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Abstract: Active Transportation to School (ATS) offers numerous health benefits and is considered an
affordable option, especially in disadvantaged neighborhoods. The US Centers for Disease Control
and Prevention (CDC) advises 60 min of daily physical exercise for children aged 6 to 17, making
ATS a compelling approach to promote a healthier lifestyle among students. Initiated in 2005 by the
US Department of Transportation (DOT), the Safe Routes to School (SRTS) program aims to foster
safe and regular walking and biking to school for students. This paper examines students’ travel
behavior using SRTS survey data and assesses the program’s effectiveness in promoting ATS in Chula
Vista, California. Employing machine learning algorithms (random forest, logistic regression, and
support vector machines) to predict students’ likelihood to walk to school, it utilizes SHAP (SHapley
Additive exPlanations) to pinpoint significant variables influencing ATS across all models. SHAP
underscores critical factors affecting transportation choices to school, highlighting the importance of
home-to-school distance, with shorter distances positively impacting active transportation. However,
only half of students within schools’ walking distance opted to walk to school, underscoring the
necessity of addressing parental safety concerns, including factors such as crime rates and traffic
speed along the route.

Keywords: Safe Routes to School; logistic regression; support vector machines; random forest;
SHapley Additive exPlanations

1. Introduction

Engaging in physical activity during adolescence offers a range of advantages for
physical, social, and psychological well-being [1–3]. Therefore, the Centers for Disease
Control and Prevention (CDC) advise that children and teenagers should participate in
a minimum of 60 min of daily physical activity [4]. However, studies indicate that only
about one-third of children actually meet this recommendation. This concerning lack of
sufficient physical activity among youth has become a prominent concern in the public
health community [5].

Consistent exercise is crucial for the physical and emotional health of children, par-
ticularly for those battling obesity. Children and adolescents who participate in physical
activity are less likely to become overweight and obese during their youth and adolescence,
and they are less likely to become obese as adults [6,7]. One potential factor that may con-
tribute to increased physical activity and reduced childhood obesity is active commuting
to school [8–11]. Surprisingly, when comparing data from 1969 to 2009, there has been
a significant decline in the number of students who walk or cycle to school. In less than
40 years, the average of students walking or cycling to school has dropped from 42% to
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13%. Statistics show that in 1969, 87% of those who lived within one mile of school would
walk or bicycle to school, and this number decreased to almost half (47%) in 2009 [12].

This paper centers on Chula Vista, San Diego County’s second-largest city, which
houses a significant number of school-aged children. With approximately 270,000 residents, a
quarter of whom are children under the age of eighteen, the city has around fifty-two elementary
schools. Alarmingly, 38% of school-aged children in Chula Vista were reported as over-
weight/obese by 2010 [13]. Highlighting the city’s challenges, the Social Vulnerability
Index (SVI) from the Centers for Disease Control and Prevention (CDC) and the Agency
for Toxic Substances and Disease Registry (ATSDR) ranks Chula Vista among the cities
with the highest social vulnerability in San Diego County [14]. This vulnerability is gauged
through various metrics such as poverty and vehicle access, among others.

In an effort to promote Active Transportation to School (ATS), the Safe Routes to
School (SRTS) program was introduced. SRTS is a federally funded program which encour-
ages students to walk and cycle to school through 6 Es: engagement, equity, engineering,
encouragement, education, and evaluation. This program focuses on both infrastructure
improvements and educational programs and hopes to foster a culture of active trans-
portation among students. Since 2005, more than 14,000 schools all across the US have
participated in this program [15]. The Chula Vista Elementary School District (CVESD) has
been an active SRTS participant since 2007. Numerous activities and projects were initiated
by SRTS in CVESD, including pedestrian safety educational programs and bicycle rodeos.

Surveys have proven to be a valuable and cost-effective method for collecting infor-
mation from a large population [16]. Consequently, the National Center for Safe Routes to
School program has provided standardized surveys, including the Parent survey, which
seeks information about students’ modes of transport, factors influencing parental deci-
sions regarding their child’s commute, safety conditions along routes to school, and other
relevant background information. These surveys can play a crucial role in identifying
barriers to active transportation and measuring changes in parental attitudes as a result of
local SRTS programs. To evaluate the effectiveness of SRTS programs on active transporta-
tion trends among CVESD students, responses to the Parent survey were collected before,
during, and after the implementation of SRTS activities.

This research aims to explore the factors that hinder students from engaging in Active
Transportation to School, with a particular focus on understanding the perspectives of
parents, the role of schools in promoting active transportation, and the influence of students’
home distance from school. By thoroughly investigating these barriers, we aspire to
uncover valuable insights that can pave the way for effective interventions and initiatives
to encourage active transportation among students.

