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Abstract: Automated vehicles (AVs) are recognized as one of the most effective measures to realize
sustainable transport. These vehicles can reduce emissions and environmental pollution, enhance
accessibility, improve safety, and produce economic benefits through congestion reduction and cost
savings. However, the consumer acceptance of and trust in these vehicles are not ideal, which affects
the diffusion speed of AVs on the market. Providing transparent explanations of AV behaviour
is a method for building confidence and trust in AV technologies. In this study, we investigated
the explainability of user interface information in an Automated Valet Parking (AVP) system—
one of the first L4 automated driving systems with a large commercial landing. Specifically, we
proposed a scenario-based explanation framework based on explainable AI and examined the effects
of these explanations on drivers’ objective and subjective performance. The results of Experiment
1 indicated that the scenario-based explanations effectively improved drivers’ situational trust and
user experience (UX), thereby enhancing the perception and understanding that drivers had of the
system’s intelligence capabilities. These explanations significantly reduced the mental workload
and elevated the user performance in objective evaluations. In Experiment 2, we uncovered distinct
explainability preferences among new and frequent users. New users sought increased trust and
transparency, benefiting from guided explanations. In contrast, frequent users emphasised efficiency
and driving safety. The final experimental results confirmed that solutions customised for different
segments of the population are significantly more effective, satisfying, and trustworthy than generic
solutions. These findings demonstrate that the explanations for individual differences, based on our
proposed scenario-based framework, have significant implications for the adoption and sustainability
of AVs.

Keywords: automated vehicle explanation; artificial intelligence explanation; automated valet park-
ing; Human–machine Interface (HMI); user experience; situational trust; mental workload

1. Introduction

Fully automated or driverless driving is a major innovation that represents a significant
step forward in terms of sustainable development [1]. The rapid evolution of autonomous
driving already allows the realization of automated valet parking (AVP) [2], enabling a
vehicle to drive out of the parking lot to a user’s gate without human intervention [3]. This
automation not only reduces urban travel time but also lowers emissions and decreases the
need for parking spaces [4]. AVP, as a highly automated driving system [5], enables drivers
to remotely summon automated vehicles (AVs) equipped with road sensing, communica-
tion, and pre-installed LIDAR technology in parking facilities. When a passenger’s phone
signals the AV, the vehicle autonomously travels to the pickup location, such as in front of
an office building. The vehicle then autonomously handles the parking task after dropping
off passengers [2].
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Despite the convenience that autonomous driving offers, there are limited data sug-
gesting that drivers want to extensively use AVs [6,7]. According to a recent report, drivers
in the US are “stuck in neutral” regarding self-driving cars, with only 12% trusting such ve-
hicles and 28% remaining unsure of the technology [8]. With autonomous driving, drivers
may become nervous and lack sufficient confidence due to concerns of being excluded from
driving control and becoming unable to respond to emergency situations based on their
own judgment [7,9]. In addition, automotive companies now employ black-box AI models
to enable vehicles to perceive their environment and make driving decisions with little or
no input from a human [10]. Consequently, AVs are likely to make strange and confusing
decisions for end-users, resulting in a less positive user experience (UX) [11].

Explanation information plays a key role in intelligent decision-making for autonomous
driving [12,13]. Previous studies have indicated that artificial intelligence (AI) with ex-
planatory capabilities leads to higher user confidence, as explaining the behaviour of an
automated system can increase the user’s understanding of its behaviour and the over-
all system transparency [14,15]. However, AV explanations do not always translate into
greater trust in the AVs or positive emotional experiences. Koo et al. [16] examined the
impact of AV explanations and separated the types of explanations into “why the AV acts a
certain way” and “how the AV acts a certain way”. The authors found that the “why-only”
explanation led to the highest level of positive emotional valence. On the other hand, the
“how and why” explanation produced the safest driving performance but also resulted in
the highest cognitive workload, which increased negative feelings among drivers. The cog-
nitive workload is also essential, as explanations of AVs may affect users’ mental workload
while engaging in autonomous driving and, consequently, impact usability [17].

While recent research has significantly advanced technologies such as explainable
AI, numerous key challenges in understanding the unique requirements for deploying
explainable AI systems into complex contexts remain unsolved [18,19]. De Craen et al. [20]
conducted a study to understand how AV decision-making should account for individual
user preferences. The authors found that the alignment of individual preferences with AV
decisions yielded more positive changes than the unaligned decisions in vehicle impres-
sions. In driving scenarios, significant differences in subjective perception, risk perception,
and risk response exist among diverse user groups [21,22]. These differences suggest that
the explainability needs of different user groups are different. To improve the explainability
of autonomous driving, in this study, we propose a scenario-based framework that not only
focuses on human needs but also predicts and explores possible scenarios from the early
stages of system development. This framework has been a well-known method in fields like
software engineering and human-computer interaction (HCI) for a number of years [23–25].
Such scenarios bridge the cognitive or psychological focus of traditional HCI methods with
the organizational focus placed on information systems development, creating a hybrid
view into the ways in which these concerns are co-constituted in practice [25]. The four
main components of each scenario are (1) the participants, (2) the background information
and assumptions regarding the participants and their environments, (3) the participant’s
goals or objectives, and (4) the sequence of actions and events [23,24]. This method helps
determine if users require explanations and the types of explanation requirements when
using an intelligent autonomous driving system by considering different usage scenar-
ios. In this study, we considered key decision scenarios for AVP and analysed the user
requirements for an explainable design.

