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Abstract: Faced with the challenges of increasing demand and expanding emissions, China’s mining
industry is at a crucial stage of sustainable development. In the context of the new technological
revolution and industrial transformation, researching how the digital economy can promote the
growth of green total factor productivity (GTFP) in China’s mining industry, particularly against
the backdrop of technological diversity, is vital for achieving sustainable development and carbon
neutrality goals. This study utilizes the meta-frontier Malmquist–Luenberger (MML) index to analyze
the dynamics of GTFP in China’s mining industry under technological heterogeneity. It thoroughly
examines the direct and indirect impacts of the digital economy (DE) on GTFP and delves into
the underlying mechanisms of these effects using the spatial Durbin model. The empirical results
reveal a significant positive relationship between DE and GTFP, particularly pronounced in the
areas of technical efficiency and technological catch-up. Notably, this study identifies the mediating
role of industrial structural upgrading in linking DE and GTFP. Additionally, the observed spatial
spillover effect of DE on local mining GTFP suggests that the influence of DE extends beyond the
immediate regions within the mining sector. Based on these findings, the study presents policy
recommendations, emphasizing the need to integrate cutting-edge digital technologies in mining to
enhance environmental sustainability.

Keywords: digital economy; mining industry; green total factor productivity; technological heterogeneity;
spatial spillover effect

1. Introduction

Amidst a profound transformation spanning key global sectors including economics,
technology, culture, security, and politics, a new wave of technological revolution and
industrial transformation is providing unprecedented development opportunities for na-
tions around the globe. The Sustainable Development Goals (SDGs) set by the United
Nations foreground the importance of harnessing such transformations to achieve a more
inclusive, sustainable, and resilient future [1]. Within this transformative landscape, the
digital economy has surfaced as a pivotal driver for global economic advancement, aligning
with multiple SDGs by fostering innovation, ensuring equitable access to technological
benefits [2], and promoting sustainable industrialization [3]. It enhances energy efficiency,
contributes to Affordable and Clean Energy (SDG 7), promotes inclusive economic growth
and job creation in line with Decent Work and Economic Growth (SDG 8), fosters sus-
tainable industrialization and innovation, which is central to Industry, Innovation, and
Infrastructure (SDG 9), and supports Climate Action (SDG 13) through technologies vital
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for climate change mitigation. According to a 2022 white paper by the China Academy of
Information and Communications Technology [4], the digital economy of 47 major global
economies attained a remarkable $38.1 trillion in 2021, marking a year-over-year surge of
$5.1 trillion (Figure 1). These statistics not only chart the ascendant course of the digital
economy but also emphasize its deep-seated influence in domains such as semiconductors,
artificial intelligence, digital infrastructure, and e-commerce and blockchain technology.
Considering these developments, it is crucial to evaluate how the integration of digital
economy strategies can further propel the realization of the SDGs and ensure a sustainable
future for all.
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The Chinese mining industry is facing challenges in sustainable development due to
the dual expansion of supply demand and emissions. Data from the Annual Report 2022
for Carbon Dioxide Emission Accounts of Global Emerging Economies [5], for the year
2022 reveal that China’s carbon emissions reached as high as 11 billion tons, accounting
for 28.87% of global emissions. Industrial emissions, including those from mining, totaled
4.2 billion tons, comprising 38.18% of the country’s overall emissions. These figures
bring to light the mining industry’s significant environmental responsibilities. Conversely,
according to a report by the International Energy Agency [6], global energy demand is
expected to grow annually by approximately 0.8% by 2030, primarily fueled by renewable
and clean energy sources. This transition is likely to substantially increase the demand for
essential mineral resources such as rare earth elements, lithium, and cobalt.

Therefore, it is particularly crucial to delve into how the digital economy can become a
key driver in steering the mining industry towards a more green and efficient development
path. Green Total Factor Productivity (GTFP), serving as a comprehensive tool for evaluat-
ing and promoting sustainable development, not only encapsulates the levels of resource
efficiency and environmental protection, but also provides a framework for assessing tech-
nological innovation and ongoing transformation. Although digital technologies have been
extensively researched and applied in tertiary industries such as services and finance, their
specific roles and potential in the mining sector remain largely unexplored. Meanwhile,
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existing research on GTFP seldom considers technological heterogeneity, making it an area
that warrants focused attention.