Furthermore, this study seeks to assess the impact of the SRTS activities on the promo-
tion of active transportation. We rigorously analyzed whether the implementation of SRTS
initiatives leads to a significant increase in the percentage of students utilizing active modes
of transportation, such as walking or cycling, to commute to school. By examining data
from various stages of the program, including pre-implementation, mid-implementation,
and post-implementation, this study provides a comprehensive understanding of the
program’s effectiveness over time.

Following an extensive literature review on the subject matter, the authors of this
study utilized multiple machine learning algorithms. Leveraging data collected by the
National Center for Safe Routes to School, we employed advanced statistical techniques and
predictive modeling to pinpoint key factors that influence students’ transportation choices.

The findings of this research have the potential to generate promising outcomes
and inform evidence-based strategies to overcome barriers to active transportation among
students. By thoroughly analyzing the Parent survey, we can develop targeted interventions
that promote and sustain active transportation behaviors. Ultimately, this study contributes
to the development of practical and impactful approaches that will empower more students
to embrace active transportation and lead healthier, more active lives.
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2. Previous Work

Many of the previous studies on the Safe Routes to School primarily focus on changes
in travel behavior associated with SRTS program interventions. These studies have pre-
dominantly highlighted the impact of infrastructure improvements on ATS [17–19]. While
there may be a positive correlation between traffic improvements and an increase in ATS
rates, it should be noted that infrastructure enhancements alone might not be sufficient to
promote cycling and walking in schools with low levels of activity [20]. In fact, previous
research suggests that non-infrastructure measures, such as educational programs, can
effectively encourage walking and biking to school [21–23].

In addition to infrastructural and non-infrastructural factors, there are several ele-
ments that influence the likelihood of engaging in active modes of transportation when
traveling to and from school. Previous research has emphasized the significance of home-
to-school distance in determining the rate of active transportation among children and
adolescents [24,25]. Notably, a greater home-to-school distance between the residential
area and the school has been identified as a robust predictor of active transportation be-
havior in children and adolescents [26–28]. Increased distances between home and school
often result in children traveling on arterial roads and having to cross them, which poses
significant traffic-related safety challenges [29]. Recent studies have demonstrated that
parents’ attitudes toward Active Transportation to School have become more negative as
the distance between their homes and schools has increased [30].

In addition to the home-to-school distance, mediating factors can also influence stu-
dents’ decision to use ATS [31]. These mediating factors encompass the direct influence
of the social and natural environment, such as crime rates and traffic collision rates, as
well as the perceptual interpretations of parents and children regarding their surroundings,
including perceived risks associated with crime or traffic. In some locales, regional policies
and land development also significantly shape these active transportation choices [32]. A
thorough examination of over 60 papers on active travel has revealed the impact of mediat-
ing factors such as age and education levels in travel preferences. Some of the previous
studies suggest that active travel decreases with age, with men and those with higher
education preferring biking, while women tend to choose walking. Moreover, these studies
consistently note lower bike usage among minorities and those with lower incomes [33].

Previous research by Davison et al. suggests that parental perceptions of the environ-
ment have a stronger impact on transportation patterns to school than built environment
factors alone [11]. Parents’ concerns about traffic and safety related to ATS are significant
factors contributing to the increasing number of parents choosing to drive their children to
and from school [8,34]. Previous studies indicate that parental barriers to engaging in active
commuting are shaped by various factors, including the age, gender, mode of transportation
employed by their children [35], and parents’ level of education [36–38]. Parents’ concerns
primarily arise from the absence of sidewalks, the presence of heavy traffic, high-speed
roads, risky pedestrian crossings, and personal safety issues such as crime, collectively
shaping their perception of unsafe routes to school [39–42]. The concerns of parents regard-
ing traffic, crime, and personal safety can significantly influence the choice of transportation
mode to school for adolescents, consequently shaping their perceptions of the route and
their behavior regarding Active Transportation to School [30,43,44]. Specifically, personal
safety concerns, such as local crime rates and the presence of strangers in the neighborhood,
also discourage children from engaging in ATS and opting to walk or cycle to school [45,46].
Moreover, parental concerns about the safety of their children while walking and cycling to
school are further compounded by the lack of adult supervision [47,48].

