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Abstract: Research and Development (R&D) have significant impacts on carbon emissions, yet the
specific data on R&D capital stock and carbon emissions have not been released by Chinese officials,
hindering in-depth analysis. In light of this, this study calculates the R&D capital stock of Chinese
provinces based on the SNA2008 framework and the BEA method, and estimates the carbon emissions
from energy consumption and cement production using the carbon emission factor method. It then
examines the carbon emission reduction effects of the quality and quantity of R&D activities at the
provincial level. We find that the quality of R&D activities has a significant carbon emission reduction
effect, which is stronger in regions with high levels of economic growth and marketization, and this
effect strengthens over time. Moreover, mechanism analysis shows that both the quality and quantity
of R&D activities reduce carbon emissions by promoting industrial structure upgrading. This paper
expands the analytical approach and framework for the carbon reduction effects of R&D activities
and offers significant policy and practical implications.

Keywords: R&D capital stock; carbon emissions; carbon emission reduction effect; industrial
structure upgrading

1. Introduction

Technological innovation is a key driver for carbon emission reduction. On one
hand, technological innovation reduces carbon emissions through the development of
green technologies. For instance, by developing energy technologies and low-carbon
technologies such as carbon capture and storage, it improves energy efficiency and carbon
dioxide capture efficiency; by accelerating the development of new energies, it facilitates the
substitution of traditional energy with non-fossil energy. On the other hand, technological
innovation reduces carbon emissions by promoting the optimization and adjustment of
industrial structure. It fosters the emergence of new low-carbon industries and extends
industries towards the higher end of the value chain that focuses on basic research and
original innovation. This leads to the development of the service sector and a technology-
intensive manufacturing industry, reducing the proportion of high-consumption, high-
emission, and low-end industries in the national economy.

Research and (Experimental) Development (R&D) is at the forefront of technological
innovation processes, focusing on the creation and application of new knowledge and
technologies. It forms the core and foundation of technological innovation. According to
the System of National Accounts 2008 (SNA2008), R&D expenditures refer to the value of
resources spent on systematic creative work aimed at increasing the stock of knowledge
and using this stock to develop new applications. The asset nature of R&D is increasingly
prominent, but China still lacks related official data. Although the essence of R&D as an
investment is acknowledged, corporate R&D has been treated as intermediate consumption
rather than capital in long-term statistical accounting practices, due to the lack of related
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data and inconsistencies in parameter settings. Under this accounting rule, corporate R&D
expenditure is an offset item of GDP, which neither accurately reflects the promotional
effect of R&D on economic growth nor objectively reflects the economic value of R&D. After
years of research, SNA2008 proposed for the first time that R&D should be capitalized and
classified as an intellectual property product, listed under fixed capital. According to the
accounting principles of SNA2008, R&D expenditures are no longer treated as intermediate
consumption but as capital formation included in GDP. In recent years, China has been
advancing the standardization of R&D statistical work, but has not yet published R&D
capital investment data, nor established an R&D capital accounting system, making it
difficult to carry out detailed accounting and analysis. Fortunately, some research has
investigated the estimation issues of R&D capital stock and provided valuable insights [1–6].

An increasing number of scholars are beginning to analyze the impacts of R&D on
carbon emissions. Cao and Qu [7] took provincial data from China between 1995 and 2010
as their research subjects. Under a total factor framework, they calculated and analyzed
the carbon emission performance of Chinese provinces, finding that enhancing the level of
R&D investment could effectively improve carbon emission performance. Shao et al. [8]
extended the Logarithmic Mean Divisia Index (LMDI) decomposition model to analyze all
industrial sectors in Shanghai from 1994 to 2011, and discovered that R&D investments help
reduce carbon emissions. Luan et al. [9], based on panel data of the Chinese industrial sector
from 2000 to 2010 and using a dynamic panel regression model for analysis, also found that
R&D activities contribute to a reduction in carbon emissions. Yu and Xu [10] established a
Panel-Corrected Standard Errors (PCSE) model based on industrial panel data of Chinese
provinces from 2000 to 2017. They found that the intensity of industrial R&D investments
can reduce industrial carbon emissions, and increasing the intensity of industrial R&D
investment by 1% could improve industrial carbon emission efficiency by about 27.2%.
Wen et al. [11], based on panel data from the construction industry in 30 provinces of China
from 2000 to 2015, found that increasing the input of technical talents and equipment helps
reduce carbon emissions in the construction industry. Wang and Zhang [12] employed the
Fully Modified Least Squares method to examine the relationship between R&D investment
and carbon emissions in the BRICS countries from 1996 to 2014, finding that increasing R&D
investment helps decouple economic growth from environmental pressure, with the carbon
reduction effect of China’s R&D investment being the most significant. Lin and Xu [13],
based on provincial panel data from 1990 to 2017 and using a non-parametric additive
regression model, studied the impact of R&D investment on regional carbon emissions,
finding that the impact of R&D investment on carbon emissions varies by region, with a
U-shaped impact in the central region, an inverted N-shaped impact in the western region,
but no significant impact in the eastern region.

In summary, numerous studies have analyzed the carbon reduction effects of R&D,
but the indicators used are primarily R&D expenditures or R&D intensity, which inherently
follow the cash basis of accounting [14]. The cash basis of accounting, also known as the
cash system or cash method, is a way of recording financial transactions for individuals
or businesses according to actual cash flows. Under this method, revenues are recognized
when cash is received, and expenses are recognized when cash is paid. This contrasts with
the accrual basis of accounting, which records transactions when they occur, regardless of
cash flow. To enhance the accuracy and effectiveness of our analysis, this paper employs
the R&D capital stock indicator based on the accrual basis of accounting to explore the
impact of R&D on carbon emissions. By integrating the Kaya identity and the STIRPAT
model, we develop an improved analytical model to investigate the carbon reduction
effects and evolutionary trends of R&D activities’ quantity and quality at the provincial
level. We hypothesize that the quality of R&D activities has a negative impact on carbon
emissions, whereas their quantity does not. This paper expands the analytical approaches
and frameworks for the carbon reduction effects of R&D, providing empirical evidence
and references for theoretical models, and offering decision-making references for targeted
strategic deployment and policy formulation.
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2. Materials and Methods
2.1. Measurement of R&D Capital Stock