This study aims to explore several key questions: First, what is the impact of the
digital economy on GTFP in China’s mining industry under technological heterogeneity?
Second, how, and through which specific mechanisms, is the impact of the digital economy
on green productivity in China’s mining industry achieved? Finally, does this impact show
significant regional or industrial differences, or is there a spatial spillover effect? Answering
these questions will help deepen our understanding of the relationship between the digital
economy and sustainable development and provide valuable insights and guidance for
policymakers and industry stakeholders.

This study has the following marginal contributions. First, we use the meta-frontier
Malmquist–Luenberger (MML) index to measure the GTFP of China’s mining industry
under technological heterogeneity. Secondly, to deeply explore the multi-dimensional
impact of the digital economy on the heterogeneity GTFP of China’s mining industry,
we further decomposed it into technology progress index (TECH), technology efficiency
change (EFCH), pure technology catch-up (PTCU) and potential technology relative change
(PTRC). Finally, we also use the intermediary effect and the spatial spillover effect model to
systematically explain how the digital economy concretely affects these key factors.

The remaining sections of this paper are arranged as follows: Section 2 briefly reviews
the literature related to the DE and GTFP in the mining industry. Section 3 delves into a
detailed mechanism analysis. Section 4 provides the methods and data used in the study.
Section 5 presents all the empirical findings. Finally, Section 6 concludes and offers policy
recommendations.

2. Literature Review
2.1. GTFP of the Mining Industry

GTFP has emerged as an indispensable tool for assessing economic efficiency while
considering resource utilization and environmental impact. Originating from Robert
Solow’s [7] concept of Total factor productivity (TFP), it is evident that economic metrics
needed to evolve, especially when Färe et al. [8] highlighted the potential shortcomings of
TFP due to its omission of pollution as a detrimental output. This prompted scholars to
integrate environmental and energy consumption factors, giving rise to the contemporary
GTFP concept [9,10]. Methodologies to measure GTFP, particularly within China’s mining
landscape, have favored the Malmquist and the Malmquist–Luenberger (ML) indices [11].
Their applications have revealed profound insights: technological advancements predom-
inantly bolster open-pit mining productivity [12], environmental regulations can hinder
technological progress [13], and certain regions with ample investment see rapid GTFP
growth in coal mining compared to metal mining [14].

Rambaldi et al. [15] define a meta-frontier function with a distance function and simul-
taneously construct a meta-frontier Malmquist productivity index and its decomposition
using the Data Envelopment Analysis (DEA) method. Further expanding this field, Oh and
Lee [16] introduced the MML index, a tool designed to account for efficiency heterogeneity
among different groups. This index has shown promising results in addressing various
aspects such as environmental efficiency [17], environmental productivity [18], carbon
emission efficiency, and GTFP [19]. In contrast to the model proposed by Meeusen and
van Den Broeck [20], which decomposes the ML indices into only technological and scale
changes, the MML provides a more nuanced decomposition. It not only incorporates
technological and scale changes but also differentiates between catch-up and potential rela-
tive technological changes [21]. This advanced decomposition methodology offers richer
perspectives and frameworks for studying economic efficiency in depth. Currently, studies
employing MML to analyze GTFP in the Chinese mining industry have demonstrated that
foreign direct investment, environmental regulations, and innovation have a significant
influence on GTFP [22].
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2.2. Digital Economy

The meteoric rise of Information and Communication Technology (ICT) has posi-
tioned the digital economy at the epicenter of global economic and societal transformation.
The digital economy, broadly defined as an economy energized by digital tools and data
interchange [23], spans diverse sectors, from e-commerce and AI to IoT [24]. While univer-
sally accepted metrics for its measurement remain elusive, two predominant evaluation
methodologies have emerged. The first emphasizes multidimensional frameworks such
as the EU’s Digital Economy and Society Index (DESI) and the World Economic Forum’s
Network Readiness Index (NRI). These frameworks aim to address the shortcomings of
early singular metrics, such as mere internet penetration rates [25]. The second strategy
focuses on the value added of the digital economy, splitting the analysis between indus-
trial digitalization, which encompasses sectors like electronic device manufacturing [26],
and digital industrialization, which tracks the value augmentation of traditional sectors
via digital adoption [27]. From an economic perspective, the digital economy’s impact
is profound. On the micro level, it not only streamlines information flow but also spurs
corporate innovation and heightens operational efficiency [28]. It also reshapes consumer
behaviors by offering tailored and efficient services. On the macro scale, the digital econ-
omy recalibrates industrial dynamics, shifting from labor-centric models to tech-centric
ones, accelerating economic growth, reinforcing industrial synergy, laying the groundwork
for innovative infrastructure, and emphasizing sustainable solutions [29]. Recent research
highlights the significant environmental impact of Industry 4.0 technologies, particularly on
CO2 emissions, underscoring the need for eco-conscious strategies in the digital economy’s
growth [30].