Barriers to active transportation can have a significant impact on participation rates.
Studies have shown that children who do not face reported barriers are more likely to
walk or bike to school compared to their peers who encounter one or more barriers [49].
Therefore, it is crucial to address traffic and personal safety concerns when developing
models for safe walking and cycling routes to schools [50]. By considering these findings,
efforts can be made to create frameworks that address these barriers, ultimately promoting
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and encouraging active transportation among children and adolescents. By addressing
these barriers, we can further enhance our understanding of the factors influencing active
transportation to school and develop evidence-based strategies that promote safe and sus-
tainable travel options for children and adolescents. Such efforts can contribute to creating
healthier, more livable communities where Active Transportation to School becomes the
norm rather than the exception.

In the landscape of school travel mode choice modeling, logistic regression (LR) has
remained a time-tested and trusted tool. Numerous studies have explored its capabilities;
for instance, a study spanning from 2007 to 2018 in Arizona employed LR to identify
students’ chosen modes of transport to school [51]. Another notable investigation utilized
it to evaluate the challenges faced by student commuters, considering diverse demographic
and institutional factors [52]. Such varied applications underscore LR’s essential role in
educational inquiries. Moving into more recent analytical advancements, the random
forest (RF) technique is gaining ground in transportation studies. Previous work [53–55]
serves as proof of RF’s capability to navigate and interpret complex traveler behaviors.
Further solidifying its value, one previous study’s [56] exploration using RF on Nanjing’s
travel diary data emphasized the method’s strength in both enhancing prediction accuracy
and analyzing travel determinants. Lastly, support vector machines (SVM) have also
demonstrated significant efficacy in this field. Dave et al.’s study on the transportation
preferences of Vadodara’s schoolchildren and Assi, Khaled J., et al.’s innovative blend of
SVM with clustering techniques to forecast student travel mode decisions highlight SVM’
pivotal importance [57,58]. Together, LR, RF, and SVM offer a comprehensive analytical
framework, each contributing uniquely to our understanding and prediction of school
travel mode choices.

Given the SRTS initiatives in Chula Vista, a prior study examined students’ trans-
portation habits and underscored the importance of factors such as school proximity,
crime concerns, and school encouragement in shaping student decisions [59]. Building
on this research, the current study aims to extend the existing literature by conducting an
analysis of survey data gathered from parents at distinct stages—pre-implementation, mid-
implementation, and post-implementation—of these active transportation initiatives. With
this approach, we seek to provide a deeper understanding of evolving parental concerns
and perceptions as these interventions unfold over time.

3. Methodology
3.1. Data Collection

The surveys created by the National Center for Safe Routes to School were studied to
provide a better insight into the school travel environment. The Parent survey proposed by
this center gathers information from parents/guardians on their children’s travel behavior,
including their usual transportation mode and how far they live from their school, and
the concerns parents may have for active transportation. This survey mainly focuses
on the issues that may affect parents’ willingness or permission for their children to
walk/bicycle to school. The Parent survey also includes children’s background information
(age, gender), and if parents are concerned about twelve potential issues mentioned in
the survey. This can be used as a powerful tool to investigate the underlying reasons
why students are (or are not) considering active school travel, and if these issues arise
from safety concerns or parents’ perceptions. The Parent dataset used in this research
was gathered and consolidated for all SRTS participant schools in CVESD, and included
5764 surveys collected from 19 schools between 2009 and 2011, for students aged from
Pre-K to sixth grade. Table 1 presents a detailed overview of the features derived from the
Parent Survey, along with their respective explanations.
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Table 1. Features Derived from SRTS Parent Survey.

Feature Explanation

Transportation Mode
Response Variable. Indicates the transportation mode of children
when they leave school (Transportation Mode = 0 (do not walk to
school) or Transportation Mode = 1 (walk to school)).

Period The period of the Safe Routes to School (SRTS) program: before,
mid, or after implementing the SRTS program at the school.

Child_Gender The gender of the child.

Distance_from_School
The distance of the child’s home from the school (less than 1/4 of
a mile, 1/4 of a mile up to 1/2 a mile, 1/2 a mile up to 1 mile,
1 mile up to 2 miles, more than 2 mile).

child_asked_permission Indicates whether the child asked for permission to walk/cycle to
school (yes/no).

grade_allowed The grade in which the child is allowed to use ATS by
their parents.

issue_distance Concerns about the ATS distance affecting parents’ decision on
their child’s school commute (yes/no).

issue_convienience Concerns about the convenience of ATS affecting parents’
decision on their child’s school commute (yes/no).

issue_time Concerns about the time required for ATS affecting parents’
decision on their child’s school commute (yes/no).

issue_after_school_program Concerns about the after-school programs affecting parents’
decision on their child’s school commute (yes/no).

issue_speed Concerns about the speed limit affecting parents’ decision on
their child’s school commute (yes/no).