The methods for measuring the R&D capital stock are similar to those used for physical
capital stock. The main methods employed in related research are the PIM method, the
Griliches method, and the BEA method. These methods implicitly assume that the effective
proportion of capital goods declines in a geometric depreciation pattern, which simplifies
the model, and equates productive capital stock with wealth capital stock. The Perpetual
Inventory Method (PIM) calculates the stock of physical capital by accumulating assets
acquired during different periods. According to this method, the ending stock equals the
sum of the beginning stock, current investment, and current depreciation. In contrast to the
PIM, the Griliches and BEA methods differ as follows: The Griliches method posits that
there is a time lag in transforming internal expenditures on R&D into R&D investments.
Hence, it makes adjustments to the current R&D investment amounts based on the PIM. The
BEA method assumes that R&D inputs represent a continuous investment and considers
depreciation to occur continuously throughout the year, thereby adjusting the current de-
preciation in the PIM method accordingly. We believe that the BEA method is more aligned
with the intrinsic logic of economic development and of greater practical significance, also
enhancing the international comparability of the estimation results. Therefore, we select
the BEA method to measure the R&D capital stock, with the formula being as follows:

RDKit = (1 − δit)RDKi,t−1 +

(
1 − δit

2

)
RDIit, (1)

where RDKit and RDKi,t−1, respectively, represent the R&D capital stock of the target
entity i in period t and t−1, δit is the depreciation rate of R&D assets for target entity i
in period t, and RDIit is the actual increase in R&D capital investments for target entity
i in period t. This method assumes continuity in R&D investment within the year and
that depreciation also occurs continuously, thus applying depreciation to half of the new
R&D investment. When estimating R&D capital stock using this method, it is necessary to
determine four key parameters: the current R&D investment amount, the R&D asset price
index, the R&D asset depreciation rate, and the initial R&D capital stock.

2.1.1. Current R&D Investment Amount

Given that this paper directly estimates costs while adopting a full capitalization
model, the current R&D investment is numerically equal to R&D activity inputs. Here, we
only introduce how to adjust intramural expenditure on R&D into R&D activity inputs.
First, to avoid double counting, we need to deduct software R&D expenses from the
intramural expenditure on R&D. Second, to ensure that the accumulated fixed capital stock
belongs to productive assets, we need to deduct the land value from the asset expenditures.
Third, to estimate the consumption of fixed capital, we need to calculate the fixed capital
stock accumulated in R&D activities based on the PIM method, with the formula:

Kit = (1 − θit)Ki,t−1 + Iit, (2)

where Kit and Ki,t−1, respectively, represent the fixed capital stock accumulated in R&D
activities by the target entity i in period t and t−1, θit represents the depreciation rate of
target entity i in period t, and Iit represents the actual new investment of target entity i
in period t. The new investment numerically equals the asset expenditure in the adjusted
intramural expenditure on R&D, and can be converted to the actual new investment Iit by
deflating it with the fixed asset investment price index. Regarding the depreciation rate,
following the practice of Shan [15] and Wang and Wang [3,16], we assume a residual
value rate of 4%—the midpoint of China’s statutory residual value rate for fixed assets of
3–5%, assuming the service lives of buildings, equipment, and other assets to be 38 years,
16 years, and 20 years, respectively. We calculate the corresponding depreciation rates
using a geometric declining balance method, and weight them according to the propor-
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tions of construction installation, equipment and tool purchases, and other assets in the
target entity’s annual fixed asset investment, to compute the depreciation rate θit of the
target entity i in period t. For the initial fixed capital stock, drawing on the approach of
Hall et al. [17] and Shan [15], assuming the growth rate of capital stock is the same as
the investment growth rate under a steady economic state, the initial fixed capital stock
Ki0 = Ii1/

(
gi + θi

)
, where Ii1 is the actual new investment amount of the target entity

i in the first year, gi is the average growth rate of actual investment amounts including
Ii1 over a continuous five-year period (calculated using the geometric mean), and θi is
the average depreciation rate over a continuous five-year period including the initial year.
Finally, adding the fixed capital stock accumulated in R&D activities by the target entity i
to the routine expenditure in the intramural expenditure on R&D yields the R&D activity
inputs. Here, labor cost and other routine expenditures are, respectively, deflated using the
R&D personnel wage price index and the industrial producer purchase price index.

The treatment of software R&D expenses and land value is as follows: The first step is
to exclude software R&D expenses. Jiang and Sun [18] used the proportion of intramural
expenditure on R&D of software companies to the total intramural expenditure on R&D
of companies in 2009 from the “Compilation of the Second National R&D Assets Census
in 2009” to estimate the software R&D expenses to be deducted in other years. Wang and
Wang [3] believe that this approach essentially assumes that the intramural expenditure
on R&D of software companies grows at the same rate as those of all companies. In light
of this, at the provincial level, we assume that the growth rate of intramural expenditure
on R&D of software companies is consistent with the growth rate of R&D expenditure
of software companies. Based on the R&D expenditures of software companies in each
province from 2007 to 2015 in the “China Electronics and Information Industry Statistical
Yearbook (Software Volume)” and the intramural expenditures on R&D by expenditure
purpose of software industry companies in 2009 from the “Compilation of the Second
National R&D Assets Census in 2009”, we estimate the intramural expenditures on R&D
by expenditure purpose of software industry companies for other years from 2007 to 2015,
and the proportions of the respective intramural expenditures on R&D in each province.
The average proportions of each province from 2007 to 2011 are used as the deduction ratio
for software R&D expenses in each province before 2007. Similarly, the average proportions
from 2011 to 2015 are used as the deduction ratio for software R&D expenses in each
province after 2015. Subsequently, deductions are made accordingly for each component
of intramural expenditure on R&D in each province. For the high-tech industries in each
province, we assume that their deduction ratio for software R&D expenses is the same as
that of their respective provinces. The second step is to exclude the land value. Following
the approach of Jiang and Sun [18], we reduce the asset expenditures by 5% annually.

2.1.2. R&D Asset Price Index

Drawing on the approach of Wang and Wang [3,4], we construct a Fisher-weighted
R&D asset price index. Since R&D investment is derived from the intramural expenditure
on R&D, this index aligns with the R&D capitalization accounting process and has optimal
theoretical and empirical properties. Specifically, based on the composition of intramural
expenditure on R&D by expenditure purpose, where labor cost corresponds to the R&D
personnel wage index, other routine expenditures correspond to the industrial producer
purchase price index, and asset expenditure corresponds to the fixed asset investment price
index, the R&D asset price index can be obtained as follows:

PF
st =

√
PL

st × PP
st =

√√√√(∑3
m=1

pmt

pms
× wms

)(
1

∑3
m=1

pms
pmt

× wmt

)
, (3)

where PL
st and PP

st, respectively, represent the Laspeyres index and Paasche index, weighted
by the quantities in base period s and current period t. pmt represents the price of the
mth component of intramural expenditure on R&D in period t, and wmt represents the
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proportion of the mth component in the total expenditures in period t. To incorporate the
structural information of intramural expenditure on R&D by expenditure purpose in each
period, we calculate the R&D asset price index for adjacent years based on this method. To
reflect changes in the wages of R&D personnel, we construct an R&D Labor Price Index
(LPI) following the approaches of Jiang and Sun [18] and Zhu [6]:

LPIt =
LR&D(t)/Q(t)

LR&D(t − 1)/Q(t − 1)
, (4)

where LR&D(t) is the value of labor cost in the intramural expenditure on R&D in period t,
and Q(t) is the full-time equivalent of R&D personnel in period t.

