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Abstract: This study introduces the concept of urban rainwater system vulnerability and identifies
the indicator factors that affect the vulnerability of rainwater systems. Using the analytic hierar-
chy process (AHP), an index system for the vulnerability assessment of the rainwater system was
established, and a vulnerability assessment model for the rainwater system was constructed. By
integrating vulnerability degree, recurrence period, and water depth of ponding, a vulnerability
assessment framework for urban rainwater systems was developed. Taking a newly developed urban
area in the Suzhou High-Tech Zone as an example, we calculated the vulnerability degree of the urban
rainwater system in this area to be 0.6497, indicating a high level of vulnerability and poor system
safety. When encountering rainfall with a recurrence period p > 5 years, the city is likely to experience
severe waterlogging. Through the analysis and evaluation of the rainwater system’s vulnerability,
while clarifying the current state of the rainwater system, it can provide a scientific reference basis
for the system’s upgrade, transformation, and optimized operation and management. Although the
selection of factors may not be entirely comprehensive, this method allows for adjustments based on
the composition and operation of different rainwater systems.

Keywords: vulnerability; urban rainwater system; analytic hierarchy; weight value; assessment
system

1. Introduction

Since 2013, China has initiated extensive construction projects focused on sponge
city development [1–3]. The first set comprised 16 pilot cities, followed by a second batch
of 14 cities, generating widespread enthusiasm for the undertaking, with annual direct
funding of over ten billion CNY (Chinese currency yuan) from the central government of
China. Virtually every local government has established a dedicated office for oversee-
ing sponge city construction and management, ensuring the systematic execution of all
related projects, including planning, design, and subsequent construction [4,5]. The urban
rainwater system is a crucial component of sponge city infrastructure, and its stability and
reliability are directly related to the sponge city’s flood prevention and drainage capabilities.
However, there has been a notable absence of theoretical frameworks employed to evaluate
plans or designs and assess the vulnerability of existing rainwater systems prior to the
commencement of construction work [6].

Vulnerability has progressively emerged as a focal point in the realm of global en-
vironmental change and sustainable development, gaining prominence as a hot topic in
research [7]. As an innovative research paradigm with widespread applications across
various disciplines, vulnerability is capturing increased academic attention. Numerous
scientific initiatives, including IHDP, IPCC, and IGBP, have incorporated vulnerability
research into their agendas [8,9]. To our knowledge, the scientific investigation of vulner-
ability originated in the field of natural disaster research, with Timmerman introducing
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the concept to geoscience back in 1981 [10]. Vulnerability has been widely studied in
socio-hydrology, economics, medicine, ecology, and many other fields [11–14].

Vulnerability is commonly characterized as the condition of being open, exposed,
or prone to injury or attack. In catastrophology, Zheng thought that damage and loss
predominantly result from natural disasters [15]. Spielman thought that vulnerability
describes combinations of social, cultural, economic, political, and institutional processes
that shape socioeconomic differentials in the experience of and recovery from hazards.
Energy vulnerability, intended as the exposure of an energy system to adverse events
and change, often overlaps with other energy policy concepts such as resilience, security,
poverty, justice, and sustainability [16]. Gatto and Busato improved the understanding of
vulnerability in economics, energy, and sustainability studies [17]. Subsequent scholarly
explorations have coalesced around the conviction that sensitivity and adaptability to
external changes stand as pivotal constituents of vulnerability. Consequently, positioned at
the nexus of diverse disciplines and reliant upon interdisciplinary research and inquiry,
the concept of vulnerability has undergone a profound transformation from its initial
simplicity to a comprehensive definition that embraces both intrinsic and extrinsic natural
and social factors. To attain a more nuanced grasp of vulnerability, it becomes imperative to
integrate human initiative adaptability into vulnerability research. The discernible impact
of human agency on the composition and mitigation of vulnerability is now acknowledged
as considerably more profound than in previous considerations.

The concept of engineering vulnerability has primarily found application in municipal
infrastructure systems, notably in power transmission grids, water treatment plants, and
metro networks to characterize the inherent capacity of these systems to endure the adverse
impacts of disaster events [18–23]. However, vulnerability research in the context of
rainwater systems remains relatively nascent, with only analogous studies focusing on
drainage capacity or the sustainability of such systems. Ke delved into the analysis of
restoring forces and proposed a novel method for comprehensively assessing the resilience
of drainage systems under various disturbance events [24]. In a similar vein, Lin undertook
an assessment of the drainage capacity of rainwater systems, presenting recommendations
aimed at mitigating the risk of flooding [25].