issue_traffic Concerns about the traffic affecting parents’ decision on their
child’s school commute (yes/no).

issue_walk_with_adults
Concerns about children walking without adult supervision
affecting parents’ decision on their child’s school commute
(yes/no).

issue_side1 Concerns about safety of sidewalks affecting parents’ decision on
their child’s school commute (yes/no).

issue_intersection Concerns about safety of intersections affecting parents’ decision
on their child’s school commute (yes/no).

issue_Crossing_Guards Concerns about safety of crossing guards affecting parents’
decision on their child’s school commute (yes/no).

issue_crime Concerns about crime rates affecting parents’ decision on their
child’s school commute (yes/no).

issue_weather Concerns about the weather affecting parents’ decision on their
child’s school commute (yes/no).

school_encouragement Indicates whether the school encourages walking or biking to
school (encourages, neither, discourages).

child_having_fun Represents whether the child finds walking or biking to school
fun (fun, neutral, boring).

healthy Indicates whether parents believe ATS is healthy or safe for the
child (health, neutral, unhealthy).

Parent_education Education level of the parent(s) (elementary, some high school,
high school graduate, some college, college graduate).

According to the American Academy of Pediatrics (AAP) [60] and previous studies [61,62],
it is generally recommended that children wait until they are in fifth grade, around the
age of 10, before walking to school without adult supervision. Hence, this study only
focused on the data from 5th to 12th grade students. After removing the irrelevant student
age groups (Pre-K to fourth grade) and some missing values, the data were reduced to
1387 observations.

3.2. Statistical Analysis

The primary objective of this research was to investigate the factors influencing the
choice of transportation mode for students traveling to school, focusing on active transporta-
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tion. Due to the limited number of observations for bicycling, the analysis was narrowed
down to solely examine walking. However, it should be noted that the same analytical
framework can be readily applied to bicycling data if a sufficient volume of observations
becomes available.

We extracted independent variables from the Parent survey and used them alongside
transportation mode as the dependent variable in our analysis. Transportation mode indi-
cated in the Parent survey was transformed into a binary classification format, indicating
whether the student walks as their usual commuting mode (Transportation Mode = 1) or if
they use any other transportation mode (Transportation Mode = 0).

The independent variables used in the analysis encompassed factors such as students’
gender, distance between home and school, the role of the school in promoting active
transportation, as well as parents’ education level, perceptions, and concerns regarding
active transportation.

To identify the key factors influencing the decision to walk to school, we employed
multiple machine learning algorithms, namely logistic regression (LR), random forest (RF),
and support vector machines (SVM). Given the potential issue of multicollinearity arising
from highly correlated independent variables [63,64], we performed a preliminary analysis
to identify and remove such variables. Additionally, to mitigate overfitting concerns and
obtain more accurate estimates, we applied 5-fold cross-validation to each model [65,66].
Finally, SHapley Additive exPlanations values (SHAP) were used as a means of feature
selection and compared across the models to identify the most significant factors influencing
the prevalence of walking to school.

It is worth noting that the Parent survey provided options for two transportation
modes: morning (going to school) and evening (coming back home). One of the objectives of
this research was to compare these responses and determine if significant differences existed
in the patterns of walking to and from school. Accordingly, two logistic regression models
were constructed for this comparison. The results did not show significant variations, with
a slightly higher prevalence of students walking back home in the evening (27%) compared
to walking to school in the morning (23%). Consequently, this paper only used the morning
transportation mode as the response variable in all three models.

3.3. Model Selection
3.3.1. Logistic Regression

Regression methods have emerged as a fundamental component of data analysis in
exploring the connection between a dependent variable and one or multiple independent
variables. Logistic regression, a statistical model commonly employed in traffic safety
studies [67–71], has been utilized for investigating the association between a binary re-
sponse variable and independent variables.

Logistic regression is a powerful statistical tool optimized for predicting binary out-
comes based on one or more explanatory variables. Unlike linear regression, which predicts
continuous values, logistic regression focuses on estimating the probability that a given
observation falls into a specific category. Central to this method is the logistic function,
which constrains predicted probabilities to lie between 0 and 1 [72].

Mathematically, for predictor variables denoted as X1, X2, . . . Xn, the probability of
the desired outcome is modeled as:

P(X) =
eβ0+β1X1+···+βnXn

1 + eβ0+β1X1+···+βnXn

In this formulation, the term P(X) indicates the likelihood of the event in question. The
coefficients (β0, β1, . . . βn) represent the influence of each predictor variable on the log odds
of the outcome. Specifically, a coefficient reveals how the log odds of the outcome change
with a one-unit increase in its associated predictor, while keeping all other predictors
constant. The values of these coefficients are determined using the Maximum Likelihood
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Estimation (MLE) method. This method aims to find the coefficient values that are most
likely to produce the observed data, given the model’s structure.