2.1.3. R&D Asset Depreciation Rate

We calculate the depreciation rate of R&D assets based on three types of R&D activities:
basic research, applied research, and experimental development. Considering the pro-
gressively decreasing difficulty of breakthroughs from basic research, to applied research,
and then to experimental development, we follow the approach of Hou and Chen [19],
assuming service lives of 20 years, 15 years, and 10 years for these three types of R&D
assets, respectively. We employ a geometric declining balance method with a residual value
rate of 10% to calculate the depreciation rates separately. Then, we use the proportions
of expenditures on basic research, applied research, and experimental development in
the intramural expenditure on R&D as weights to calculate a weighted average of the
depreciation rates, thereby obtaining the annual depreciation rates of R&D assets for each
target entity.

2.1.4. Initial R&D Capital Stock

Most scholars follow the method proposed by Griliches [20], estimating the base
period R&D capital stock under the assumption that “the growth rate of the R&D capital
stock is equal to the growth rate of R&D investment”. The rationale behind this assumption
is that, in the long term, the growth rates of investment and capital stock are similar [18];
hence, we adopt the same assumption. Under this premise, the initial R&D capital stock
can be calculated as follows:

RDKi0 =
(1 − δi1/2)RDIi1

rdgi + δi1
, (5)

where RDIi1 is the increase in actual R&D investment of target entity i in the first year,
rdgi is the growth rate of i’s R&D capital stock, assumed to be equal to the growth rate
of the actual R&D investment, and δi1 is the depreciation rate of i’s R&D assets in the
first year, incorporating the average depreciation rate of R&D assets over the first five
years, including the initial year, into the calculation. The growth rate of the actual R&D
investment is estimated using the regression method of the BEA [21], starting with:

ln RDIit = bi + mit + εit, (6)

where t is the time variable, mi is the coefficient of the time variable t, bi is the constant
term, and εit is the random error term. Following the method of Hou and Chen [19] for
estimating mi, the R&D investment growth rate can further be calculated as:

rdgi = emi − 1. (7)

2.2. Measurement of Carbon Emissions
2.2.1. Estimation Method

This paper employs the carbon emission factor method to estimate carbon emissions
at the provincial level in China. According to the “Provincial Greenhouse Gas Inventory
Compilation Guidelines (Trial)”, carbon emissions from cement production are generated
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during the production of the intermediate product, cement clinker. Therefore, carbon
emissions from cement production need to be calculated based on the output of cement
clinker. The formula for calculating carbon emissions from energy consumption and cement
production is:

C = ∑n
i=1 CEi + Ccement = ∑n

i=1 ECi × ECOEi + Q × CCOE, (8)

where C represents the total carbon emissions, CEi is the carbon emission from the con-
sumption of the ith type of energy, Ccement is the carbon emission from cement production,
ECi is the consumption of the ith type of energy, ECOEi is the carbon emission coefficient
of the ith type of energy, Q is the production of cement clinker, and CCOE is the carbon
emission coefficient for cement clinker. According to the 2006 IPCC Guidelines and the
“Provincial Greenhouse Gas Inventory Compilation Guidelines (Trial)”, the carbon emission
coefficient for a specific type of energy equals its lower heating value multiplied by the
carbon content per unit of energy and the oxidation rate, which is then multiplied by the
atomic mass conversion factor 44/12.

2.2.2. Energy Consumption

The selection of energy types and the amount of energy consumed are key factors
affecting the estimation of carbon emissions.

1. Selection of Energy Types

This paper follows two principles when selecting energy types. First is comprehen-
siveness. To ensure the completeness of the estimation results, as many types of energy
as possible should be included in the estimation. Second is comparability; to ensure the
cross-period comparability of carbon emission estimation results, the energy types selected
during the estimation period should remain consistent. Since 2010, the Energy Balance in
the “China Energy Statistical Yearbook” has added 10 types of energy, namely, Gangue,
Blast Furnace Gas, Converter Gas, Naphtha, Lubricants, Paraffin Waxes, White Spirit, Bitu-
men Asphalt, Petroleum Coke, and Liquefied Natural Gas (LNG). Based on the principle
of comparability, our estimation process does not include the 9 types of energy other than
LNG. This is because LNG is essentially the same type of energy as natural gas, so we
include it in natural gas during our estimations. When they are in standard quantities,
they can be directly added together; when they are in physical quantities, LNG is divided
by the conversion factor (0.45 t/m3) before being added to natural gas, since the density
of natural gas is 430 kg–470 kg/m3, and 0.45 t/m3 is its average value. Additionally, the
proportion of “Other Energy” is very small and its carbon emission coefficient is difficult
to calculate, so it is also not considered. “Heat” and “Electricity” do not produce carbon
emissions if they are primary energy, and they are converted from other types of energy
if they are secondary energy, and only the energy used to generate heat and electricity
need to be considered. Therefore, based on the principle of comprehensiveness, this paper
ultimately includes the following 17 types of energy in the calculation of carbon emissions
from energy consumption: Raw Coal, Cleaned Coal, Other Washed Coal, Briquettes, Coke,
Coke Oven Gas, Other Gas, Other Coking Products, Crude Oil, Gasoline, Kerosene, Diesel
Oil, Fuel Oil, Liquefied Petroleum Gas, Refinery Dry Gas, Other Petroleum Products, and
Natural Gas.

2. Energy Consumption Amounts

When calculating energy consumption amounts, we follow the principles of counting
actual consumption and avoiding double counting. Based on this principle, we use the
total final consumption from the regional energy balance sheets as a benchmark. The
definition of total final consumption in the “China Energy Statistical Yearbook” refers to
the amount of energy consumed by all sectors and residential living within a certain period
across the nation (region), after deducting the amounts used for processing, converting into
secondary energy consumption, and losses. Then, we add the energy consumption used for
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“Thermal Power” and “Heating Supply” under “Input (−) & Output (+) of Transformation”,
and deduct the energy consumption used as raw materials that do not produce carbon
emissions. This yields the energy consumption used to estimate carbon emissions in each
province:

Energy consumption that produces carbon emissions = Total final consumption
+ Input for electricity or heating − Energy input used as raw materials.