Using the AVP system of AVs as a case study, this research dissects user tasks under
various usage scenarios and offers explanatory strategies for system decision-making,
considering the user group and contextual situation that the system is intended for. This
study seeks to answer the following research questions:

RQ1: How do scenario-based explanations impact drivers’ subjective metrics such as
their trust, UX, and mental workload for AVs, as well as their objective task performance in
terms of reaction time and return times?
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RQ2: How do scenario-based explanations customised for different user groups affect
the quality of AV explanations? More specifically, do these tailored explanations enhance
the quality of explanations, increase the drivers’ trust, and reduce their mental workload,
as well as improve their objective task performance in terms of reaction time and return
times?

The paper is structured as follows: Section 2 outlines a preliminary study of the
AVP system. Section 3 outlines our first experiment, focusing on exploring the impact of
scenario-based explanations on drivers’ subjective and objective performance. Section 4
presents the results. Section 5 details the second experiment, focusing on how scenario-
based explanations tailored for different user groups affect the quality of AV explanations,
with Section 6 presenting the research results. After detailing both experiments, we provide
a comprehensive discussion that interprets the results, explores implications, highlights
limitations, and suggests future research. Finally, we conclude with key findings.

2. Preliminary Study of an Automated Valet Parking System

Valet parking, a term derived from the French “valet” meaning “surrogate”, describes
a service where a management agent parks on behalf of the vehicle owner [26]. An au-
tonomous valet parking (AVP) system, which combines valet services with autonomous
vehicles, allows users to leave the AV at a designated point, prompting it to move au-
tonomously toward a parking spot [27,28]. Extending AVP to more general cases, the
process flow includes the following [29]: On departure, users can be picked up by the AV
at their specified time and pick-up spot, and then the car can move from the parking spot
to the pick-up spot, all while using a fully autonomous mode [30]. When the AV picks
up the users, they can leave the car in their desired place. Then, the car can drive to the
parking spot autonomously through path planning and coordinated operation manage-
ment [30]. In general, the system controls a vehicle in the driving and parking tasks without
human intervention.

In this study, we conducted expert interviews with eight professionals from automotive
companies to thoroughly understand the AVP system. Expert selection criteria emphasised
practical experience in autonomous driving. We also used non-probability convenience
sampling, reaching out to experts via LinkedIn messages. These participants, had diverse
expertise, ranging from product design to AV development. Table 1 outlines the key
characteristics of the sample, offering participants’ profiles. Face-to-face interviews, lasting
approximately 90 min each, were conducted in an office environment.

Table 1. Participants’ profiles.

Respondents Title Gender Country Position

1 Dr F China Researcher

2 Dr M Germany Senior Researcher

3 Dr M China Lead Tech

4 Dr F China Researcher

5 Mr. M China Senior Project Manager

6 Mr. M China Director

7 Ms. F China Senior Project Manager

8 Dr F China Researcher

In the interview, we invited experts to adopt a scenario-based design method to
explore the AVP system. During our study, this method established a common language
among project participants, anticipated the potential future tasks of system users, and
facilitated the development of instructional materials. This method served as an effective
brainstorming tool for planning, enabling stakeholders to consider alternative choices in
decision-making [31]. The scenario-based design method focused on four key aspects:
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(1) the participants, (2) the background information and assumptions, (3) the participants’
goals, and (4) the sequences of actions and events [23,24]. Based on this method, we further
proposed explanatory strategies, as shown in Figure 1, which includes photos depicting
real scenes from the AVP system’s development and experience.

Figure 1. Scenario-based explainable design for AVP.

1. Participants:
In the AVP system of a highly automated vehicle, the vehicle autonomously controls
the lateral and longitudinal behaviours, transforming the driver into a passenger free
to engage in activities like reading or working. If the system reaches a limit, the driver
is prompted to take control for a specific duration of time.

2. Background information and assumptions regarding the participants and their envi-
ronment:
As the role of the driver in autonomous driving changes, the usage scenarios of AVP
expand beyond in-car human–machine interaction. The AVP provides safe and conve-
nient travel while also introducing challenges related to user inadaptation. Therefore,
to include the human factor in engineering, it is necessary to study highly automated
vehicles that cater to diverse user needs while considering the environments in which
AVs operate, and how they are used. Figure 1 visually and textually presents the
background and environment in which users utilize AVPs, including summoning
vehicles from any location and allowing drivers to step out of the car to monitor and
control the overall parking process through their mobile phones.
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3. Participant goals or objectives:
Understanding the goals and objectives of participants is integral to tailoring the AVP
system to meet diverse user needs. The basic goals include the following: summoning
the vehicle to pick up the user, taking the user to a destination, self-parking, and
charging.

4. The sequence of actions and events:
A critical aspect of this framework is its focus on the sequential flow of actions and
events within the AVP system. By elucidating the step-by-step journey of users in-
teracting with the system, this focus helps explore what types of explanations users
might need while using the AVP system. The primary interaction process of the
system is as follows: Firstly, the user can remotely control his or her vehicle using a
smartphone. When the vehicle is summoned, it leaves the parking space and auto-
matically drives to the user’s location. After picking the user up, the vehicle drives to
the destination selected by the user. At the same time, the user can choose a parking
space near the destination via the in-car system; thus, some of the services of the AVP
system are linked to the in-car system. When the vehicle arrives at the destination and
drops the user off, the vehicle automatically drives to the garage and starts parking.
From the perspective of the whole service process design, the interaction medium of
the AVP system includes the mobile phone application and Human–machine Interface
(HMI) in the vehicle. In addition, the interaction medium switches between different
scenarios during the usage process. Therefore, the functional design and information
presentation in different scenarios must be based on the corresponding user scenario
and environment.