3.3.2. Random Forest

Random forest (RF) is an ensemble model that effectively leverages decision trees to
handle complex, nonlinear relationships and high-dimensional variables, while exhibiting
robustness against outliers and noise [73]. The essence of RF lies in its bootstrapping tech-
nique and aggregation method. For each tree, a subset of data is sampled with replacement
(bootstrap sample), and a subset of features is chosen randomly to split the nodes. This
diversification ensures that individual trees capture different patterns in the data. The
final prediction, for classification, is based on a majority vote, and for regression, it is
the average of the predictions from all trees [72]. Given its capabilities, RF has garnered
considerable recognition and has been widely applied in various transportation research
contexts [74–78].

For a classification problem, given a new observation X, the RF prediction is:

RF(X) = mode{T1(X), T2(X), ..., Tn(X)}

where Ti(X) is the prediction of the ith tree. For regression, it is the average:

RF(X) =
1
n∑n

i=1 Ti(X)

The efficacy of random forest (RF) models is substantially impacted by the configura-
tion of hyperparameters. To maximize the performance of RF, it is imperative to identify the
most suitable parameter values through careful optimization. By emphasizing the objective
of minimizing the out-of-bag (OOB) error and identifying the optimal number of trees for
the RF model, the development of the optimal random forest model was accomplished
following a 5-fold cross-validation procedure.

3.3.3. Support Vector Machines

Support vector machines (SVM) are widely recognized as one of the highly effective
algorithms for classification and regression problems. Due to their extensive application
and reliable performance across various scientific domains, SVM have been a focal point in
transportation research in recent years [79–81]. One prominent application of this model is
for binary classification tasks, aiming to identify the optimal hyperplane that effectively
partitions the data into two distinct classes [82,83].

SVM aim to find a hyperplane defined by w (weight vector) and b (bias) that maxi-
mizes the margin between two classes. This margin represents the distance between the
hyperplane and the nearest data points, or “support vectors”, from both classes. Given
labeled data (x i, yi) where yi ∈ {−1, 1}, the decision function is defined as:

f (X) = wTx + b

The primary goal is to optimize:

minw,b
1
2
||w||2 + C∑

i
ξi

Here, the objective is to strike a balance. The term 1
2 ||w||2 seeks the hyperplane with

the largest possible margin, while C∑
i

ξi allows for some flexibility, permitting certain

points to be on the “wrong side” of the hyperplane for the sake of better overall fit. The
parameter “C” determines this balance: higher values stress the importance of each data
point being correctly classified, even if it means a smaller margin.
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The SVM model was developed using scikit-learn. In addition, the effectiveness of SVM
can be substantially enhanced by employing parameter optimization techniques [84,85]. In
this case, the grid search technique is employed to determine the best values for the regu-
larization parameter “C” and the radial basis kernel parameter “Gamma”. The grid search
is performed within the context of a 5-fold cross-validation, ensuring reliable evaluation of
the model’s performance.

3.4. Model Evaluation Metric

Accuracy and error rate are commonly used metrics for evaluating classification
models in both binary and multi-class problems due to their simplicity, applicability to
different scenarios, and ease of interpretation. However, these metrics have limitations
in terms of producing less distinct and discriminative values and showing bias towards
majority class instances [86,87]. To overcome these limitations, it is necessary to consider
other evaluation metrics.

One widely used evaluation metric is the confusion matrix, which provides a compre-
hensive assessment of a classifier’s performance by capturing true positive, true negative,
false positive, and false negative outcomes [88]. The AUC (Area Under the ROC Curve)
is another model evaluation metric for assessing classification model performance [89,90].
A value of 1 indicates an ideal model that can accurately separate positive and negative
classes, while 0.5 indicates that it performs no better than random.

In this study, the evaluation of the proposed models included the assessment of AUC
and confusion matrix, complementing the analysis based on accuracy and error rate. These
diverse metrics provide a more comprehensive understanding of the model’s performance
and contribute to a thorough evaluation process.