(9)

The choice of carbon emission coefficients for energy sources also impacts the esti-
mation results. Yang and Lahr [22], based on IPCC (Intergovernmental Panel on Climate
Change) coefficients, calculated the adjusted emission coefficients for China, and we adopt
their results (as shown in Table 1).

Table 1. Carbon emission coefficients for energy sources.

Energy Source Carbon Emission Coefficient
(Physical Quantity)

Carbon Emission Coefficient
(Standard Quantity)

Raw Coal 1.978 2.769
Cleaned Coal 2.492 2.769

Other Washed Coal 0.791 2.769
Briquettes 1.825 2.555

Coke 3.042 3.132
Coke Oven Gas 7.42 1.299

Other Gas 2.32 1.299
Natural Gas 21.84 1.643
Crude Oil 3.065 2.146
Gasoline 2.985 2.029
Kerosene 3.097 2.105
Diesel Oil 3.167 2.169
Fuel Oil 3.237 2.266

Liquefied Petroleum Gas 3.1667 1.847
Refinery Gas 2.653 1.688

Other Petroleum Products 3.065 2.146
Other Coking Products 3.043 3.132

Notes: The units for standard quantities are “10,000 tons/10,000 tons”; except for the physical quantities of Coke
Oven Gas, Other Gas, and Natural Gas, which are “10,000 tons/100 million cubic meters”, the units for physical
quantities of all other energy sources are “10,000 tons/10,000 tons”.

2.2.3. Cement Production

Since the carbon emissions from cement production are generated during the produc-
tion of the intermediate product, cement clinker, estimating the emissions from this process
requires data on the output of cement clinker and its carbon emission coefficient.

According to the “China Cement Yearbook”, “China Building Materials Industry
Yearbook”, and “China Economic Census Yearbook (Volume on Secondary Industry, Part
One)”, provincial data on cement clinker production are available only for the years
2005–2016 and 2018. Therefore, it is necessary to complete the missing data for other
years for each province. Firstly, we complete the national-level data on cement clinker
production. At the national level, there are cement clinker production data for 1990–1995,
1997, and 2001–2019, and cement production data for 1990–2019. We observe a clear linear
relationship between national cement clinker production and cement production from 1990
to 2019, and estimate the parameters of the linear function using data from 1990–2002.
The results indicate that the constant term is not significant, so we assume a proportional
relationship between cement clinker production and cement production, and re-estimate
the proportionality coefficient to complete the missing data on cement clinker production.
Secondly, we complete the missing provincial data on cement clinker production. Assuming
that a proportional relationship still exists between cement clinker production and cement
production at the provincial level, we then distribute the national cement clinker production
in the years with missing data according to the proportion of cement production in those
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provinces, thereby obtaining the completed historical provincial data on cement clinker
production. According to the “Provincial Greenhouse Gas Inventory Compilation Guide
(Trial)”, the carbon emission coefficient for cement clinker is taken as 0.538 tons of carbon
dioxide per ton of cement clinker.

2.3. Model Setting

There are numerous analytical models for the factors affecting carbon emissions,
including the IPAT model [23], the Kaya identity [24], the STIRPAT model [25], and the
LMDI decomposition model [26]. Each method differs in its applicability and assumptions.
The IPAT model and Kaya identity are suitable for year-by-year or periodical analysis,
constrained by the necessity of equivalence, and inherently assume that the impact of
each influencing factor on carbon emissions is proportional, making it difficult to analyze
the impact of a single factor. Although the LMDI decomposition model can quantify the
contribution rate of each influencing factor in a specific year, it cannot examine the change
in carbon dioxide caused by the change of a certain factor. The STIRPAT model compensates
for the shortcomings of these models and can measure the impacts of various influencing
factors. However, the traditional STIRPAT model only includes three factors: population
size, economic growth level, and technological variables, which cannot comprehensively
describe the impacts of economic and social factors on carbon emissions. Therefore, this
paper expands on the basis of the Kaya identity to improve the STIRPAT model. According
to the Kaya identity, carbon emissions can be decomposed as follows:

E = P × Y
P
× EI × ES × other, (10)

where E represents the carbon emissions of each province, P is the population size of each
province, Y is the output level, EI is the energy intensity, which is the amount of energy
consumption measured in standard coal divided by the output level, ES is the energy
consumption structure, which is the proportion of raw coal converted into standard coal in
the total energy consumption, and other represents other variables.

Existing studies have shown that factors such as population size [25], economic growth
level [25], R&D activities [7–13], industrial structure [27,28], environmental policies [29–31],
energy intensity [10,32], energy consumption structure [10,32], urbanization level [33], for-
eign direct investment (FDI) [10], and human capital level (average years of education) [34]
all affect carbon emissions. R&D activities, including basic research, applied research,
and experimental development, cover a broad range and thus need to be considered from
two dimensions: the quantity and the quality of R&D activities. Companies, aiming for
profit and efficiency, tend to engage in R&D activities that are short in cycle, quick to
show results, and closely related to production activities. Considering that technological
innovation is the most crucial feature of high-tech industries, this paper includes not only
the R&D capital stock, an indicator representing the quantity of R&D activities, but also
the proportion of R&D capital stock in high-tech industries, which represents the quality
of R&D activities, into the model. Based on the aforementioned factors affecting carbon
emissions, we integrate and refine the Kaya identity and the STIRPAT model to construct
the following model:

Eit = α0 + Xα + vt + λi + εit, (11)

where E represents the carbon emissions of each province, i denotes the province, t denotes
the year, and X represents explanatory or control variables; α0 is the constant term,
vt is the time effect, λi is the individual effect, and εit is the random error term. To
eliminate heteroscedasticity and ensure the stability of the series, we take the logarithm of
some variables.