In recent years, the discernible increase in instances of waterlogging stemming from
rainfall events has become particularly pronounced, especially in rapidly evolving urban
centers. Currently, there exists no definitive method for precisely delineating the tolerance
or anti-interference capacity of a rainwater system, and research dedicated to understanding
the vulnerability of these systems remains scarce. Against this backdrop, assessing the
vulnerability of rainwater drainage systems becomes particularly critical. Consequently,
this paper endeavors to fill this research gap by developing a vulnerability calculation
method and assessment system for urban rainwater systems, drawing inspiration from
research findings on other infrastructure systems. The established assessment system
enables an indirect evaluation of safety levels and disaster-bearing capabilities, providing
assessment results that furnish specific and efficacious measures for reducing system
vulnerability during the engineering process. It can provide a scientific basis for the
optimization and upgrading of the system, contributing to the sustainable development of
the city.

2. Methods
2.1. Evaluation Factors

The vulnerability of an urban rainwater system encompasses its susceptibility to
interference and its capacity to adapt to external environmental changes, exemplified by a
scenario where a property struggles to discharge water promptly during rainfall. Upon
a comprehensive analysis of factors influencing a rainwater system, these factors can be
categorized into two primary components: the physical and the social. The physical part
pertains to the inherent structure of the system, encompassing elements such as inlet holes,
gullies, pipes, lifting pump stations, detention tanks, and more. On the other hand, the
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social component involves the impact of human behavior on the system’s operational
processes. Vulnerability, as a characteristic value of the entire system, necessitates the
integration of each component that contributes to determining the system’s susceptibility.

2.1.1. Physical Factors

Physical vulnerability refers to the susceptibility of a system’s functionality to be
affected by external disturbances or impacts, as determined by the inherent physical char-
acteristics of the rainwater system. The level of physical vulnerability directly influences
the degree of the system’s overall vulnerability.

In selecting the physical factors for the vulnerability evaluation index in this study,
several critical components of the system were considered. These factors include the setting
position, relative elevation, and the collecting and releasing capacity of the gutter inlets or
outlets, which can significantly impact the ponding depth on road surfaces. Additionally,
the water transmission dynamics within the pipe network were also taken into account.
The size of pipes plays a decisive role in drainage capacity, and increasing the pipe diameter
not only increases capacity but also adds a regulating volume to the pipe network. The
slope of a pipeline has been acknowledged for its effects on deposition and flushing,
further influencing drainage capacity. Furthermore, the regulatory and storage capacity of
pumping stations or other storage structures have been recognized as vital components,
particularly in the context of extraordinary rainstorm events.

2.1.2. Social Factors

Social vulnerability primarily denotes the extent of measures taken by human society
to mitigate the threats posed by heavy rainfall to urban areas and to enhance the rainwater
system’s capacity to cope with such precipitation events. Under conditions where the
hazard agents are constant, the greater the intensity of the measures implemented, the
lower the social vulnerability of the stormwater system, and, consequently, the lesser the
impact of heavy rainfall on the city.

Determining indices for the social component poses challenges due to the intricate
interplay within a complex social environment. Considering the urban context, this paper
identifies four key facets encapsulating these influences: (1) the construction and renova-
tion of drainage pipe networks, along with daily operation and maintenance, constitute
managerial-level influences. Heightened managerial proficiency significantly enhances a
system’s adaptability to external changes, thereby elevating its safety level; (2) the presence
of green spaces and impermeable pavements in a city exerts a substantial impact on flood
flux and the peak time of rainfall runoff. Urbanization has notably escalated impermeable
surfaces, imposing a substantial burden on drainage systems [26]; (3) sanitation levels
indirectly affect drainage system performance. Regular road surface cleaning and unblock-
ing gutter holes prove effective in ensuring swift system functionality upon rainfall; and
(4) disaster prevention levels and operating environments, determined by government in-
vestment in infrastructure, directly influence the scale of a rainwater system. The profound
impact of these social factors on a rainwater system necessitates careful consideration.

2.1.3. Assessment Framework

In the absence of a clear understanding of the mechanisms underlying vulnerabil-
ity formation, the index system is currently the most commonly employed method for
vulnerability assessment. In delineating the causes of vulnerability and the associated
characteristics of formation, a hierarchical assessment method was employed to establish
the vulnerability value of a disaster body. As a primary statistical method for comprehen-
sive analyses, the analytic hierarchy process (AHP) method was chosen to construct the
vulnerability hierarchy system [27,28]. This methodology ascertains the indicators for vul-
nerability analysis based on the causes and characteristic manifestations of the vulnerability
of disaster-prone entities and establishes an index system for vulnerability assessment.
Subsequently, it determines the weights of each indicator through expert consultation or
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methods such as the analytic hierarchy process (AHP). Finally, it constructs a vulnerability
assessment model using relevant mathematical methods to calculate the comprehensive
vulnerability index, also known as the vulnerability degree, which characterizes the extent
of vulnerability of disaster-prone entities. This approach can be applied to evaluate indi-
vidual disaster-prone entities, multiple entities, as well as entire disaster-prone systems.
Upon categorizing the factors into two distinct parts, the rainwater vulnerability system’s
hierarchy comprises three layers, as illustrated in Figure 1. The top layer serves as the target
layer, presenting the vulnerability value. The second layer, the logical layer, comprises
sub-indices that differentiate the principal components. The bottom layer, the index layer,
encompasses each factor contributing to the assessment [29].
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2.2. Weight Value of Factors