2.3. Digital Economy Effect on GTFP in the Mining Industry

The digital economy, with its transformative power, has emerged as a crucial catalyst
for boosting GTFP, especially in the mining industry where renewable energy and digital in-
novation converge. Despite abundant evidence of the digital economy’s beneficial impacts
on diverse sectors such as enterprise management and manufacturing [31], scholarly explo-
ration of its effects on mining productivity is scant. Current research indicates that melding
the mining domain with state-of-the-art ICT offers a pathway to redefine its operational
life cycle [32]. Innovations like big data analytics, AI, IoT, and cloud computing are poised
not just to amplify exploration accuracy and extraction efficiency but also to make strides
in environmental preservation and workforce safety [33]. Moreover, digital interventions
are steering mining towards greener methodologies [34]. This metamorphosis involves
integrated energy systems, automation, and ecological restoration, fortifying the sector’s
sustainable growth. Embracing these cutting-edge tools revitalizes the industry, laying the
groundwork for its modernization and innovation [35].

To our knowledge, few studies have comprehensively analyzed the impact of the digi-
tal economy on the GTFP of China’s mining industry from the perspective of technological
heterogeneity. The marginal contribution of this paper lies in its innovative analysis of the
impact of the digital economy on China’s mining industry’s GTFP from the perspective of
technological heterogeneity, utilizing the MML index. Additionally, this study comprehen-
sively explores the direct, indirect, and spatial impact mechanisms of the digital economy
on GTFP in this sector through empirical analysis.

3. Mechanism Analysis
3.1. The Direct Effect of the Digital Economy on Mining GTFP

The digital economy’s onset brings about pronounced direct influences on mining
GTFP. Foremost, the progression of big data and machine learning offers mining companies
unparalleled precision in predicting market trends and resource needs [36]. This precision
reshapes production plans and slashes inventory expenses, directly boosting GTFP through
optimal capital and labor deployment. In the environmental and risk oversight spheres,
innovative tools like IoT and AI facilitate continuous monitoring, curtailing ecological



Sustainability 2024, 16, 463 5 of 21

disasters and minimizing compliance perils [37]. This not only safeguards the environment
but also strengthens GTFP. In optimizing supply chains and processes, the synthesis of
cloud computing and real-time analytics grants mining entities unmatched oversight and
adaptability [38]. This heightened management, coupled with sustainable production meth-
ods like real-time consumption tracking, paves the way for circular economy frameworks,
propelling GTFP upward.

3.2. The Indirect Effect of the Digital Economy on Mining GTFP

The digital economy’s growth imparts indirect influences on mining GTFP, primar-
ily through the reshaping of industrial structures. Advanced technologies like artificial
intelligence, big data analytics, IoT, and notably blockchain are redefining the mining
sector, driving a pivot from resource-intensive methods to technology-driven, value-rich
operations [39]. This restructuring amplifies the fusion of capital, labor, and tech resources,
enhancing mining firms’ global competitiveness and indirectly elevating GTFP. This re-
vamped structure fosters the adoption of cutting-edge managerial strategies. Tools like in-
telligent analytics bolster mineral estimation precision, spurring operational efficiency [40].
Concurrently, digital training platforms enrich workforce expertise, contributing tangibly
to GTFP. Blockchain technology enhances production efficiency and profitability by ensur-
ing real-time transparency and immutability of supply chain data, indirectly improving
financing efficiency, optimizing supply chain management, and reducing ineffective invest-
ments [41]. Amid rising global environmental concerns, the restructured industry leans
towards sustainable practices. Technologies like smart sensors facilitate empirical evalu-
ations of ecological footprints, offering avenues for sustainable production adaptations.
Such evaluations reinforce corporate responsibility, solidifying the groundwork for GTFP’s
sustained augmentation.