Based on this information, experts identified eight user touchpoints suitable for ex-
planatory strategies within the AVP system. These touchpoints are various moments at
which a user will directly or indirectly interact with the AVP system and include the fol-
lowing: (1) an active pushing of explanatory information on the pick-up points for remote
summoning or trip destinations, (2) explanatory information on the driving predictions and
decision analysis before remote summoning, (3) transparent explanations of the system’s
internal operation process after the engine is started, (4) visual explanations of the vehi-
cle’s parking-out status and real-time road conditions, (5) prompts for switching between
automatic and non-automatic driving modes for system decision making, (6) visual expla-
nations of vehicle’s parking-in status, (7) explainability analyses of parking space selection,
and (8) recommended explanations of automatic parking charging. The prototypes for the
two experiments were designed to differentiate between these touchpoints.

During the expert interviews, we also found that the most critical groups of people
using the AVP system could be divided into new and frequent users. The focuses of
explainable requirements differed between the groups. For example, new users had higher
demands for system comprehension when they first encountered the AVP system. At
the same time, frequent users of the AVP system pursued faster and more convenient
operations. Therefore, considering such individual differences, we further analysed the
explainability strategies of different user groups.

We conducted two experiments to verify the effectiveness of scenario-based explana-
tions and whether using different explanation strategies for different population segments
could improve explainability utility. Experiment 1 was a controlled experiment with
and without scenario-based explanations for the same user population. Experiment 2
tested generic explainable prototypes for new and frequent users and customised pro-
totypes for different user groups to verify whether significant differences existed in the
quality of explanations between the customised prototypes for different user groups and
generic prototypes.

3. Experiment 1 Method

We chose a within-subjects design since we studied whether the scenario-based expla-
nation strategy would impact participants’ subjective metrics (situational trust, UX, and



Sustainability 2024, 16, 63 6 of 22

mental workload) and objective metrics (reaction time and return times). The independent
variable contained scenario-based explanation information (with/without) of the mobile
applications and HMI prototypes for the AVP system.

3.1. Prototypes

We developed mobile applications and HMI prototypes for the AVP system. Parts
of the interactive prototypes are presented in Figure 2. At the bottom of the page, a map
is included as the base map of the system and displays the current navigational path
for the user in real-time. Regarding the page layout, the most frequently used function
modules are placed on the left side of the interface according to the user’s browsing
habits. Such operations include selecting a destination, reserving a parking space, and
opening navigation. These functions are displayed in the form of a floating window in the
content-switching area on the left side.

Figure 2. Partial illustration of the prototypes in Experiment 1.

One way to deliver explanatory information for the in-vehicle display is to use visuali-
sation with visual communication texts, images, or augmented reality in the interface [32].
For this purpose, we visualised eight scenario-based explanations in the AVP interface. For
example, let us consider parking space selection touchpoints, wherein the user needs to
manually select a parking space for the vehicle when approaching a destination during
autonomous driving. Prototype A, on the left side of Figure 2, presents the result recom-
mended by the system directly (without explanation), whereas Prototype B, on the right
side of Figure 2, presents an explanation of the options provided:

1. Text with a coloured background on the screen.
2. Textual information regarding how the AVP system makes decisions.

3.2. Procedures

Part of the experimental process was performed in a static (non-mobile) driving
simulator equipped with four car seats (two at the front and two at the back) and a 240◦

curved screen. The video was pre-recorded with a camera. We filmed driving scenarios on
city roads. The simulation was designed to help participants better understand the state
of the self-driving car. This experimental environment is shown in Figure 3. Participants
entered the simulator from the side and occupied their seats within the enclosed driving
space (A). The mobile application was installed on a smartphone (B) (length: 15.86 cm;
width: 7.25 cm). An android pad was installed in the car as the HMI (C) (length: 20.64 cm
and width: 12.52 cm).
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Figure 3. Experimental equipment: static driving simulator (A), smartphone with the mobile applica-
tion (B), and HMI (C).

Participants were initially placed in an office next to the driving simulator. We intro-
duced participants to the experiment with the information that they would fill in ques-
tionnaires, participate in an autonomous driving experiment, and interact with a mobile
application and HMI. Participants watched a brief two-minute video on YouTube.com
(https://www.youtube.com/watch?v=YEn9bQkBXkE (accessed on 1 October 2021) describ-
ing the main functions of the AVP system, helping them better understand the background
information. After participants signed the consent form, we videotaped the entire process.

The test flow for Experiment 1 is shown in Figure 4. The same participants were asked
to test prototypes A (without explanation) and B (with explanation). In each prototype,
participants were asked to complete three tasks. In task 1, participants were initially asked
to summon their vehicle using a mobile application. After completing the operation, the
participants were taken next door to the driving simulation lab. This sequence was intended
to replicate a scenario in which the self-driving car had arrived at the pick-up point. Once
in the car, participants were asked to fasten their seat belts and select their destination and
parking spot on the HMI in task 2. The driving simulator then activated the autonomous
driving mode. Next, the user completed the task of switching to manual driving. When
nearing the destination, the user was instructed to exit the car. In task 3, each user returned
to the office and controlled the vehicle using the smartphone prototypes for automatic
parking. After completing the tasks, the participants filled in the Situational Trust Scale for
Automated Driving (STS-AD), the User Experience Questionnaire—Short (UEQ-S), and
the NASA-TLX. Participants were also asked if they felt good, if anything was unclear,
and if there was anything else they wanted to express about the experience. The whole
experiment took nearly one hour.

Figure 4. Test flow of Experiment 1.