2.4. Variable Definitions and Data Sources

This paper takes the carbon emissions of each province as the dependent variable, and
variables such as population size, economic growth level, R&D capital stock, the proportion
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of R&D capital stock in high-tech industries, industrial structure upgrading, environmental
policies, energy intensity, energy consumption structure, urbanization level, foreign direct
investment, and average years of education as explanatory or control variables. The
definitions of the variables are as follows:

1. Carbon emissions—Measured by the carbon emission results obtained in Section 2.2,
and the natural logarithm is taken;

2. Population size—Measured by the end-of-year population size of each province, and
the natural logarithm is taken;

3. Economic growth level—Measured by per capita value added, and the natural loga-
rithm is taken. The Environmental Kuznets Curve describes the “inverted U-shaped”
relationship between environmental quality and economic growth level. It suggests
that environmental quality tends to deteriorate initially and then improve as economic
growth level rises. Essentially, the curve represents a regularity of growing first and
cleaning up later [35]. Numerous studies support the existence of the Environmental
Kuznets Curve [36–38];

4. R&D Capital Stock—This indicator represents the quantity of R&D activities. It is
measured by the R&D capital stock of each province calculated in Section 2.1, and the
natural logarithm is taken. Since the intramural expenditures on R&D by expenditure
purpose in China’s provinces have only been published since 2009, we estimate the
missing data before 2009 following the approach of Hou and Chen [19];

5. Proportion of R&D capital stock in high-tech industries—This indicator represents
the quality of R&D activities. It is measured by dividing the R&D capital stock of
high-tech industries calculated in this paper by the total R&D capital stock of each
province. Since the “China High-Tech Industry Statistical Yearbook” began publishing
the composition items of intramural expenditure on R&D by expenditure purpose
for high-tech industries in each province from 2009, we estimate the missing data
before 2009;

6. Industrial structure upgrading—Following the approach of Fu [39], we calculate this
indicator based on the spatial vector angle weighted value, which depicts the trend of
the industrial structure evolving with the GDP structure of the three industries rising
in the order of the primary, secondary, and tertiary sectors;

7. Environmental policy—Measured by the proportion of national investment in forestry
completed since the beginning of the year to the regional GDP of the same period.
Governmental investment on forestry reflects the government’s emphasis on forestry.
Forestry plays a crucial role in ecological civilization construction and has a unique
function in climate change mitigation, mainly reflected in forests’ ability to absorb CO2.
Indirect emission reduction through forestry has been incorporated into international
rules and has become a common practice internationally;

8. Energy intensity—Measured by the total energy consumption divided by the re-
gional GDP;

9. Energy consumption structure—Measured by the proportion of raw coal converted
to standard coal in the total energy consumption. The mix of energy sources with
different cleanliness levels affects the carbon emissions from energy consumption.
China’s energy endowment structure of “rich in coal, poor in oil, and scarce in gas”
determines that its energy consumption structure is dominated by raw coal;

10. Urbanization level—Measured by the proportion of urban population in the total
permanent resident population at the end of the year in each province;

11. Foreign direct investment (FDI)—Measured by the natural logarithm of foreign direct
investment. FDI brings not only capital but also technology to China, reducing carbon
emission pressure through technological spillovers;

12. Average years of education—Following the approach of Wang [40], this indicator is
calculated based on the average years of education for the population aged 6 years
and above. The average years of education can reflect the level of human capital in
each province, and to some extent, the overall quality of the public, including envi-
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ronmental awareness. China incorporates the cultivation of environmental protection
awareness into the entire education process, suggesting that the longer the average
years of education in a province, the stronger the public awareness of environmen-
tal protection.

Our research sample consists of panel data from 30 provincial administrative regions
in China, spanning from 2000 to 2019. The following data were excluded from our sample:
(1) Data from Hong Kong, Macau, Taiwan, and Tibet, due to the unavailability of relevant
data. (2) Data for Ningxia from 2000 to 2002 and for Hainan in 2002, as their energy
consumption data were not disclosed by Chinese authorities. (3) Data for Xinjiang in 2000
related to the variable “Proportion of R&D Capital Stock in High-Tech Industries”, because
the corresponding intramural expenditure on R&D was not disclosed. (4) Data from
2000 to 2010 for the variable “Environmental Policy”, because the proportion of national
investment in forestry was not disclosed until 2011. We chose 2019 as the cut-off year to
exclude the impact of the subsequent pandemic. The data mainly come from the “China
Science and Technology Statistical Yearbook”, “China Statistical Yearbook”, “China Fixed
Assets Investment Statistical Yearbook”, “China High-Tech Industry Statistical Yearbook”,
“China Energy Statistical Yearbook”, “China Forestry Statistical Yearbook”, and provincial
statistical yearbooks. To eliminate the impacts of price factors from different periods, value
indicators are all converted into constant prices of the year 2000 using price indices. Table 2
shows the symbols and descriptive statistics of the variables.

Table 2. Variable symbols and descriptive statistics.

Variables Symbols Obs. Mean Std.
Dev. Min. Max.

Carbon Emissions (104 tons) E 596 9.912 0.815 6.855 11.465
Population Size (104 people) P 620 8.083 0.861 5.553 9.352

Economic Growth Level (CNY) pgdp 620 9.156 0.535 7.887 10.784
R&D Capital Stock (104 CNY) RD 620 14.161 1.681 8.625 17.648

Proportion of R&D Capital Stock in High-Tech Industries hRD_share 610 0.114 0.090 0.000 1 0.475
Industrial Structure Upgrading ind_stru 620 6.556 0.324 5.925 7.654

Environmental Policy (%) grpolicypub 279 0.448 0.486 0.005 3.171
Energy Intensity (tce/104 CNY) EI 596 2.747 2.017 0.577 17.737

Energy Consumption Structure (proportion) ES 596 0.610 0.133 0.022 0.911
Urbanization Level (proportion) urban 620 0.503 0.158 0.191 0.942

Foreign Direct Investment (108 CNY) FDI 600 3.869 1.654 −3.121 6.921
Average Years of Education (years) edu_year 620 8.483 1.26 3.43 12.681

1 The actual value is approximately 0.0002803.

3. Results

In our empirical analysis, the provincial panel data used are characterized by a large
N and small T (a short panel); hence, the standard panel model is our first choice for
regression analysis. However, after testing, we found that the fixed effects model suffers
from severe heteroscedasticity, serial correlation, and cross-sectional dependence issues.
Therefore, we chose to use the Panel-Corrected Standard Error (PCSE) method and control
for time effects. Table 3 reports the model’s estimation results.

Column (1) of Table 3 presents the baseline regression results, setting the time span to
2011–2019 due to the environmental policy variable covering the years 2011–2019. Column
(2) shows regression results that include only the R&D capital stock, excluding the propor-
tion of R&D capital stock in high-tech industries. Column (3) includes only the proportion
of R&D capital stock in high-tech industries, excluding the R&D capital stock. Column
(4) shows regression results after expanding the sample size, where the model does not
include environmental policy, and the time span is set to 2000–2019. Column (5) shows
regression results that add a quadratic term of economic growth level to the baseline model
of column (1), to test for the existence of an Environmental Kuznets Curve. Column (6)
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shows regression results that further include an interaction term between economic growth
level and environmental policy based on column (5), to test the impact of environmental
policy on the turning point of the Environmental Kuznets Curve.

Table 3. Model estimation results.