A weight value represents the local or global priority of a factor to its system. To
determine the weight, the relationships among all factors in the group need to be taken into
account. The steps to ensure the weight value are important in a synthetic evaluation model.

In consideration of the rainwater system’s constitution and operating characteristics,
the structural model was constructed based on the framework previously built using the
AHP method. The weight value was calculated using a judgment matrix; however, both
the judgment value and matrix should have been checked through a consistency test.

For the successful construction of a vulnerability assessment framework for the rain-
water system, the selection of both internal and external factors, as well as the analysis of
corresponding indicative values, weights, and judgment matrices, are conducted through
the method of providing questionnaires to experts for specialized surveys and then evalu-
ating and judging the scores.

2.2.1. Judgment Matrix

Within a certain category, all of the factors are interrelated but are quite different
from one another. By giving them a numerical value, a judgment value of the importance
intensity can represent the significance of the factors [30]. In Table 1, Bi and Bj repre-
sent two different evaluation factors, and the intensity of importance is divided into five
ranges, where f

(
Bi/Bj

)
and f

(
Bj/Bi

)
are the values of intensities and f

(
Bi/Bj

)
means the

judgment value of the importance of element Bi relative to element Bj.
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Table 1. Judgment value from the intensity of importance.

Intensity of Importance Compared between Bi and Bj f
(

Bi/Bj

)
f
(

Bj/Bi

)
Equal importance 1 1

Moderate importance 3 1
Strong importance 5 1

Very strong importance 7 1
Extreme importance 9 1

Note: The intensities of 2, 4, 6, and 8 can be used to express intermediate values. And the intensities of 1.1, 1.2, 1.3,
etc., can be used for elements that are very close in importance.

According to the relative importance of a rainwater system, bij and M can be calculated
using the initial judgment value given in Table 1.

The formulas for the judgment value and matrix are as follows:

bij =
f
(

Bi/Bj
)

f
(

Bj/Bi
) (i, j = 1, 2, . . . , n) (1)

M =

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 (2)

2.2.2. Consistency Check

In order to verify the soundness and accuracy of the initial value, the result of bij and
M must be checked through numerical consistency. The consistent matrix should observe
the following steps:

1. The matrix B =
(
bij

)
n×n should be a tolerance matrix that meets the following

conditions: 
bii = 1 , ∀ i ∈ {1, 2, . . . , n} ;
bij·bji = 1 , ∀ i, j ∈ {1, 2, . . . , n} ;
bij·bjk = bik , ∀ i, j, k ∈ {1, 2, . . . , n} ;

(3)

2. If matrix B meets the conditions, then we define the corresponding eigenvector as Wi:

Wi = n

√√√√ n

∏
j=1

bij (4)

If the maximum eigenvalue λmax = n, the weight vector w is the collection of Wi:

W = [W1, W2, . . . , Wn]
T (5)

3. Calculation of Consistency check [31].

The judgment matrix formed based on actual problems may not achieve absolute
consistency. Therefore, it is necessary to verify the consistency of the judgment matrix and
calculate the consistency index (CI) of the matrix:

CI =
λmax − n

n − 1
(6)

If the consistency index CI = 0 and the maximum eigenvalue λmax = n, then the
judgment matrix has complete consistency. Conversely, when CI ̸= 0, the larger the CI is,
the worse the consistency of the judgment matrix is.

To ascertain the attainment of a desirable level of consistency within the judgment
matrix, it is essential to compare the CI with the average random consistency index (RI)
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of the same order. Matrices of the first and second orders inherently exhibit complete
consistency, whereas matrices beyond the second order necessitate the use of the ratio of
CI to RI for assessing satisfactory consistency levels. Generally, the random consistency
ratio of the judgment matrix is represented by CR:

CR =
CI
RI

(7)

When CR < 0.10, it is considered that the consistency of the judgment matrix meets
the requirements. Otherwise, adjustments to the judgment matrix are indispensable until it
aligns with the stipulated requirements [32–34].

The average random consistency index of each order is shown in Table 2.

Table 2. Average random consistency index.

n 0 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46 1.49

If the weight vector successfully passes the normalization check, this signifies that the
values of bij and M can be utilized in the subsequent steps. This indicates that the AHP
method can be employed to select and assign the evaluation factors of vulnerability.