3.3. Sample

In total, 50 participants, including university students and unrelated professionals,
were recruited in Shanghai, China, through WeChat, Weibo, and QQ. All participants
had a driver’s license and were in the age range of 25–40 years, with an average age of

https://www.youtube.com/watch?v=YEn9bQkBXkE
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28.5 years. The gender distribution of participants was 42% female and 58% male. Each
participant received an honorarium of ¥100. The study was conducted in accordance with
the Declaration of Helsinki and approved by the Science and Technology Ethics Committee
of Tongji University (tjdxsr012) for studies involving humans.

3.4. Dependent Variables

Subjective Measures: After each trial, participants evaluated the vehicle encounter
based on three aspects: situational trust, user experience, and mental workload. Refer to
Appendix A for questionnaire details.

Situational trust was measured using the self-reported Situational Trust Scale for
Automated Driving (STS-AD) [33]. This model evaluates situational trust using six items:
trust, performance, non-driving related tasks (NDRT), risk, judgment, and reaction [33].

The User Experience Questionnaire—Short (UEQ-S) is a semantic differential ques-
tionnaire that measures UX based on the model of pragmatic and hedonic qualities. This
questionnaire uses a seven-point Likert scale for eight items: obstructive–supportive,
complicated–simple, inefficient–efficient, confusing–clear, boring–exciting, not interesting–
interesting, conventional–inventive, and common–leading edge [34].

As a measure of the mental workload, we used a subjective mental workload assess-
ment tool called the NASA-TLX, which uses a scale from 0 to 20. The NASA-TLX was
developed with six subscales to represent the mental, physical, and temporal demands, as
well as the frustration, effort, and performance [35]. We used a modified version in which
the subscales were averaged without paired comparisons [36].

Objective Measures: Performance can be measured in terms of the time and correctness
(hits, errors, and misses) with which the user completes the tasks [37]. In the experiment, we
filmed the entire human–machine interaction process, which included the user’s reaction
time when faced with a recommendation that required a decision and the number of times
the user clicked to return to the previous step due to doubt or hesitation in the smartphone
and HMI. Therefore, we reviewed the video and collected objective data on the reaction
time (time in seconds) and the return times (number of times). We hypothesized that the
more explainable the system became, the shorter the reaction time of the user would be,
and the fewer times the user would return to the previous step.

3.5. Hypotheses

The assumed hypotheses for the experimental setup were as follows:

Hypothesis 1 (H1). AVs that provide explanations have higher driver (a) trust, (b) UX, and (c)
mental workload than AVs that do not provide explanations.

Hypothesis 2 (H2). AVs that provide explanations will reduce (d) the reaction time of users. When
the system provides explanations, people will respond faster when faced with a recommendation that
requires a decision. These data will be timed from the recorded video.

Hypothesis 3 (H3). AVs that provide explanations will decrease (e) the return times. People
will return to the previous step less often due to doubt or hesitation when faced with the system’s
explanations.

4. Experiment 1 Results

Data were analysed using SPSS Statistics (version 28.0). Because the subjective and
objective data were not normally distributed (Shapiro–Wilk tests; p > 0.05), nonparametric
tests were performed for data analysis. We performed a Wilcoxon signed-ranks test on
relevant samples, which was used to determine the differences between paired samples.

From Table 2, statistically significant differences in the scenario-based explanations
were observed for the situational trust (Z = −3.421, p < 0.001), UX (Z = −2.900, p < 0.05),
and mental workload (Z = 3.310, p < 0.001) of drivers. Combining the boxplot of each index
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shows that the scenario-based explanations led to higher situational trust, averaging 22.34
(SD = 7.46) for Prototype B and 19.26 (SD = 4.80) for Prototype A; increased UX averaged
24.62 (SD = 10.94) for Prototype B and 21.74 (SD = 9.16) for Prototype A; and lower mental
workload averaged 59.42 (SD = 15.80) for Prototype B and 65.96 (SD = 9.47) for Prototype
A, compared to AVs without explanations (Figure 5). Hence, H1 was partially supported.

Table 2. Wilcoxon signed-ranks test statistics a for the subjective evaluation of Experiment 1.

Situational Trust (B)-
Situational Trust (A) UX (B)-UX (A) Mental Workload (B)-

Mental Workload (A)

Z −3.421 c −2.900 c −3.310 b

Asymptotic significance
(two-tailed) <0.001 0.004 <0.001

Note: (a) Wilcoxon Signed Ranks Test based on (b) positive ranks and (c) negative ranks.

Figure 5. Boxplot of each index between Prototype A and B.

Table 3 presents the objective evaluations, revealing statistically significant differences
in the reaction times (Z = 2.906, p < 0.05) and return times (Z = 3.059, p < 0.05) at a 95%
confidence level and indicating the impact of explanations. The boxplot illustrates faster
reaction times for Prototype B with explanations (M = 59.64, SD = 24.46) compared to
Prototype A (M= 66.73, SD = 23.77), and fewer return times for Prototype B (M = 1.70,
SD = 0.93) compared to Prototype A (M = 2.20, SD = 1.29) (Figure 6). These findings
strongly support the validity of hypotheses H2 and H3.

Table 3. Wilcoxon signed-ranks test statistics a for the objective evaluation of Experiment 1.

The Reaction Time (B)-The
Reaction Time (A)

The Return Times (B)-The
Return Times (A)

Z −2.906 b −3.059 b

Asymptotic significance
(two-tailed) 0.004 0.002

Note: (a) Wilcoxon Signed Ranks Test (b) based on positive ranks.
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Figure 6. Boxplot of the reaction times (left) and return times (right) between Prototype A and B.

5. Experiment 2 Method

We chose a within-subjects design since we studied whether the customised prototypes
would significantly improve the explainability of the AVP. Here, the independent variable
was set as the customised prototypes (with/without) of the mobile applications and the
HMI prototypes of the AVP system.