Variables

(1) (2) (3) (4) (5) (6)

Baseline
Regression

R&D Quantity
Only

R&D Quality
Only

Expand Sample
Size

Include
Quadratic Terms

Include
Interaction Terms

P 1.024 *** 1.037 *** 1.060 *** 1.043 *** 1.048 *** 1.006 ***
(35.90) (29.31) (54.88) (44.98) (39.85) (35.70)

pgdp 0.424 *** 0.429 *** 0.439 *** 0.444 *** 4.088 *** 5.010 ***
(15.69) (14.47) (18.07) (13.45) (11.48) (12.72)

pgdp×pgdp −0.195 *** −0.239 ***
(−10.47) (−11.81)

pgdp×grpolicypub −0.334 ***
(−4.15)

RD 0.027 0.022 0.005 0.008 0.019
(1.49) (0.97) (0.21) (0.52) (1.20)

hRD_share −0.569 *** −0.565 *** −0.387 *** −0.597 *** −0.676 ***
(−6.83) (−6.73) (−6.02) (−7.39) (−8.38)

ind_stru −0.324 *** −0.376 *** −0.301 *** −0.098 −0.090 ** −0.048
(−7.18) (−7.95) (−7.79) (−1.41) (−2.20) (−1.06)

grpolicypub −0.170 *** −0.144 *** −0.169 *** −0.127 *** 2.984 ***
(−4.69) (−3.88) (−4.69) (−3.47) (3.97)

EI 0.156 *** 0.161 *** 0.155 *** 0.182 *** 0.151 *** 0.153 ***
(13.55) (13.65) (14.12) (13.09) (13.91) (13.40)

ES 0.652 *** 0.605 *** 0.657 *** 0.723 *** 0.572 *** 0.487 ***
(8.20) (6.97) (8.65) (7.60) (7.50) (5.40)

urban 1.340 *** 1.325 *** 1.444 *** 1.361 *** 1.170 *** 0.558 **
(6.18) (5.54) (6.75) (6.60) (5.72) (2.43)

FDI −0.042 *** −0.050 *** −0.041 *** −0.022 *** −0.042 *** −0.023 **
(−3.56) (−4.23) (−3.50) (−4.24) (−3.95) (−2.00)

edu_year −0.093 *** −0.067 *** −0.094 *** −0.059 *** −0.070 *** −0.013
(−6.57) (−5.26) (−6.83) (−4.04) (−4.86) (−0.73)

Constant −0.876 *** −0.854 *** −1.110 *** −3.450 *** −19.532 *** −24.640 ***
(−2.97) (−2.65) (−4.93) (−7.07) (−11.35) (−12.25)

N 270 270 270 595 270 270
R2 0.946 0.942 0.945 0.941 0.949 0.952

Notes: The values in parentheses are t-values; ** and ***, respectively, indicate significance at the 5% and 1% levels.

Table 3 shows that the coefficients, signs, and significance of the explanatory variables
in the models remain essentially stable, proving the robustness of the baseline regression
results. The baseline regression results indicate that the impact of R&D capital stock on
carbon emissions is not significant, while the proportion of R&D capital stock in high-tech
industries has a significant negative effect on carbon emissions. For other explanatory
variables, our findings align with those in the related literature [10,28,34]. Industrial
structure upgrading, environmental policy, FDI, and average years of education all have
significant negative effects on carbon emissions; whereas population size, economic growth
level, energy intensity, energy consumption structure, and urbanization level all have
significant positive effects on carbon emissions. After including the quadratic term of
economic growth level, the coefficient of economic growth level is significantly positive, and
the coefficient of its quadratic term is significantly negative, indicating the existence of an
inverted U-shaped Environmental Kuznets Curve relationship between carbon emissions
and economic growth level, i.e., environmental problems caused by carbon emissions tend
to improve with higher levels of economic growth. After including the interaction term
between environmental policy and economic growth level, the coefficient of this interaction
term is significantly negative, indicating that environmental policy leads to an earlier
appearance of the turning point in the inverted U-shaped curve of carbon emissions.
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4. Discussion
4.1. Regional Heterogeneity Analysis

We further examine the carbon emission reduction effects of the quantity and quality
of R&D activities in different regions. Based on the per capita value-added indicator and
the marketization index of each province in 2019, we categorize provinces into regions
with high or low levels of economic growth, and into regions with high or low levels of
marketization. Table 4 reports the model’s estimation results.

Table 4. Results of regional heterogeneity analysis.

Variables
Baseline

Regression
Economic Growth Level Marketization Level

High Low High Low

P 1.024 *** 0.815 *** 1.298 *** 1.094 *** 1.309 ***
(35.90) (13.93) (15.46) (19.36) (19.97)

pgdp 0.424 *** 0.367 *** 0.962 *** 0.750 *** 1.071 ***
(15.69) (5.82) (8.68) (21.98) (11.06)

RD 0.027 0.256 *** −0.083 −0.018 −0.078 ***
(1.49) (4.33) (−1.57) (−0.76) (−3.34)

hRD_share −0.569 *** −0.972 *** 0.580 * −0.419 *** 0.768 **
(−6.83) (−11.11) (1.83) (−4.98) (2.24)

ind_stru −0.324 *** −1.059 *** 0.517 *** −0.423 *** 0.666 ***
(−7.18) (−10.26) (4.17) (−6.62) (5.08)

grpolicypub −0.170 *** −0.228 * 0.199 *** −0.160 ** 0.156 ***
(−4.69) (−1.93) (2.92) (−2.41) (2.69)

EI 0.156 *** 0.161 *** 0.154 *** 0.376 *** 0.134 ***
(13.55) (11.93) (16.92) (18.20) (19.15)

ES 0.652 *** 0.221 0.532 *** 0.330 *** 0.562 ***
(8.20) (1.01) (6.74) (7.94) (4.14)

urban 1.340 *** 1.994 *** 0.924 * 1.062 *** 0.911 **
(6.18) (5.93) (1.70) (3.54) (2.16)

FDI −0.042 *** −0.005 −0.056 *** 0.009 −0.069 ***
(−3.56) (−0.16) (−3.67) (0.47) (−4.22)

edu_year −0.093 *** −0.159 *** 0.004 −0.129 *** −0.024
(−6.57) (−2.98) (0.14) (−6.54) (−1.09)

Constant −0.876 *** 3.130 *** −12.558 *** −3.299 *** −14.299 ***
(−2.97) (3.46) (−6.60) (−6.39) (−7.73)

N 270 135 135 135 135
R2 0.946 0.966 0.967 0.989 0.970

Notes: The values in parentheses are t-values; *, **, and ***, respectively, indicate significance at the 10%, 5%, and
1% levels.