3.3. Spatial Effect of the Digital Economy on Mining GTFP

The digital economy’s effect on mining GTFP permeates beyond localized sectors,
presenting pronounced externalities across vast regions. Central to this is the interplay
of geographic agglomeration and network effects. Propelled by the digital economy,
certain regions magnetize advanced mining tech, elite skills, and knowledge, elevating
their GTFP [42]. This magnetism intensifies with network effects: as more entities adopt
congruent tech or platforms, the network’s collective value swells, fostering a smoother
information flow and GTFP enhancement. Additionally, the digital medium catalyzes
knowledge spillover and broadens innovation partnerships beyond regional confines [43].
Cutting-edge mining methodologies and managerial best practices disseminate swiftly,
spurring wide-scale collaborations and enriching GTFP. The prowess of the digital economy,
harnessed through data analytics and smart algorithms, refines supply chain and resource
logistics to an unprecedented scale [44]. Its ripple effect is not restricted to certain pockets;
it reverberates globally. This leads to precise supply chain fine-tuning, curbed production
expenses, and efficient resource usage, amplifying global GTFP. Finally, the digital ecosys-
tem is colored by regional policy nuances. Areas with robust digital policies and regulatory
frames have a higher propensity to attract investments and skilled manpower, paving the
way for GTFP disparities.

Building on the preceding mechanistic analyses (Figure 2), this paper posits the
following hypotheses:

Hypothesis 1: The digital economy exerts a positive impact on the GTFP within the mining
industry.

Hypothesis 2: The digital economy indirectly elevates the GTFP in mining by facilitating the
upgrading of industrial structures.
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Hypothesis 3: There exists a significant geographical spillover effect of the digital economy, which
further intensifies its influence on mining GTFP.
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4. Methodology
4.1. Econometric Methods
4.1.1. Baseline Model

In accordance with the studies of Ren et al. [45], we empirically examine the impact of
the digital economy on the GTFP within the mining sector, using data from 30 provinces in
China for the period spanning 2008–2021. The model is specified as in Equation (1):

GTFPit = α0 + α1DEit + α2DE2
it + α3Controlit + λi + θt + εit (1)

where GTFPit represents the green total factor productivity in the mining industry, DE
stands for the digital economy, and DE2 is the squared term of the digital economy intro-
duced to capture potential nonlinear relationships between the digital economy and GTFP.
The control variables are denoted by Controlit, θt is the time-fixed effect, λi is the individual
fixed effect, and εit is a stochastic error term.

In this study, we determined the statistical significance of coefficients using p-values,
with thresholds set at less than 0.10, 0.05, and 0.01, corresponding to significance levels
of 10%, 5%, and 1%, respectively. These levels are standard in econometric analyses and
are chosen to balance the detection of true effects. Specifically, a 1% level indicates strong
evidence against the null hypothesis, minimizing the likelihood of false significance claims,
while a 5% level is widely used in social sciences for a moderate balance in findings. The 10%
level is particularly useful in identifying subtle but notable trends in exploratory research
or complex models where data limitations might reduce statistical power. t-tests provided
t-values and corresponding p-values to assess each coefficient’s statistical significance, and
standard errors associated with each coefficient were used to determine the precision of
estimation. For the estimation, we employ both Fixed Effects (FE) and Random Effects (RE)
models and conduct a Hausman test to ascertain which model better fits the data.

To enhance the robustness of our analysis, the baseline model incorporates the follow-
ing five control variables, which are consistently used in all subsequent models: (1) envi-
ronmental regulation (ER), quantified by the ratio of completed investments in industrial
pollution control to industrial added value. (2) Government intervention level (GIL), repre-
sented by the ratio of fiscal expenditure to GDP. (3) Energy structure (ES), expressed by the
percentage of a region’s electricity consumption relative to the national total. (4) Human
capital level (HCL) quantified using the ratio of the number of students in higher education
institutions to the total population. (5) Traditional postal services level (TPSL), measured
by the total volume of postal and telecommunication services relative to GDP.
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4.1.2. Intermediary Effect Model

To delve deeper into the mechanisms through which the digital economy impacts
the mining industry’s GTFP, we incorporate the concept of mediation effects into our
methodology. This approach allows us not only to deconstruct the underlying mechanisms
but also to assess the relative contributions of multiple mediators, thus providing nuanced
insights for sustainable development policies [46]. We employ the classic mediation effect
model originally proposed by Baron and Kenny [47], with particular attention to the
mediating role of industrial structure upgrading in transmitting the effects of the digital
economy on mining GTFP. Based on Equation (1), we establish the following models:

Mit = δ0 + δ1DEit + δ2DE2
it + δ3Controlit + λi + θt + εit (2)

GTFPit = γ0 + γ1DEit + γ2DE2
it + γ3Mit + γ4Controlit + λi + θt + εit (3)

4.1.3. Spatial Durbin Model

This study aims to elucidate the relationship between the digital economy and GTFP
in the mining sector, emphasizing the spatial associations often overlooked in previous
research. Findings from past studies, such as those by Gu et al. [48], have demonstrated
strong spatial correlations in the digital economy, underscoring the importance of spatial
effects in understanding its impact on mining GTFP. To delineate this relationship more
precisely, we employed Moran’s I index to assess the spatial correlation of the digital
economy and utilized both distance-based and 0–1 matrices to capture spatial relationships
between cities. The expression for the Moran’s I index is as follows:

Moran′s I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 Wij

(4)

The spatial Durbin model (SDM) was chosen to analyze the spatial spillover effects of
the digital economy on mining GTFP. Through the SDM, this research provides insightful
revelations into the intricate interplay between the digital economy and mining GTFP,
particularly shedding light on spatial implications. The specific model is outlined as:

GTFPit = α0 + ρ1 ∑N
j=1 WijtGTFPit + β1DEit + β2DE2

it + β3Controlit+
ρ2 ∑N

i 6=j WijtDEit + ρ3 ∑N
i 6=j WijtDE2

it + ρ4 ∑N
i 6=j WijtControlit + µi + θt + εit

(5)

For ease of subsequent analysis, the spatial weight matrix W is calculated using geo-
graphic distance weights. µi and θt denote individual and time-fixed effects, respectively,
while other variables are defined as in previous models.

4.2. Variable Selection
4.2.1. Digital Economy

This study investigates the relationship between the Digital Economy (DE) and the
GTFP in China’s mining industry. Given the absence of a unified DE evaluation criterion,
the research refers to the G20 Hangzhou Summit’s definition and indicators from the
Digital Economy Development Report [49]. To enhance the analysis, this study has built
an inclusive evaluation system focusing on three core dimensions: digital infrastructure,
digital industries, and digital applications. Key indicators include Internet and mobile
phone penetration rates, employment in Internet-related sectors, and an inclusive digital
finance index. The entropy method standardizes this data, which has been used to compute
the digital economy for Chinese provinces from 2008 to 2021. Details can be found in
Table 1, with 2021’s geographic trends showcased in Figure 3.
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Table 1. Indicators for assessing digital economy development.

Indicator Type Indicator Description and Unit

Digital infrastructure

Internet penetration Internet users per one hundred people
Avg. telecom expenditure Average telecom spending in yuan
Mobile phone penetration Mobile phone users per one hundred people

Mobile base stations Number of mobile communication base stations

Digital industry
Internet-related employees Employees in computer and software (% of total)

Digital industry scale Revenue from digital tech (% of regional GDP)
E-info investment Fixed assets investment in billions of yuan

Digital application
Industrial IT level Computers per one hundred employees in industrial enterprises

DFI Index (PKU-DFIIC) Peking University Digital Financial Inclusion Index
E-commerce level E-commerce sales (% of GDP)
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4.2.2. GTFP under Technological Heterogeneity

When considering the various stages of mining, traditional calculations of GTFP may
be biased. Technological heterogeneity in the mining industry encompasses a wide range of
factors, such as resource reserves, quality, storage conditions, spatial distribution, national
strategies, and environmental impacts [50], all of which add complexity to Decision-Making
Units (DMUs). Generally, geological conditions in adjacent areas tend to be similar, leading
to comparable production technologies. Moreover, due to geographical barriers, more
pronounced technological heterogeneity often emerges in remote areas, potentially leading
to unique technological advancements [51].