For a hierarchical analysis of the system, we amalgamate the factor weight Wc with the
criteria weight WB to derive a cohesive weight value, structured in the order of vulnerability:

Wi = WB·Wc = [W1, W2, . . . , Wn] (8)

The derived weight value serves as a poignant indicator of each factor’s significance
in both the composition and operation of the system. It stands as fundamental data pivotal
for calculating the vulnerability of rainwater systems.

2.3. Vulnerability Calculation
2.3.1. Mathematical Model

Vulnerability is represented by V and comprises basic index vulnerability values Vi,
which is portrayed through a comprehensive representation of each factor using the weighted
average method. Mitigating the influences of distinct dimensions was accomplished through
the use of a relative method, resulting in representative values for these factors.

Within this framework, akin factors are consolidated, less impactful elements are
excluded, and the parameters essential for this model are determined as follows: ha, qa
denote the relative elevation and flow capacity of gutter inlet holes; da and ia represent the
diameter and slope of pipes; Qa signifies the regulation quantity of the pump station; Ta
embodies the storage capacity of the detention tank; Oa characterizes the outfall setting
condition; Ca reflects the financial investment situation; Sa denotes the proportion of
impermeable pavement; Ga gauges the management level of the stormwater system by
the government; and Pa signifies the cleaning frequency of the urban target region. The
corresponding weight values for each factor are denoted as Wh, Wq, Wd, Wi, WQ, WT , WO,
WC, WS, WG, and WP.

The magnitude of the vulnerability characteristic values for each indicator reflects the
performance quality of that component within the system. A larger characteristic value
indicates good performance and low vulnerability of the component, whereas a smaller
value indicates poor performance and high vulnerability. It is important to note that the
characteristic value only reflects the vulnerability of that particular component within the
indicator system, which has its limitations.

Upon finalizing the characterization of both physical and social factors, the corre-
sponding weights were organized in the target layer from Equation (2), and the formulation
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of the mathematical model for calculating the vulnerability value of the urban rainwater
system is expressed as Equation (9):

V = VPhysical+ Vsocial
= haWh + qaWq + daWd + iaWi + QaWQ + TaWT + OaWO
+CaWC + SaWS + GaWG + PaWP

(9)

The comprehensive reflection of indicator vulnerability is represented by the product
of the characteristic value and the weight value, also known as the vulnerability degree.
This vulnerability degree refers to the internal vulnerability within the system, indicating
the contribution value of that indicator to overall system vulnerability; the greater the
vulnerability degree, the more significant the impact of the indicator on system vulnerability,
and vice versa. The magnitude of internal vulnerability is not used to measure the size of
system vulnerability and is not used for comparison of vulnerability levels. The comparison
of vulnerability degrees pertains to the comparison of system vulnerability, which is a
comparison of the system’s comprehensive performance.

2.3.2. Vulnerability Assessment

The vulnerability value serves as a reflection of a system’s capability to handle an
imminent storm. A lower vulnerability value signifies a heightened safety level, implying
the system’s ability to withstand more robust rainfall. Conversely, elevated vulnerability
values indicate a city’s diminished ability to weather a storm, thereby escalating the
likelihood of a flood. It is crucial to establish an evaluation standard for vulnerability
grounded in pre-generalized assessments of an urban rainwater system. This standard
should not only account for the vulnerability degree value but also align with existing
standards for flood control, rainfall drainage, or other relevant benchmarks. Notably, the
return period serves as a pivotal indicator of rainfall intensity, crucial in storm sewer system
design and a prevalent index for discussing urban water flooding concerns. However, the
return period solely conveys rainfall intensity without capturing a storm system’s capacity
to collect and transfer water. In this regard, vulnerability emerges as a precise assessment
criterion for evaluating a storm system’s ability to collect, transfer, and discharge rainwater.
This indicator proves invaluable in assessing capability and analyzing the safety level of a
storm system, whether it is already established or not.

The return period (P) refers to the average P-year rainfall event, where a larger P value
indicates a greater intensity of rainfall and consequently a higher volume of stormwater
runoff. The recurrence period P of a stormwater system denotes the scale of the constructed
system’s capability to handle a storm with a P-year recurrence interval. When the rainfall
recurrence interval exceeds the system’s recurrence period, the volume of rainfall surpasses
the drainage capacity of the stormwater system, potentially leading to the formation of
surface water accumulation. Under a given rainfall recurrence interval P, the shallower the
ponding depth (H) and the shorter the retention time (T), the better the system’s overall
performance and the lower the vulnerability. Conversely, a deeper H and longer T signify
poorer overall system performance and higher vulnerability.