3.5. SHAP Values

SHapley Additive exPlanations, often referred to as SHAP, is a method used in machine
learning to determine the impact of individual features on a model’s predictions [91,92].
By evaluating the contribution of each feature in the dataset to the overall output and
considering all possible feature combinations, SHAP values provide insights into how
different features affect the model’s predictions. Mathematically, the SHAP value of a
feature j for a specific instance x can be expressed as:

ϕj (x) = ∑s⊆N\{j}
|S|!(|N| − |S| − 1)!

|N|! [ fx (S ∪ {j})− fx (S)]

where N is the set of all features, S is a subset of N excluding feature j, and fx(S) represents
the model’s prediction when only features in subset S are considered [93]. This formula
quantifies the marginal contribution of feature j to the model’s prediction, averaged over
all possible subsets of features, thereby providing an assessment of its pertinence relative
to a baseline that takes into account all feature interactions.

This approach aids in understanding the contribution of each feature to the prediction
result and can be used as a feature selection mechanism [93–95]. In this study, SHAP values
were utilized to determine and compare the most significant factors in ATS for each model.
By comparing the SHAP values of each feature in the models, we identified the features
that have the most substantial impact on the prediction outcomes.

In binary classification, SHAP values generally range between −1 and +1. These
values represent a feature’s influence on the model’s output compared to the baseline
prediction, often derived from the mean prediction of the dataset. A SHAP value in the
positive domain suggests that a particular feature drives the model’s prediction toward the
positive class, while a value in the negative domain indicates a push toward the negative
class. The absolute magnitude of the SHAP value, irrespective of its sign, indicates the
intensity of the feature’s effect on the model’s predictive outcome.
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4. Results

As discussed earlier in the methodology section, the proposed machine learning
models, namely logistic regression (LR), random forest (RF), and support vector machines
(SVM), were employed to investigate the relationship between students’ transportation
mode and various demographic and perceptual features extracted from the Parent survey.
The objective was to predict the transportation mode using binary classification, with
“walk” assigned a value of 1 and other transportation modes assigned a value of 0.

To enhance the performance of the models, hyperparameter tuning was conducted
using Scikit Learn’s GridSearchCV method for LR and SVM, and RandomizedSearchCV
for RF. GridSearchCV systematically explored a predefined grid of hyperparameter val-
ues, evaluating the effectiveness of the models through cross-validation. The optimal
hyperparameter configuration was determined based on the highest performance score.
RandomizedSearchCV, on the other hand, randomly sampled a subset of hyperparame-
ter combinations from a specified distribution, reducing computational costs while still
evaluating performance through cross-validation.

We opted for GridSearchCV for LR and SVM due to their relatively constrained
hyperparameter tuning needs: LR is predominantly concerned with regularization aspects,
while SVM concentrate on kernel choices. In contrast, RF presents a richer hyperparameter
spectrum, encompassing decisions such as optimal tree count (Figure 1), tree depth, and
the necessary sample count for splitting internal nodes. Given this complexity, we opted
for RandomizedSearchCV, which provides detailed tuning without the extensive demands
of a complete grid search.
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Employing a 5-fold cross-validation technique for each model, both algorithms fa-
cilitated the selection of the most favorable hyperparameter configuration (Tables 2–4),
thereby improving the overall performance of the model.
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Table 2. Hyperparameters for LR Model.

Hyperparameter Value Explanation

‘c‘ 0.1

Regularization Strength (C): A smaller C value (e.g., 0.1)
signifies stronger regularization, promoting a preference
for simpler model parameter values. This helps the
model generalize effectively to unseen data and
mitigates the risk of overfitting.

‘class_weight‘ None

Determines the balance between classes. Determines
how classes are weighted in the model. When set to
‘None’, it indicates equal weighting, signifying that all
classes are treated equally in the model.

‘penalty‘ L2 (Ridge)

Regularization Type: Ridge regularization introduces a
penalty term based on the square of the model’s
coefficient values into the loss function. This
regularization method encourages the model to
generalize better by constraining the magnitudes of
its parameters.

‘solver‘ Liblinear

Optimization Algorithm used to find the best model
coefficients. The ‘Liblinear’ optimization algorithm is
well-suited for small- to medium-sized datasets and
pairs effectively with ‘L2’ regularization.

Table 3. Hyperparameters for RF Model.

Hyperparameter Value Explanation

‘bootstrap‘ True
Controls the use of random sampling with replacement
when constructing each tree in the forest. ‘True’ enables
bootstrapping, adding diversity to the ensemble.

‘criterion‘ Gini
Specifies the rule for splitting tree nodes. Criterion ‘Gini’
measures data impurity in nodes for better classification
by minimizing impurity during splits.

‘max_depth‘ 15 Defines the maximum depth of each tree in the forest. A
depth of 15 means trees are limited to 15 levels.

‘max_features‘ Log2

This hyperparameter controls the maximum number of
features considered when making each split in a
decision tree. ‘Log2’ considers a logarithmic number of
features per split.