To address this issue, Hayami [52] introduced the meta-frontier concept, which better
represents technological diversity by dividing DMUs into specific subgroups [53]. This
approach effectively addresses the technological variances in mining due to factors such as
resource quality and environmental considerations. It begins by assessing the efficiency
of each group-specific frontier, followed by establishing a collective meta-frontier. The



Sustainability 2024, 16, 463 9 of 21

Technology Gap Ratio (TGR) is then used to measure the technological disparity between
each subgroup and the meta-frontier, indicating the proximity to potential technological
advancements. The GTFP in China’s mining industry for the year 2021 is depicted in
Figure 4. Define the directional vector as:

→
Dc
(

x, y, c, gy,−gc
)
= max

{
λ :
(
y + λgy, c− λgc

)
∈ P(x)

}
(6)
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The notation P(x) represents the production possibility set for mining inputs and
outputs. The metrics for these inputs and outputs are in Table 2. Regarding the foundational
form of the SBM-DEA model:

→
Dc
(

x, y, c, gy,−gc
)
= minρ =

1− 1
N ∑N

n=1 Sx
n

1 + 1
M+J

(
∑M

m=1 Sy
m

ym0
+

∑J
j=1 Sc

j
cj0

) (7)

s.t.


∑I

i=1 zixi,n − Sx
n = xi′ ,n n = 1, 2, · · ·N

∑I
i=1 ziyi,m − Sy

m = yi′ ,m m = 1, 2, · · ·M
∑I

i=1 zici,j − Sc
j = bi′ ,j j = 1, 2, · · · J

Sx
n ≥ 0, Sy

m ≥ 0, Sb
i ≥ 0, i = 1, 2, · · · I

Moreover, we employ the MML index as an evaluative measure for productivity,
capitalizing on both the meta-frontier and the group frontiers to aggregate efficiency
information across diverse DMUs. Specifically, under the assumption of Variable Returns
to Scale (VRS), the MML index can be decomposed into TECH and EFCH.

MMLt
t+1 =

 1+Dt+1
M (xt ,yt ,bt ;−xt ,yt ,−bt)

1+Dt+1
M (xt+1,yt+1,bt+1;−xt+1,yt+1,−bt+1)

×
1+Dt

M(xt ,yt ,bt ;−xt ,yt ,−bt)
1+Dt

M(xt+1,yt+1,bt+1;−xt+1,yt+1,−bt+1)

 (8)
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MMLt
t+1 = TECHM × EFCHM (9)

EFCHM =
1 + Dt

M
(
xt, yt, bt;−xt, yt,−bt)

1 + Dt+1
M (xt+1, yt+1, bt+1;−xt+1, yt+1,−bt+1)

(10)

TECHM =

 1+Dt+1
M (xt ,yt ,bt ;−xt ,yt ,−bt)

1+Dt
M(xt+1,yt+1,bt+1;−xt+1,yt+1,−bt+1)

×
1+Dt

M(xt ,yt ,bt ;−xt ,yt ,−bt)
1+Dt

M(xt+1,yt+1,bt+1;−xt+1,yt+1,−bt+1)

 (11)

Building on this, we introduce a new parameter, the technology adjustment factor
(TAF), capturing the shift needed between technological levels and can be broken down
into PTCU and PTRC.

TGR =
1 + Dt

G
(
xt, yt, bt;−xt, yt,−bt)

1 + Dt
M(xt+1, yt+1, bt+1;−xt+1, yt+1,−bt+1)

(12)

TAF =
MML
GML

=
TECHM × EFCHM

TECHG × EFCHG =

[
TGRt+1(xt+1, yt+1, bt+1)

TGRt(xt, yt, bt)
× TGRt(xt, yt, bt)

TGRt+1(xt+1, yt+1, bt+1)

] 1
2

(13)

TAF = TGRt+1(xt+1,yt+1,bt+1)
TGRt(xt ,yt ,bt)

×
[

TGRt(xt ,yt ,bt)
TGRt(xt+1,yt+1,bt+1)

× TGRt(xt+1,yt+1,bt+1)
TGRt+1(xt ,yt ,bt)

] 1
2

= PTCU × PTRC,
(

PTRC =
TECHM

t,t+1
TECHG

t,t+1

) (14)

The MML index can be decomposed into four components.

MML = TECHG × EFCHG × TECHM×EFCHM

TECHG×EFCHG

= TECHG × EFCHG × PTCU × PTRC
(15)

Table 2. Indicators for assessing mining GTFP.