Recognizing the paramount influence of the return period (P) on the scale of a rainwa-
ter system, this study adopts the return period and vulnerability degree as fundamental
indices, complemented by depth and ponding retention time as referential benchmarks.
The vulnerability assessment standard, meticulously formulated in Table 3, integrates tech-
nical codes for urban flooding prevention and control, urban rainwater tion, and retention
engineering, along with insights from urban waterlogging patterns observed over the
last two decades. By referencing the calculated vulnerability values in the standard table,
we can discern the system’s capacity to withstand various rainfall intensities, assessing
ponding depth and retention time. This analysis elucidates the safety level of an urban
rainwater system.
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Table 3. Vulnerability assessment reference standards.

Vulnerability Value Description Security Level

V ∈ [0.9, 1.0], Very high P = 1 a, H ≥ 0.15 m, T > 1 h,
Water flooding events may occur easily

Weakest
Lv. 1

V ∈ [0.6, 0.9], High 1 a ≤ P < 5 a, 0.15 m ≤ H < 0.4 m, 1 h ≤ T < 2 h,
Easy to meet small-scale waterlogging

Low
Lv. 2

V ∈ [0.4, 0.6], Medium 5 a ≤ P < 10 a, H ≤ 0.15 m, T < 1 h,
Rainfall runoff may not be drained in a short time

Normal
Lv. 3

V ∈ [0.1, 0.4], Low 10 a ≤ P < 50 a, H ≤ 0.15 m, T < 1 h,
Waterlogging will appear but disappear in a short time

High
Lv. 4

V ∈ [−0.03, 0.1], Very low P ≥ 50 a, H ≤ 0.15 m, T < 1 h,
Waterlogging may occur in an extraordinary storm

Highest level
Lv. 5

Note: P: the return period, where ‘a’ denotes ‘age’, is expressed in years; H: depth of rainfall ponding, meter; T:
duration time of water ponding, hour.

In China, the majority of rainwater systems have been tailored for a return period
ranging from two to ten years, exhibiting notable disparities in compositions with regard to
this temporal parameter. To streamline calculations, system designs often opt for a uniform
period, neglecting the overarching regional distinctions and overlooking vulnerability
assessments and safety analyses. It is imperative that the scientific vulnerability assessments
of existing rainwater systems serve as a foundational step for any reconstruction endeavors.
This approach holds profound significance in enhancing the capacity to prevent flooding
and mitigate the impact of storm events.

Low vulnerability of the rainwater system indicates that the system possesses stable
performance and strong response capabilities when combating rain-induced flood disasters.
This ensures that rainwater generated within the city can be promptly drained, reducing
the risk of water accumulation and internal flooding, thereby enhancing the city’s safety.
Conversely, high vulnerability of the rainwater system suggests that the system exhibits
poor stability when dealing with urban flood disasters. The system’s normal operational
state is more prone to disruption, and its response capabilities are diminished, leading to a
delay in the drainage of rainwater within the city and an increased risk of internal flooding.
This, in turn, lowers the overall safety of the city.

3. Case Study

The case study area surveyed in this investigation is a typical newly developed urban
area located in the Suzhou High-Tech Zone, a city situated in the lower reaches of the
Yangtze River in China. The region has a northern subtropical humid monsoon climate
with abundant rainfall. The typical rainstorms are predominantly concentrated in the
months from June to August. Against a backdrop of rapid urbanization, the underlying
surface exhibits significant variability in water permeability, leading to a surge in flood
events triggered by storms in recent years. The total area of the region is 7.32 hectares,
primarily composed of residential buildings, lawn areas, flower beds, roads, and small
squares. The impervious area accounts for 5.70 hectares, representing 78% of the total
regional area. To the south of the area lies a small river, while the east and west sides
are bordered by main drainage pipes along the roads, which collect rainwater discharged
into the river through the eastern and western trunk pipes. The drainage network is
equipped with three stormwater inlets, distributed in the southeast, southwest, and due
south directions of the area. The regional schematization is depicted as shown in Figure 2.
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Figure 2. Geographical location and profile of the study area. S1–S21 represent the sub-catchment area;
J1–J38 denote the pipe junction; C1–C38 signify the pipe segment; O1–O3 represent the outlet mode.

The entire residential complex is schematized into 21 sub-catchment areas, 38 pipe
segments, and 41 nodes, which include three outlets.

By selecting such a region as the research area for evaluating the vulnerability of an
urban rainwater system, our aim is to propose designs and plans geared towards mitigating
the impact of flooding and storm events in the current study area and similar urban regions.