‘n_estimators‘ 610

Specifies the number of trees in the random forest. The
value of 610 was chosen based on an analysis of the
Out-of-Bag (OOB) error (Figure 1), a metric used to
assess model performance. The selection aims to strike a
balance between model complexity and generalization.

Table 4. Hyperparameters for SVM Model.

Hyperparameter Value Explanation

‘c‘ 10

Regularization Strength (C): A higher C value (e.g., 10)
signifies weaker regularization, allowing the SVM to fit the
training data more closely. It might increase the risk of
overfitting but can capture complex patterns in the data.

‘degree‘ 2

Degree of Polynomial Kernel: The ‘degree’ hyperparameter
sets the degree of the polynomial kernel function. In this
case, ‘2’ represents a quadratic kernel, which can capture
non-linear relationships in the data.

‘gamma‘ 0.01

Kernel Coefficient (Gamma): ‘Gamma’ controls the shape of
the decision boundary. A lower value (e.g., 0.01) makes the
boundary more spread out, potentially leading to smoother
decision boundaries.
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To evaluate the models’ performance and select the best-performing model, several eval-
uation methods were considered. In addition to the accuracy metric (Table 5), the Performance
Metrics (Tables 6–8) and AUC-ROC curve (Figure 2) were analyzed for each model.

Table 5. Model Accuracy.

Model Accuracy

LR 77%
RF 80%

SVM 80%

Table 6. Performance Metrics for LR Model.

LR Precision Recall F1-Score

Walk = 0 0.82 84% 0.83
Walk = 1 0.67 63% 0.65

Table 7. Performance Metrics for RF Model.

RF Precision Recall F1-Score

Walk = 0 0.84 85% 0.84
Walk = 1 0.7 67% 0.68

Table 8. Performance Metrics for SVM Model.

SVM Precision Recall F1-Score

Walk = 0 0.84 86% 0.85
Walk = 1 0.71 67% 0.69
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The comparative analysis of evaluation metric results for the three models reveals
a close performance proximity in terms of essential metrics, including AUC, precision,
recall, and F1-score. This observation suggests that all three models demonstrate proficient
predictive capabilities for the binary classification task of discerning whether a child
will walk home from school or not. Notably, SVM and RF exhibit marginally higher
accuracy than the LR model. Hence, it can be inferred that these two models, SVM and RF,
outperform the LR model in this context.
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To gain deeper insights into each models’ performance and understand the impact
of individual features on ATS, permutation importance (SHAP values) was employed
(Figures 3–5). By measuring the decrease in model performance when randomly shuffling
the values of a particular feature while keeping others unchanged, permutation importance
allowed us to identify the features that significantly influenced the model’s predictions [96].
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5. Discussion

Utilizing data from the Safe Routes to School program, this study aims to uncover
barriers to active transportation among students in the Chula Vista Elementary School Dis-
trict. The comprehensive analysis of SHAP values for the support vector machines (SVM),
random forest (RF), and linear regression (LR) models has provided valuable insights into
the factors influencing transportation choices to school. Our study findings align with
previous research that has primarily focused on changes in travel behavior associated with
SRTS program interventions. The analysis through SHAP values consistently demonstrated
similar performances and feature ranking across the three machine learning models.

Aligning with previous studies, our study highlights the crucial role of home-to-school
distance in shaping students’ transportation choices. Children and adolescents are more
likely to engage in active transportation when the distance between their residential area
and school is less than 1/4 of a mile or ranges from 1/4 to ½ of a mile. However, distances
exceeding 1/2 a mile, especially those greater than 2 miles, exhibit the highest negative
impact on the rate of active transportation to school. However, only around 50% of CVESD
students who lived within less than half a mile from the school chose to walk as their
primary mode of transportation. Therefore, targeted strategies are required to encourage
the remaining 50% to walk to school.

Mediating factors exert a significant influence on students’ decisions regarding active
transportation to and from school, with parental perceptions playing a crucial role. Our
dataset indicates that 60% of students expressed a willingness to walk or cycle to school,
seeking permission from their parents to do so. However, it is notable that only half of
this group was observed to actively walk to school, suggesting that parents may have
various underlying reasons for their decisions. Results from this study show that parental
perceptions of the environment have a strong impact on transportation patterns to school,
with concerns about crime rate and speed of traffic along the route as the most significant
barriers to active transportation to school. Although factors such as the convenience of
driving, after-school programs, safety of intersections and crossings, and traffic along the
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route display relatively minor influences, they contribute slightly to the negative impact
on the ATS rate. The presence of a crossing guard was also found to be a modest positive
factor, often convincing more parents to allow their children to opt for active transportation.
However, factors that one might anticipate influencing the decision, like concerns over
time, the need for adult supervision during the walk, concerns regarding sidewalks and
pathways, and weather conditions, surprisingly did not have even a minor impact on
parents’ choices.