5.1. Prototypes

In Experiment 2, three prototypes were used for testing in the smartphone and HMI.
Prototype A considered a generic interface designed without customised solutions, while
Prototype B and C were customised for new and frequent users, respectively, offering
different explanatory strategies (see Figure 7). The smartphone application prioritizes a
map display for users to quickly track journey progress, with all prototypes showing the
driving status during vehicle wait times. In the case of any abnormal issues, the system
presents a safety alert.

Figure 7. Partial illustration of the prototypes in Experiment 2.

In Prototype A (without customisation), we sought to display all information in a
balanced way. A visual explanation of the vehicle’s parking-in status is presented through
a live video minimized in a corner of the screen, and the overall journey path is shown.

For Prototype B (the customised prototype for new users), we customised the explana-
tory information based on the user’s preference for guidance:

1. Textual information is provided with guides for key functions during initial use.
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2. A full-screen live video presents the real-time vehicle status, with overlay visualisa-
tions simulating augmented reality to enhance system transparency.

For Prototype C (the customised prototype for frequent users), efficiency is prioritized
for users familiar with the system:

1. By presenting information concisely, the vehicle provides users with an overview of
the travel route for easy viewing and convenience.

2. Textual information with an icon conveys semantic information to help users monitor
the vehicle’s parking status.

The final prototypes were designed according to each of the eight explainable scenarios
of AVP.

5.2. Procedures

The overall process and equipment in Experiment 2 were similar to those in Experi-
ment 1. The key distinction between the two lies in the participants and test prototypes.
Subjects were divided into two groups, Group A (new users) and Group B (frequent users).
Participants were individually tested with two prototypes: one without customisation and
one tailored to the specific test population.

Participants, initially situated in an office next to the driving simulator, were intro-
duced to the experiment’s details, involving a video introduction on the main functions
of the AVP system, interaction with a mobile application and HMI, and the completion
of questionnaires. A confidentiality agreement was signed, and the entire process was
videotaped. Then, the driving simulator experiment began, with participants receiving
instructions and completing three tasks following the test flow in Figure 8.

Figure 8. Test flow of Experiment 2.

In Task 1, participants initiated the vehicle summoning process on a mobile application.
After completion, they proceeded to the adjacent driving simulator, simulating a scenario
where the self-driving car arrived at the pick-up point. Task 2 involved selecting a desti-
nation and the parking spot via the HMI prototypes. Subsequently, the driving simulator
activated the autonomous driving mode, allowing participants to switch to manual mode.
Upon nearing their destination, participants exited the car. Task 3 involved users returning
to the office and controlling the vehicle for automatic parking using smartphone prototypes.
After the interaction, Group A and Group B participants filled out a questionnaire including
the STS-AD, Explanation Satisfaction, and NASA-TLX, followed by a discussion of their
views. The whole experiment took nearly one hour.

5.3. Sample

Subjects were recruited through WeChat, Weibo, QQ, and automobile clubs via email
in Shanghai, China, to enable a controlled experiment. Prior to the experiment, partici-
pants completed online questionnaires to gather background information and assess their
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autonomous driving experience. We asked respondents how often they used the relevant
functions of autonomous driving, such as AVP. Responses were collected on a 7-point
scale (1 = “never” to 7 = “more than two to three times per week”). In total, we selected
100 participants—50 without autonomous vehicle experience and 50 frequent users (use
of an automated driving system more than two to three times per week). To distinguish
between new users (Group A) and frequent users (Group B), participants were categorized
based on usage frequency. Each group contained 50 participants, with Group A having
26 females and 24 males with an average age of 30, and Group B consisting of 25 females and
25 males with an average age of 32. All participants received a ¥100 honorarium. This study
was also approved by the Science and Technology Ethics Committee at Tongji University.

5.4. Dependent Variables

Subjective Measures: Experiment 2 was performed to investigate the effectiveness
of scenario-based explanations using customised solutions for different user groups. In
addition to measuring the subjective impressions of situational trust and mental workload,
this research focused on comparing the quality of explanations and prioritizing capturing
Hoffman et al.’s [37] five metrics for an Explainable AI system. This Explanation Satisfaction
scale measures the utility of an explanation to evaluate whether users are satisfied with the
explanation and how well users understand AI systems. This questionnaire was presented
to the participants with five items and measured with a 7-point Likert scale. The following
items were included: the explanation of how the AV behaves was (1) satisfying, (2) had
sufficient details, (3) told me how to use it, (4) was helpful, or (5) let me judge when I
should trust and not trust the AV [37] (See Appendix A).

Objective Measures: The objective measures collected in Experiment 2 were the same
as those in Experiment 1 and both collected objective metrics on the reaction time (time in
seconds) and return times (number of times).

5.5. Hypothesis

Hypothesis 4 (H4). AVs that provide customised solutions for different user groups have a higher
driver (a) trust and (b) explanation satisfaction.

Hypothesis 5 (H5). AVs that provide customised solutions for different user groups have a lower
(c) mental workload.

Hypothesis 6 (H6). AVs that provide customised solutions for different user groups reduce the
(d) reaction time of users. When the system provides explanations, people will respond faster when
faced with a recommendation that requires a decision.

Hypothesis 7 (H7). AVs that provide customised solutions for different user groups decrease (e)
return times. People will return to the previous step less often due to doubt or hesitation when faced
with explanations of the system.