3.1. Calculation of Vulnerability

Each factor involved in the vulnerability calculation process is transformed into a
dimensionless value ranging from 0 to 1, representing its normalized reference range. This
reference range can be established through experiential judgment, data statistics, expert
evaluations, standards, regulations, and similar criteria. Relative elevation is determined
by the difference between ground and rainwater inlet elevations, with the ground elevation
taken as the average around the inlets (within two meters). In this instance, the average
relative elevation ha was 0.18. The drainage capacity of a standard rain inlet fell within
the range of 10 to 30 L/s. Utilizing statistics on the type and quantity of main inlet holes,
the flow capacity qa was determined as 0.64 and the characterization of the outfall setting
condition Oa was evaluated as 0.68. Examination of rainwater system design drawings and
files provided by the local regional council allowed us to ascertain the scale and slope of
the pipeline, setting the values of da and ia at 0.68 and 0.35, respectively. Furthermore, the
storage capacity of the detention tank Ta and the regulation quantity of the pump station
Qa were confirmed as 0.90 and 0.80, respectively.

The characteristic values of social factors were predominantly acquired through thor-
ough investigation, data analysis, and experience-based definitions. In this case, the values
of Ga, Sa, Pa, and Ca were ultimately established as 0.65, 0.75, 0.50, and 0.45, respectively.

M1 =

[
1 bPhysical/Social

bSocial/Physical 1

]
=

[
1 6/4

4/6 1

]
(10)

Based on the computation, the maximum eigenvalue (λmax) is 2, and the random
consistency ratio (CR) is 0, which is less than 0.10. The hierarchical sorting results align
with the consistency requirements.
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In the process of determining weight values, the initial step involves constructing a
judgment matrix within the same layer of the assessment framework. For instance, a matrix
in the logical layer between the physical and social components can be established based
on their respective judgment values, denoted as M1. The matrices for physical and social
factors are represented as M2 and M3 in Tables 4 and 5. Subsequently, the weight vector is
derived using these matrices.

Table 4. Judgment matrix of physical factors.

M2 h Q O d i Q T

h 1 2/4 2/3 2/9 2/1 2/6 2/7
q 4/2 1 4/3 4/9 4/1 4/6 4/7
O 3/2 ¾ 1 3/9 3/1 3/6 3/7
d 9/2 9/4 9/3 1 9/1 9/6 9/7
i 1/2 ¼ 1/3 1/9 1 1/6 1/7
Q 6/2 6/4 6/3 6/9 6/1 1 6/7
T 7/2 7/4 7/3 7/9 7/1 7/6 1

λmax = 7; CR = 0 < 0.10

Note: h denotes the relative elevation; q represents the flow capacity of gutter inlet holes; O characterizes the
outfall setting condition; d represents the diameter; i denotes yjr slope of pipes; Q signifies the regulation quantity
of the pump station; T embodies the storage capacity of the detention tank.

Table 5. Judgment matrix of social factors.

M3 G S P C

G 1 6/5 6/3 6/7
S 5/6 1 5/3 5/7
P 3/6 3/5 1 3/7
C 7/6 7/5 7/3 1

λmax = 4; CR = 0 < 0.10
Note: G gauges the management level of the stormwater system by the government; S denotes the proportion
of impermeable pavement; P signifies the cleaning frequency of the urban target region; C reflects the financial
investment situation.

All of the assignment, weight, and vulnerability values mentioned and calculated in
this instance are presented simply in Tables 6 and 7.

Table 6. Characterization and weight values of physical and social factors.

Hierarchy Factors

Physical
Index

ha qa Oa da ia Qa Ta
0.18 0.64 0.68 0.65 0.35 0.90 0.80

Wh Wq WO Wd Wi WQ WT
0.0375 0.0750 0.0563 0.1687 0.0187 0.1125 0.1313

Social
Index

Ga Sa Pa Ca
0.65 0.75 0.50 0.45

WG WS WP WC
0.1143 0.0952 0.0571 0.1333

In accordance with the rainwater system vulnerability assessment model, the vulnera-
bility of urban rainwater systems comprises two integral components: physical vulnera-
bility

(
VPhysical

)
and social vulnerability (VSocial). The calculated values for VPhysical and

VSocial stand at 0.4155 and 0.2342, respectively.
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Table 7. Calculation of physical and social vulnerability.

Hierarchy Factors Vi Vsystem

Physical
Index

ha·Wh qa·Wq Oa·WO da·Wd ia·Wi Qa·WQ Ta·WT VPhysical

0.6497
0.0068 0.0480 0.0383 0.1097 0.0065 0.1013 0.1050 0.4155

Social
Index

Ga·WG Sa·WS Pa·WP Ca·WC VSocial
0.0743 0.0714 0.0286 0.0600 0.2342

3.2. Results and Discussion

Referring to Table 3, when Vsystem falls within the range of 0.6–0.9, the rainwater
system is classified as having a high level of vulnerability. Upon encountering rainfall with
a recurrence interval of 1 to 5 years, the ground will experience water accumulation with
depths ranging from 0.15 m to less than 0.4 m, and the duration of water accumulation will
be between 1 h and less than 2 h, leading to minor internal flooding in the area.