From the perspective of economic growth level, the proportion of R&D capital stock
in high-tech industries has a significantly negative effect on carbon emissions in regions
with high economic levels, with an estimated parameter value of −0.972, compared to the
national overall estimate of −0.569. This indicates that the carbon emission reduction effect
of the proportion of R&D capital stock in high-tech industries is stronger than the national
average in regions with high economic levels. The R&D capital stock in regions with high
economic levels has a significant positive effect on carbon emissions, while in regions with
low economic levels, the R&D capital stock’s effect on carbon emissions is not significant.
This may be because the increase in R&D capital stock in high-economic-level regions
enhances their economic growth levels, which has a significant positive effect on carbon
emissions, resulting in a significant positive value in the parameter estimates. Furthermore,
the regression coefficients of industrial structure upgrading and environmental policy
are significantly negative in regions with high economic growth levels, while they are
significantly positive in regions with low economic growth levels.

From the perspective of marketization level, the proportion of R&D capital stock in
high-tech industries has a significantly negative effect on carbon emissions in regions with
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high marketization levels, with an estimated parameter value of −0.419, making its carbon
reduction effect slightly weaker than the national average. The R&D capital stock’s effect
on carbon emissions is not significant in regions with high marketization levels, while in
regions with low marketization, the R&D capital stock has a significant negative effect on
carbon emissions. Additionally, the regression coefficients of industrial structure upgrading
and environmental policy are significantly negative in regions with high marketization
levels and significantly positive in regions with low marketization levels.

The above results indicate that, in regions with high levels of economic growth and
marketization, the carbon emission reduction effect of the proportion of R&D capital stock
in high-tech industries is stronger.

4.2. Evolutionary Analysis

We further explore the evolutionary characteristics of the carbon emission reduction
effects of the quantity and quality of R&D activities across provinces. We conduct a rolling
regression on the model with a time span of 15 years. Since the time span of the environ-
mental policy variable is from 2011 to 2019, which does not meet the requirements for
evolutionary analysis, the environmental policy variable is not included in the evolutionary
analysis. Table 5 reports the model’s estimation results.

Table 5. Results of evolutionary analysis.

Variables 2000–2014 2001–2015 2002–2016 2003–2017 2004–2018 2005–2019

P 0.969 *** 0.961 *** 0.949 *** 0.967 *** 0.985 *** 1.033 ***
(55.49) (53.64) (50.27) (41.95) (36.70) (36.06)

pgdp 0.497 *** 0.494 *** 0.484 *** 0.491 *** 0.498 *** 0.503 ***
(11.04) (12.37) (13.41) (15.43) (17.30) (17.32)

RD 0.075 *** 0.082 *** 0.086 *** 0.074 *** 0.055 ** 0.016
(3.95) (4.50) (4.95) (3.81) (2.47) (0.68)

hRD_share −0.265 *** −0.241 *** −0.222 *** −0.251 *** −0.288 *** −0.460 ***
(−4.10) (−3.58) (−3.09) (−3.60) (−4.52) (−6.31)

ind_stru −0.245 *** −0.280 *** −0.308 *** −0.292 *** −0.271 *** −0.239 ***
(−3.71) (−4.70) (−5.82) (−5.26) (−4.86) (−4.46)

EI 0.275 *** 0.262 *** 0.249 *** 0.224 *** 0.202 *** 0.167 ***
(19.93) (19.17) (18.53) (15.74) (14.71) (13.07)

ES 0.344 *** 0.337 *** 0.377 *** 0.482 *** 0.604 *** 0.801 ***
(4.92) (5.14) (5.92) (6.53) (7.52) (8.12)

urban 0.947 *** 0.915 *** 0.918 *** 0.953 *** 0.966 *** 1.156 ***
(5.22) (5.25) (5.11) (5.07) (4.95) (5.36)

FDI −0.008 −0.010 * −0.008 −0.015 ** −0.016 ** −0.020 ***
(−1.54) (−1.87) (−1.39) (−2.33) (−2.51) (−3.19)

edu_year −0.037 *** −0.043 *** −0.053 *** −0.062 *** −0.064 *** −0.068 ***
(−2.70) (−3.19) (−3.85) (−4.59) (−4.91) (−4.95)

Constant −3.275 *** −2.923 *** −2.511 *** −2.516 *** −2.588 *** −2.706 ***
(−5.99) (−5.53) (−5.01) (−5.09) (−5.21) (−5.43)

N 445 447 448 450 450 450
R2 0.960 0.959 0.959 0.955 0.952 0.945

Notes: The values in parentheses are t-values; *, **, and ***, respectively, indicate significance at the 10%, 5%, and
1% levels.

The carbon emission reduction effect of the proportion of R&D capital stock in high-
tech industries generally shows a trend of gradual strengthening. During the 2000–2014
period, the regression coefficient was −0.265, which increased to −0.460 in the 2005–2019
period. The promoting effect of R&D capital stock on carbon emissions changed from
significant to insignificant, and showed a trend of weakening; the regression coefficient
decreased from 0.075 in the 2000–2014 period to 0.016 in the 2005–2019 period, and became
insignificant. Industrial structure upgrading has a significant negative impact on carbon
emissions, and this impact fluctuates around a certain level. The carbon emission reduction
effect of FDI changed from insignificant to significant and strengthened over time, with the
regression coefficient moving from −0.008 (insignificant) in the 2000–2014 period to −0.020
in the 2005–2019 period. The carbon emission reduction effect of average years of education
showed a trend of gradual strengthening, with the regression coefficient increasing from
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−0.037 in the 2000–2014 period to −0.068 in the 2005–2019 period. The remaining variables
all promote carbon emissions, among which the impacts of population size, economic
growth level, energy consumption structure, and urbanization level generally show a trend
of strengthening, while the impact of energy intensity shows a trend of weakening.

4.3. Influence Mechanism Analysis

In this section, we examine the mechanisms through which R&D activities influence
carbon emissions. We establish the following mediation model based on the “R&D activities–
industrial structure upgrading–carbon emissions” pathway:

Eit = β01 + Rβ21 + Zβ31 + v1t + λ1i + ε1it, (12)

ind_struit = β02 + Rβ22 + Zβ32 + v2t + λ2i + ε2it, (13)

Eit = β03 + β13ind_struit + Rβ23 + Zβ33 + v3t + λ3i + ε3it, (14)

where E represents carbon emissions, i denotes the province, t denotes the year, ind_stru
is the level of industrial structure upgrading, R represents R&D capital stock (RD) and
the proportion of R&D capital stock in high-tech industries (hRD_share), Z represents
other variables such as population size, economic growth level, energy intensity, energy
consumption structure, etc., β represents the estimated coefficient for constant terms or
variables, v is the time effect, λ is the individual effect, and ε is the random error. We
use the Panel-Corrected Standard Error method for estimation and control for time effects.
Table 6 reports the model’s estimation results.

