model_lstm.fit(X_train_lstm, y_train, epochs=100, batch_size=64, valida-
tion_split=0.1)
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