6. Experiment 2 Results

As in the case of Experiment 1, because the group results were not normally distributed,
we performed Wilcoxon signed-ranks tests on relevant samples. The subjective evaluations
of these tests for new and frequent users are presented in Tables 4 and 5, respectively. For
new users, customised explanations significantly affected situational trust (Z = −2.631,
p < 0.05), explanation satisfaction (Z = −5.786, p < 0.001), and mental workload (Z = 3.075,
p < 0.05). For frequent users, customised solutions also significantly affected the above
indexes (p < 0.05).
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Table 4. Wilcoxon signed-ranks test statistics a for the results obtained for new users using Prototype
A vs. Prototype B.

Situational Trust
(B)-Situational Trust (A)

Explanation Satisfaction
(B)-Explanation Satisfaction (A)

Mental Workload (B)-Mental
Workload (A)

Z −2.631 c −5.786 c −3.075 b

Asymptotic significance
(two-tailed) 0.009 <0.001 0.002

Note: (a) Wilcoxon Signed Ranks Test; (b) based on positive ranks; (c) based on negative ranks.

Table 5. Wilcoxon signed-ranks test statistics a for the results obtained for frequent users in Prototype
A vs. Prototype C.

Situational Trust
(C)-Situational Trust (A)

Explanation Satisfaction
(C)-Explanation Satisfaction (A)

Mental Workload (C)-Mental
Workload (A)

Z −2.996 c −5.032 c −2.632 b

Asymptotic significance
(two-tailed) 0.003 <0.001 0.008

Note: (a) Wilcoxon Signed Ranks Test (b) based on positive ranks; (c) based on negative ranks.

Combining the boxplot of each index (Figure 9) shows that the participants were sig-
nificantly more satisfied with the customised explanations. For new users, the explanation
satisfaction of Prototype B (M = 28.08, SD = 6.75) was higher than that of Prototype A
(M = 21.86, SD = 6.71); for frequent users, the results of Prototype B (M = 27.06, SD = 6.82)
were higher than those of Prototype A (M = 21.64, SD = 6.58). Similarly, the situational
trust of new users increased by 1.84 points compared to the results without customisation
solutions, and that of frequent users increased by 1.98 points. Furthermore, we found
that participants’ mental workload was significantly lower with the customised solutions
compared to the control condition. For new users, Prototype B (M = 37.48, SD = 11.42)
offered a lower mental workload than Prototype A (M = 42.66, SD = 6.97); for frequent
users, Prototype B (M = 40.04, SD = 12.88) offered a lower mental workload than Prototype
A (M = 44.42, SD = 7.23). In terms of the mean value for each index, both B and C among
the customised prototypes generally performed better than Prototype A, which did not
have a customised design. This result confirms that segmentation for different user groups
improves the utility of the explanations presented.

Figure 9. Boxplot of each index in Experiment 2.
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The objective evaluations from experiment 2 are presented in Table 6. For Prototype A
and B, the effects of the customised explanations on reaction time (Z = 2.751, p < 0.05) and
return times (Z = 2.418, p < 0.05) were significant. Similarly, significant differences (p < 0.05)
existed between Prototype A and C in terms of the reaction time (Z = 4.107, p < 0.001)
and return times (Z = 2.557, p < 0.05). As shown in the boxplot of objective evaluations
(Figure 10), for new users, the customised Prototype B (M = 72.85, SD = 24.65) offered a
faster reaction time than the generic Prototype A (M = 79.32, SD = 23.77). For frequent
users, the result of Prototype B (M= 69.67, SD = 19.56) was lower than that of Prototype C
(M = 78.34, SD = 21.76). Similarly, the return times of new users decreased by 0.52 points
compared to the values without the customisation solutions, and frequent users decreased
by 0.56 points. These results strongly support the validity of hypotheses H6 and H7.

Table 6. Wilcoxon signed-ranks test statistics a for the objective evaluation of Experiment 2.

The Reaction Time
(B)-The Reaction time (A)

The Reaction Time (C)-The
Reaction Time (A)

The Return Times (B)-
The Return Times (A)

The Return Times
(C)-The Return Times (A)

Z −2.751 b −4.107 b −2.418 b −2.557 b

Asymptotic significance
(two-tailed) 0.006 <0.001 0.016 0.011

Note: (a) Wilcoxon Signed Ranks Test (b) based on positive ranks.

Figure 10. Boxplot of the reaction time and the return times of Experiment 2.

7. Discussion

In this study, we investigated the impact of scenario-based explanations on users’
subjective and objective evaluations of AVP systems. Moreover, we validated the impact
of customised schemes specific to new and frequent users on the quality of explanations
based on subjective and objective measures.

Based on the results of Experiment 1, H2 and H3 were supported, and H1 was partially
supported. The subjective data from participants in this study indicated that scenario-based
explanations increased situational trust and improved the UX along with providing a lower
mental workload. Specifically, our study found that providing scenario-based explainable



Sustainability 2024, 16, 63 15 of 22

information on the in-vehicle HMI display and the mobile application effectively increased
the UX from neutral to positive compared to a scenario without offering explainable
information on system decision-making. This result is aligned with that of Tobias et al.’s
study [11], which demonstrated that providing explanations improved the user experience
of AVs.

Previous research has suggested that providing detailed information about autonomous
driving situations may not effectively increase trust [38]. However, in this study, partici-
pants were able to understand the reasons behind the decisions made by the autonomous
driving system through the scenario-based explanations. Particularly, the scenario-based ex-
planations fostered the participants’ perception and comprehension of the current situation,
enabling them to quickly understand the system’s intent and thereby increase confidence
in the vehicle’s performance. These findings suggest that scenario-based explanations can
effectively enhance trust and confidence in autonomous driving systems.