Analyzing the vulnerability of the case study area from a comprehensive perspective of
the rainwater system reveals a value of 0.6497, indicating high vulnerability and suggesting
that the system has poor drainage performance, with a low capacity to handle heavy
rainfall. When encountering rainfall with a recurrence interval greater than 5 years (p > 5 a),
severe water accumulation is likely to occur, which could significantly impact public life.
In order to conduct an analysis of the vulnerability composition of the case study rainwater
system and to draw specific conclusions, the proportion of each component is represented
in the pie chart depicted in Figure 3.
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Figure 3. Distribution proportions of vulnerability in the case. h denotes the relative elevation; q
represents the flow capacity of gutter inlet holes; O characterizes the outfall setting condition; d
represents the diameter; i denotes the slope of pipes; Q signifies the regulation quantity of the pump
station; T embodies the storage capacity of the detention tank; G gauges the management level of
the stormwater system by the government; S denotes the proportion of impermeable pavement; P
signifies the cleaning frequency of the urban target region; C reflects the financial investment situation.

Upon scrutinizing the calculations derived from the data presented in Table 7 and the
graphical representations in Figure 3, the physical vulnerability of the rainwater system in
the area under study was found to be 0.4155, accounting for 63.9% of the system’s overall
vulnerability. The proportion of physical vulnerability within the overall system vulner-
ability is substantial, indicating a significant influence on the system’s comprehensive
vulnerability. An examination of the components contributing to the system’s physical
vulnerability reveals that the diameter of rainwater pipes, the regulatory capacity of pump
stations, and the storage capacity of detention basins constitute a considerable share of the
physical vulnerability at 26.3%, 23.9%, and 25.3% respectively. The sum of these three com-
ponents is 75.5%, indicating that their performance is decisive for the physical functionality
of the rainwater system. To reduce the system’s vulnerability, improve the performance
of the rainwater system, and enhance its safety, the focus should primarily be on these
three aspects at the physical level of the system to achieve a noticeable improvement in
system vulnerability.
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The high proportion of physical vulnerability in this area relative to the overall system
vulnerability indicates that the rainwater system’s drainage capacity is far from meeting
the actual requirements. This reflects insufficiencies in the design of the rainwater system,
as the design is meant to determine the scale of the system’s components, which in turn
dictates the comprehensive drainage capacity of the system. Therefore, to enhance the
safety of the rainwater system, reduce its vulnerability, and achieve the goal of withstanding
heavy rainfall, it is necessary to reduce the system’s physical vulnerability from the initial
design stage. According to the analysis of vulnerability calculations, it has been determined
that the impact of various physical factors on the vulnerability of the rainwater system in
this study, from the most significant to the least, is as follows: the diameter of rainwater
pipes, the storage capacity of the detention tank, the regulation quantity of the pump
station, the flow capacity of gutter inlet holes, the outfall setting condition, the relative
elevation, and the slope of pipes.

The social vulnerability of the rainwater system in the area is 0.2342, representing
36.1% of the system’s overall vulnerability. Although the proportion of social vulnerability
within the system is relatively smaller than that of physical vulnerability, its impact on the
system’s overall vulnerability cannot be overlooked, as it influences the performance of the
drainage system to a certain extent. From the components contributing to the area’s social
vulnerability, the management level of the rainwater system, the proportion of impermeable
pavement, and the financial investment situation have significant contributions at 31.7%,
30.5%, and 25.6% respectively. The sum of these three components is 87.8%, indicating
that they have a substantial impact on the determination of the rainwater system’s social
vulnerability. Measures to reduce the social vulnerability of the rainwater system should
be targeted at these three areas, where the effects achieved would be the most direct
and significant.

The social vulnerability of the rainwater system takes into greater account the impact
of human subjective proactivity on the system’s vulnerability. Through their initiative,
humans can mitigate the encroachment of the surrounding environment on the rainwater
system. For instance, relevant authorities should enhance management efforts, repair
and reinforce damaged system structures, and dredge pipes, or by increasing the area of
permeable road surfaces and improving groundwater infiltration capabilities, humans can
reduce the formation of surface runoff. This, to a certain extent, decreases the drainage
load on the rainwater system, which is beneficial for maintaining the effectiveness of its
functions. After the construction of the rainwater pipe network system, with the physical
vulnerability essentially determined, reducing social vulnerability is a highly feasible
approach to lowering overall system vulnerability and can achieve significant results.