Table 6. Results of influence mechanism analysis.

Variables
(1) (2) (3)

E ind_stru E

P 1.075 *** −0.158 *** 1.024 ***
(33.97) (−10.31) (35.90)

pgdp 0.385 *** 0.120 *** 0.424 ***
(11.87) (4.87) (15.69)

RD −0.025 0.160 *** 0.027
(−1.53) (19.45) (1.49)

hRD_share −0.658 *** 0.274 ** −0.569 ***
(−7.20) (2.52) (−6.83)

ind_stru −0.324 ***
(−7.18)

grpolicypub −0.175 *** 0.014 −0.170 ***
(−4.38) (0.35) (−4.69)

EI 0.154 *** 0.007 ** 0.156 ***
(14.41) (2.47) (13.55)

ES 0.732 *** −0.248 *** 0.652 ***
(10.62) (−4.36) (8.20)

urban 1.261 *** 0.244 1.340 ***
(4.98) (1.44) (6.18)

FDI −0.029 ** −0.040 *** −0.042 ***
(−2.35) (−4.69) (−3.56)

edu_year −0.107 *** 0.045 *** −0.093 ***
(−8.19) (4.76) (−6.57)

Constant −2.198 *** 4.080 *** −0.876 ***
(−9.28) (21.90) (−2.97)

N 270 270 270
R2 0.942 0.833 0.946

Notes: The values in parentheses are t-values; ** and ***, respectively, indicate significance at the 5% and 1% levels.
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The coefficients for the total effect and the direct effect of R&D capital stock on carbon
emissions are −0.025 and 0.027, respectively, both of which are not significant. R&D
capital stock has a significant positive effect on industrial structure upgrading, with a
coefficient of 0.160, while industrial structure upgrading has a significant negative effect
on carbon emissions, with a coefficient of −0.324. This indicates that R&D capital stock
has a significant indirect negative effect on carbon emissions through industrial structure
upgrading, with this indirect effect being −0.0518. Since the total effect of R&D capital stock
on carbon emissions is not significant, it should be considered a masking effect, meaning
that the total effect is concealed. A possible explanation is that R&D capital stock has a
negative effect on carbon emissions through industrial structure upgrading on one hand
and a positive effect through other variables on the other hand. For example, R&D capital
stock has a positive effect on economic growth level, which in turn has a positive effect
on carbon emissions; thus, R&D capital stock exerts a positive effect on carbon emissions
through economic growth level. In this way, the negative and positive effects offset each
other, making the total effect of R&D capital stock on carbon emissions non-significant.

The coefficients for the total effect and the direct effect of the proportion of R&D capital
stock in high-tech industries on carbon emissions are −0.658 and −0.569, respectively, both
of which are significant. The proportion of R&D capital stock in high-tech industries has
a significant positive effect on industrial structure upgrading, with a coefficient of 0.274,
and industrial structure upgrading has a significant negative effect on carbon emissions,
with a coefficient of −0.324. Therefore, R&D capital stock exerts a significant negative
effect on carbon emissions through industrial structure upgrading, with this indirect effect
being approximately −0.0888. Since the total effect, indirect effect, and direct effect of
the proportion of R&D capital stock in high-tech industries on carbon emissions are all
significant, it should be considered a partial mediation effect, meaning the mediation effect
of the proportion of R&D capital stock in high-tech industries on carbon emissions accounts
for about 13.49% of the total effect.

5. Conclusions

This paper analyzes the carbon emission reduction effects of the quality and quantity
of R&D activities, with the main findings as follows:

1. The primary regression analysis shows that the quality of R&D activities has a negative
impact on carbon emissions, while the quantity of R&D activities does not have
a significant impact. From the perspective of other variables, industrial structure
upgrading, environmental policy, FDI, and the average years of education all have
negative effects on carbon emissions, whereas population size, economic growth
level, energy intensity, energy consumption structure, and urbanization level all have
positive effects on carbon emissions. Furthermore, there exists an inverted U-shaped
Environmental Kuznets Curve relationship between carbon emissions and economic
growth level. The government’s implementation of environmental policies initiates
the turning point in the inverted U-shaped curve of carbon emissions to appear earlier;

2. Regional heterogeneity analysis shows that, from the perspective of economic growth
level, only in regions with high economic growth does the quality of R&D activities
have a negative effect on carbon emissions, while the quantity of R&D activities has
a positive effect. From the perspective of marketization level, only in regions with
high marketization levels does the quality of R&D activities have a negative effect
on carbon emissions, while the quantity of R&D activities does not have a significant
effect. Moreover, the coefficients of industrial structure upgrading and environmental
policy are significantly negative in regions with high levels of economic growth
and marketization, while being significantly positive in regions with low levels of
economic growth and marketization;

3. Evolutionary analysis shows that the carbon emission reduction effect of the quality of
R&D activities tends to strengthen over time, while the positive effect of the quantity
of R&D activities on carbon emissions shifts from significant to insignificant, and
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shows a weakening trend over time. Industrial structure upgrading has a significant
negative effect on carbon emissions. The carbon emission reduction effects of FDI and
average years of education show a strengthening trend over time;

4. Influence mechanism analysis shows that both the quality and quantity of R&D
activities reduce carbon emissions by promoting industrial structure upgrading.

Based on the findings of this paper, to reduce carbon emissions more effectively, firstly,
relevant departments should consider both the quantity and quality of R&D and adopt
a multi-faceted approach to promote industrial structure upgrading, enact appropriate
environmental policies, expand the level of opening up, and value education, among other
measures. Secondly, relevant departments should focus on improving the level of economic
growth, pursue high-quality development, and further advance marketization reforms to
fully leverage the market’s decisive role in resource allocation. Finally, relevant depart-
ments should continually improve the fiscal and financial service systems that support
innovation, reducing carbon emissions through promoting technological innovation. On
one hand, a collaborative innovation mechanism involving industry, academia, research,
and application can be established to accelerate the transformation and industrialization
of scientific and technological achievements; on the other hand, the intellectual property
protection system can be improved to provide guarantees for enterprises engaging in
technological innovation.

The primary limitation of this paper is that it does not incorporate spatial factors into
the analytical framework. This is because the Moran’s I indices calculated using spatial
weight matrices such as adjacency and economic distance matrices for carbon emissions in
Chinese provinces are not significant, indicating a lack of significant spatial correlation in
carbon emissions among the provinces. In future research, we plan to explore additional
data sources and develop spatial weight matrices tailored to our study’s needs, to further
investigate the spatial correlations of carbon emissions.
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