Our findings also differ from those of Du et al. [39], which found no differences in
mental workload. In contrast, our study demonstrates that providing explanations reduced
the drivers’ mental workload. This study also suggests that many users may be content
with brief or concise textual explanations to satisfy their cognitive needs and enhance their
understanding of the system’s decision-making process, leading to a reduction in both
mental and physical demands.

Importantly, most research focuses on subjective measurements as explanations. Sur-
veys and interviews are used to measure user satisfaction [40,41], the goodness of an expla-
nation [42], the acceptance of the system’s advice [43,44], and trust in the system [45–48].
Such subjective measurements can provide valuable insight into the user’s perspectives
on such explanations. However, these results do not necessarily relate to the behavioural
effects an explanation could cause [49]. Therefore, we also measured users’ reaction time
and return times as objective measurements to reliably evaluate the explanations. Although
Silva et al. [50] found that explainability had no effect on completion time, in our study,
scenario-based explanations resulted in improvements in the reaction time and return
times. These results could be explained by user performance improving as a result of
receiving satisfying explanations, effectively helping participants perform tasks correctly
and completely [37].

In addition, Experiment 2 demonstrated that explanations designed for different
population segments, such as new and frequent users, can improve users’ subjective
evaluations, including their situational trust, explanation satisfaction, and mental workload.
The results indicated that incorporating customisation functions into the system that
consider individual differences and provide optimal explanations can effectively enhance
the system’s explainability. These customised solutions can also help users make decisions
in less time and reduce the number of return times. This result suggests that scores
measuring explanation satisfaction are highly correlated with evaluations of the quality of
users’ mental models [37]. Thus, the results from our evaluation support the hypotheses in
Experiment 2.

In the final user interviews, new users highlighted a positive correlation between the
ease of learning and their trust in AVP. Design features, including usability in automation,
were found to influence trust by shaping user perceptions [51]. Likewise, the easy-to-
learn characteristics of AVP, driven by explanations considering the users’ characteristics
and contextual needs, contribute to smooth adaptation, especially for new users, thereby
fostering perceptions of trustworthiness. A step-by-step wizard workflow with abundant
visual explanations was used to enhance learnability, enabling users to perform the task as
fast as possible even when completing it for the first time, which positively impacts trust and
represents a crucial aspect of the autonomous vehicle adoption process [52]. Consequently,
highly learnable AVP systems exhibit steep learning curves, reaching saturation with
minimal repetition.

A natural progression of Experiment 2 would be to analyse the effects of users’ prefer-
ences between different target populations to allow for more personalised explanations.
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Such an analysis would be especially important for long-term exposure, as the need for
explanations is anticipated to change when the user interacts with a system repeatedly [11].
For instance, our findings reveal that new users exhibit a higher demand for explanations,
while the need for explanations decreases over time when users become more accustomed
to the interaction. This indicates that a personalised AV appears to be significantly more
reliable when each driver’s needs are understood [53]. Additionally, the participants note
that, although new users are more conservative and cautious than frequent users, their
trust level increases as they become more experienced with Autopilot and Summon. To
some extent, this result parallels real-world research on Tesla drivers, which shows that
trust in AV systems increases over time regardless of experience [54]. Hence, we should be
attentive to the time effects of explainable systems, recognizing evolving contextual needs
and the dynamic nature of trust.

Most current research on the explainability of autonomous driving has focused on the
theory and implementation of explanations based on perceptual data, whereas empirical
studies centred on the user remain scarce [55]. In contrast to other AVP studies, we
innovatively explored the scenario-based explainability design of an AVP system and
validated variations in the needs of different user populations. We designed interactions in
the context of an automated future in line with users’ wishes, providing efficient solutions
to address people’s concerns [6,7].

7.1. Design Implications and Future Challenges

In this section, we discuss how to design explanations that integrate with existing HMI
guidelines on automated vehicles, in addition to addressing generalizability and potential
challenges for real-world applications.

Explanations for AVs should be delicately designed, taking into account the cognitive
responses and user experience of each driver or user. Firstly, prioritize pictographic infor-
mation over text-based messages in visual interfaces whenever applicable, emphasising
information that is readily understood by drivers [56]. There are several guidelines specific
to pictographic information and icons that can support the design of such elements [57,58].
Secondly, when explaining the behaviour of autonomous systems, it is crucial to consider
how to improve the system transparency and visibility of the explanatory information.
For instance, visualising AV awareness with object recognition, using 3D displays in AV
contexts, and revealing inner workings could be considered nice-to-have features [59].
Furthermore, the text with a coloured background we used in this study could be helpful
to quickly shift attention to the explanation’s presentation location. These design strategies
are expected to help drivers consume explanations quickly and understand them easily,
enhancing current HMI standards.

This study introduced a scenario-based explanation framework based on explainable
AI and assessed its effectiveness in the AVP system. This framework is not exclusive to AVP;
it focuses on what users need to understand about AI systems to act in accordance with
the system’s outputs [23]. This framework is easily adaptable to other domains, including
levels L3–L5 of automated driving. In the AVP system, this framework extends to non-
driving tasks (NDRT), freeing drivers from constant monitoring and enabling engagement
with infotainment systems. It is anticipated that users of Level 3 driving automation will
spend their newly acquired free time on activities not related to driving, as such users
could easily become distracted and engage in NDRT [60]. Scenario-based explanations
will reduce drivers’ mental workload, contributing to safer interactions. Moreover, the
proposed framework can be applied to complex usage scenarios such as shared AVs, helping
designers understand users’ flexible motivations and achieve engaging journey experiences
for AVs [61]. At the same time, we combined self-reported subjective measurements with
objective measurements to evaluate the impact of explainable design on user performance
in specific tasks. This evaluation will help researchers provide more valuable insights in
this area.
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When these scenario-based explanations perform under real-world driving scenarios,
certain explanatory information, such as the system decision criteria for allocating the right
car park, must rely on more robust and explainable artificial intelligence (XAI) algorithms.
XAI algorithms can provide feature importance, decision boundaries, and other explanatory
information, thereby enhancing system transparency [62,63]. In explaining outputs from
perception systems, AVs should also be able to provide real-time data access (onboard or
remotely) to their digital representations of the 3D world, including semantic information,
upon request by authorised entities [10]. Addressing security concerns and data privacy
emerges as a key challenge in this context [64,65].