In our study, the vulnerability of the system was intricately designed based on the
physical composition and potential integration, as illustrated in the schematic diagram
presented in Figure 4.

It is evident that the vulnerability of the rainwater system is not a singular metric;
rather, it is a comprehensive indicator that encompasses both the system’s inherent physical
attributes and its closely related social attributes. This approach provides an objective
and holistic reflection of the influencing factors affecting the operation of the rainwater
system, both internal and external. It allows for a deeper understanding of the rainwater
system and offers clearer insights into the frequent occurrence of urban waterlogging; the
high vulnerability of the rainwater system leads to urban water accumulation and internal
flooding. The genesis of urban waterlogging is attributable to both the physical components
of the rainwater system and the subjective proactivity of human actions. The assessment of
the rainwater system’s vulnerability can elucidate the causes of urban waterlogging and
provide a basis for decision-making in managing and mitigating such incidents.
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4. Conclusions

This study introduces the concept of urban rainwater system vulnerability and identi-
fies the indicator factors that influence the vulnerability of the rainwater system. Utilizing
the analytic hierarchy process (AHP), an index system for the vulnerability assessment
of the rainwater system was established, and a vulnerability assessment model for the
rainwater system was constructed. This provides a methodological reference for evaluating
the vulnerability of the rainwater system and determines the priority order of the most
important criteria and sub-criteria in the implementation of rainwater system projects.
The urban rainwater system vulnerability calculation model is as follows: the physical
vulnerability is VPhysical = haWh + qaWq + daWd + iaWi + QaWQ + TaWT +OaWO, the social
vulnerability is Vsocial = CaWC + SaWS + GaWG + PaWP, and the system vulnerability is
Vsystem = VPhysical + Vsocial .

Preliminary standards for the vulnerability assessment of rainwater systems have
been established, categorizing the vulnerability of rainwater systems into five levels:
V ∈ [0.9, 1.0], indicating very high vulnerability; V ∈ [0.6, 0.9], indicating high vulner-
ability; V ∈ [0.4, 0.6], indicating moderate vulnerability; V ∈ [0.1, 0.4], indicating low
vulnerability; V ∈ [−0.03, 0.1], indicating very low vulnerability. The characteristics of
rainwater systems with different levels of vulnerability under rainfall conditions were
described, and the system performance and safety performance of rainwater systems under
various vulnerability levels were determined. The analysis method for the results of the
vulnerability assessment was elucidated. Through the analysis and evaluation of rainwa-
ter system vulnerability, not only was the current state of the rainwater system clarified,
but a scientific reference basis was also provided for the upgrading, transformation, and
optimized operation and management of the rainwater system.

A typical newly developed urban area within the Suzhou High-Tech Zone was selected
as the subject of study. An evaluation model for the vulnerability of the rainwater system
in this area was constructed, and a vulnerability assessment of its rainwater system was
conducted. The calculations determined the following: the physical vulnerability of the
rainwater system in the area is 0.4155, the social vulnerability of the residential community
is 0.2342, and the overall vulnerability of the community’s system is 0.6497, which is indica-
tive of high vulnerability, poor system performance, and low safety performance. When
the area encounters rainfall with a recurrence interval of 1 ≤ p < 5 years, the community is
susceptible to minor internal flooding.
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In conducting a vulnerability assessment of the rainwater system, it was found that in
the analysis of physical vulnerability, the diameter of rainwater pipes, the storage capacity
of the detention tank, and the regulation quantity of the pump station play a decisive role
in the system. To enhance system performance and increase safety against storm surges
and flood events, designers should focus primarily on increasing the diameter of the pipes
and the design scale of the storage structures, which can effectively reduce the system’s
vulnerability. Under conditions where the physical aspects are essentially determined,
reducing the overall comprehensive vulnerability by lowering social vulnerability can
achieve better results. Social vulnerability is mainly concerned with considering the impact
of human initiatives. Relevant authorities should strengthen management, actively repair
damaged components, and dredge rainwater inlets and pipes. Increasing the permeable
area will reduce surface runoff, which can also reduce system pressure and extend the
lifespan of its components.

However, within the assessment system, the selection of factors may not be com-
prehensive, and the determination of weight values is, to some extent, contingent upon
human consciousness. The design of the hierarchical structure depends not only on the
nature of the decision-making process participants but also on their knowledge, judgment,
and experience. However, even after construction, it can be modified to accommodate
new standard concepts, and factors can be added, removed, or altered to suit different
regions. Vulnerability research should be practical, especially in engineering design or
system assessment. Subsequent research on assessment systems should pay attention to
the logic and comprehensiveness of the selected indicators, require a more objective quan-
tification of weights, and conduct deeper exploration and improvement in the construction
of hierarchical structures and assessment systems.
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