Moreover, our study underscores the importance of schools’ encouragement in pro-
moting active transportation. Although the SRTS program period was not found to be
a significant factor in increasing students’ willingness to walk to school, low levels of
ATS encouragement were found to adversely influence walking trends among students.
School-based interventions and educational programs that foster positive attitudes towards
active transportation can be instrumental in promoting sustainable and health-conscious
travel choices among students. Additionally, student perceptions of ATS as uninteresting
or boring are associated with reduced likelihoods of walking to school. This highlights the
importance of creating engaging and enjoyable mechanisms to encourage students.

Furthermore, our study indicates that the possibility of opting for active transportation
appears to be higher among male students compared to their female counterparts. Under-
standing the underlying reasons for this gender disparity can help inform gender-specific
interventions to promote active transportation among female students.

Lastly, a few study limitations should be acknowledged. First, the low number of stu-
dents riding a bike in our sample led us to exclude bicycle transportation from our analyses,
potentially overlooking important factors influencing active transportation trends. Future
studies with larger and more diverse datasets, including a sufficient representation of bicy-
cling students, could provide a more comprehensive understanding of the determinants
of transportation choices to school. Furthermore, our study focused on individual-level
factors, and we did not analyze the influence of the Chula Vista Elementary School Dis-
trict’s built environment on walking trends. Exploring the impact of the built environment,
including infrastructure, sidewalk availability, and traffic safety measures, could provide
valuable insights into how the surroundings affect active transportation behaviors. Ad-
dressing these limitations in future research will further enhance our understanding and
inform targeted interventions aimed at fostering sustainable and health-conscious travel
choices among students.

6. Conclusions

Leveraging the capabilities of various machine learning models, namely support vector
machines (SVM), logistic regression (LR), and random forest (RF), this research utilizes
SHAP (SHapley Additive exPlanations) values with the primary objective of understanding
the determinants influencing transportation choices among students in the CVESD. SHAP
offers a consistent and unified measure to interpret machine learning model outputs,
aiding an in-depth, intuitive understanding of model decisions. Using SHAP in this study
ensured an unbiased, accurate ranking of factors. The integration of advanced machine
learning techniques in conjunction with SHAP contributed to a better understanding of the
dynamics of student transportation. By identifying and highlighting barriers to ATS, this
study provides policymakers with critical insights essential for crafting comprehensive,
sustainable, and inclusive transport strategies. As cities and educational institutions
globally strive for sustainable and inclusive transportation policies, understanding these
nuanced factors becomes paramount.

A significant observation from the SHAP value rankings is its consistency with prior
studies which emphasize the significant role of home-to-school distance in shaping students’
transportation decisions. The data revealed that distances greater than 1/2 a mile, and
especially those beyond 2 miles, had a profound negative influence on the likelihood of
students choosing active transportation. Proximity to school continues to stand out as a
primary determinant in students’ transportation choices. Additionally, mediating factors,
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particularly parental concerns regarding crime rates and speed of traffic along the route,
emerged as critical influencers affecting parents’ willingness to allow their children to
engage in active transportation modes.

This study also underscores the importance of schools’ encouragement and inter-
ventions in promoting active transportation among students. Evidently, the proactive
involvement and policies of a school can significantly influence students’ propensity to
adopt active commuting methods. Interestingly, while the specific period of the Safe Routes
to School (SRTS) program did not have a marked impact on students’ choices, the overall
encouragement from the schools had a pronounced effect. The study also found that even
though around 60% of the students showed a willingness to walk, only half of them were
actively doing so, revealing a potential gap between student intent and actual behavior.
Gender disparities were also noted, with males more inclined to choose active transporta-
tion than females. Such gender-based differences prompt a need to further investigate
the barriers faced specifically by female students and to tailor strategies accordingly. Fur-
thermore, the performance metrics of our machine learning models showed promising
results; both SVM and RF models demonstrated a prediction accuracy of 80%, outperform-
ing the LR model. Such levels of accuracy suggest that the models can reliably predict
transportation choices based on the given features.

We recommend that future research endeavors to incorporate larger and more diverse
datasets and explore the influence of the built environment on walking behaviors. Such
efforts hold the potential to yield valuable insights for targeted interventions aimed at
promoting sustainable and health-conscious travel choices among students in the CVESD
and similar settings.
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