7.2. Limitations and Future Research

Inevitably, this study has some limitations. Firstly, since the experiment primarily
focuses on investigating new technologies, participants who signed up were predominantly
below the age of 40, resulting in a relatively young research sample. Future studies should
diversify subjects by including different demographics, such as various age groups and cul-
tural backgrounds, in field experiments to enhance external validity and result replicability.
Secondly, visual explanations were found to be effective for highly automated driving in
this study. However, the research also indicated that multimodal explanations of in-vehicle
displays can have significant effects on various types of takeover situations [63]. Future
investigations could explore the effectiveness of alternative explanations, such as auditory
or haptic signals, considering different levels of automated driving systems. Furthermore,
an interdisciplinary approach to the explainability of autonomous driving should also be
adopted to enable better designing and evaluations of user-centred explanations. Such
an approach should include disciplines like behavioural science (e.g., dialogue theory),
human–computer interactions (e.g., user interface design), ethics (e.g., revealing biases in
explanations), philosophy (e.g., causal explanation theories), and psychology [10].

8. Conclusions

Two experiments were conducted to explore the effectiveness of scenario-based ex-
planations and whether group segmentation for new and frequent users could improve
the quality of explanations. First, the results of Experiment 1 indicated that scenario-based
explanations improved drivers’ perception and understanding of the intelligence capabil-
ities of the system, leading to a significant increase in situational trust and positive user
experience, as well as a decrease in mental workload. Scenario-based explanations also
significantly improved task performance in objective evaluations. Second, the results of
Experiment 2 suggested that new and frequent users have significantly different explain-
ability needs. The needs of new users are centred on the cognitive generation of trust in the
technology, with a higher demand for the ease of learning, understanding, transparency,
and guided explanation of the system. In contrast, frequent users are more concerned about
efficiency and driving safety, seeking faster and more convenient operation. Moreover,
the experimental results confirmed that customised explanations for different segments of
the population significantly improved users’ situational trust and explanation satisfaction
and alleviated their mental workload. Adapting explanations to users will also enable
improved task performance fluency. This study explored the explainability of autonomous
driving systems in automated valet parking scenarios by merging the fields of HMI, UX
design, explainable AI, and autonomous driving through a scenario-based design approach.
This study also validated the designed explainability for different user populations. This
study’s results could serve as a reference for designing interactions between drivers and
AVs, which will enhance users’ acceptance of the technology and its sustainability.
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Appendix A

Table A1. Details of the questionnaires given to the participants.

Variables Questions Scale References

Situational Trust

01. I trust the automation in this situation.

7-point Likert scale (Ratings that
range from 1 = not at all, to

7 = extremely)
[33]

02.
I would have performed better than the
automated vehicle in this situation
(reverse scored).

03.
In this situation, the automated vehicle
performs well enough for me to engage in
other activities (such as reading).

04. The situation was risky (reverse scored).

05.
The automated vehicle made an unsafe
judgement in this situation (reverse
scored).

06. The automated vehicle reacted
appropriately to the environment.

NASA-TLX

07.

How much mental and perceptual activity
was required (e.g., thinking, deciding,
calculating, remembering, looking,
searching, etc.)? Was the task easy or
demanding, simple or complex, exacting
or forgiving?

7-point Likert scale (Ratings that
range from 1 = low, to 7 = high)

[36]

08.

How much physical activity was required
(e.g., pushing, pulling, turning,
controlling, activating, etc.)? Was the task
easy or demanding, slow or brisk, slack or
strenuous, restful or laborious?

09.

How much time pressure did you feel due
to the rate or pace at which the tasks or
task elements occurred? Was the pace
slow and leisurely or rapid and frantic?

10.
How hard did you have to work (mentally
and physically) to accomplish your level
of performance?

11.

How insecure, discouraged, irritated,
stressed, and annoyed versus secure,
gratified, content, relaxed, and
complacent did you feel during the task?

12.

How successful do you think you were in
accomplishing the goals of the task set by
the experimenter (or yourself)? How
satisfied were you with your performance
in accomplishing these goals?

7-point Likert scale (Ratings that
range from 1 = good, to 7 = poor)
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Table A1. Cont.

Variables Questions Scale References

User Experience

13. Is it clear or confusing?

7-point Likert scale (Ratings that
range from 1 = negative term, to

7 = positive term)
[34]

14. Is it inefficient or efficient?

15. Is it complicated or easy?

16. Is it obstructive or supportive?

17 Is it boring or exciting?

18. Is it not interesting or interesting?

19. Is it conventional or inventive?

20. Is it usual or leading edge?

Explanation
Satisfaction

21. This explanation of how the [software,
algorithm, tool] works is satisfying.

7-point Likert scale (Ratings that
range from 1 = not at all, to

7 = extremely)
[37]

22.
This explanation of how the [software,
algorithm, tool] works has sufficient
detail.

23.
This explanation of how the [software,
algorithm, tool] works tells me how to use
it.

24. This explanation of how the [software,
algorithm, tool] works is helpful.

25.
This explanation lets me judge when I
should trust and not trust the [software,
algorithm, tool].
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