Indicator Type Indicator Description and Unit

Input

Energy consumption Total energy consumed in mining (10,000 tons)
Employment Year-end employment in mining (people)

Capital investment New fixed-asset investment in mining (billion yuan)
Water use Total water used in mining (billion tons)

Expected output Mining output value Value of mining output (billion yuan)

Unintended output
SO2 emission SO2 emission in mining (tons)

Wastewater emission wastewater emissions in mining (10,000 tons)
Solid waste emission Solid waste emissions in mining (tons)

4.2.3. Mediating Variables

To comprehensively elucidate the intricate relationship between the DE and the GTFP
in the mining sector, this study employs industrial structure upgrading (ISU) as a mediating
variable. This index serves not only as an indicator of the level of economic development but
also reveals potential associations with both the DE and mining sector GTFP. Building upon
existing research [54], we have made appropriate modifications to the formula expressing
ISU, which is as follows:

ISUit =
3

∑
j=1

git × j (16)

In this equation, ISUit represents the index of industrial structure upgrading for the i
province in year t, with a range of 1 ≤ ISU ≤ 3. The variable git indicates the proportion
of each sector in the total output value of the mining industry for the i province in year t.
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The values of j are 1, 2, and 3, which correspond to the primary, secondary, and tertiary
sectors, respectively.

4.3. Data Source

For the empirical analysis, we assembled a panel dataset spanning the years 2012
to 2021, which includes data from thirty provinces in China, encompassing municipal-
ities and autonomous regions. Due to constraints related to the availability of reliable
and comprehensive data, Tibet, Hong Kong, Macau, and Taiwan were not included in
our sample. The primary data sources for this study comprise an array of authoritative
publications, including the China Statistical Yearbook, China Mining Statistical Yearbook,
China Land and Resources Statistical Yearbook, China Industrial Economic Statistical Year-
book, China Environmental Statistical Yearbook, and China High-tech Industry Statistical
Yearbook. In addition, we utilized provincial statistical yearbooks and statistical data
provided by the China Nonferrous Metals Industry Association. To maintain the integrity
of our dataset, missing values were imputed using linear interpolation techniques. Detailed
sample statistics can be found in Table 3.

Table 3. Descriptive statistics of the variables.

Variable Definition Obs Mean Standard Deviation Min Max

GTFP Green total factor productivity 420 1.009 0.11 0.545 1.584
EFCH Technological progress index 420 1.012 0.219 0.297 2.511
TECH Technological efficiency change 420 1.02 0.122 0.631 1.835
PTCU Pure technology catch-up 420 1.044 0.41 0.261 5.405
PTRC Potential technological relative change 420 1.009 0.164 0.435 1.89

DE Digital economy 420 0.148 0.152 0.001 0.819
ISU Industrial structure upgrading 420 2.379 0.127 2.132 2.834
ER Environmental regulation 420 0.004 0.003 0 0.031
GIL Government intervention level 420 0.239 0.1 0.087 0.643
ES Energy structure 420 0.02 0.006 0.007 0.042

HCL Human capital level 420 0.033 0.023 0.004 0.102
TPSL Traditional postal service level 420 0.064 0.05 0.014 0.29

5. Results
5.1. Results on Mining GTFP

From 2008 to 2021, China’s mining GTFP showed discernible regional variations.
Overall, there was a slight upward trend. The Southwest, despite its −1.24% growth rate,
maintained a commendable GTFP of 1.024. Conversely, the Northeast flourished with
a GTFP of 1.016 and a growth rate of 2.11%. The North region presented complexities,
balancing a GTFP of 1.020 with a −0.61% growth. The Eastern and Central regions faced
challenges with negative growths, hinting at efficiency drops, especially in Central. At the
provincial spectrum, Inner Mongolia led with a GTFP of 1.046 and a 3.43% growth. Anhui
and Fujian followed suit, showcasing significant efficiencies. Conversely, Jiangsu and
Hunan struggled with growth rates of −2.8% and −3.65%, pointing towards operational
challenges. Examining GTFP’s components, Central stood out in TECH with 1.039, trailed
by Eastern’s 1.032. However, the Southwest and Liaoning lagged. In EFCH, Guizhou
led, whereas Hainan and Jiangsu were at the lower spectrum. Guizhou also excelled in
PTCU, but Jiangsu and Hunan trailed. In PTRC, Hebei was prominent, while Guizhou and
Liaoning showcased areas for enhancement. Figure 5 shows the average of mining GTFP
from 2008 to 2021.
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5.2. Results from the Baseline Regression Model
5.2.1. Results

Using panel data from 30 Chinese provinces between 2008 and 2021, the relationship
between the DE and mining GTFP was analyzed through Fixed Effects (FE) and Random
Effects (RE) models. Table 4 shows the baseline regression results. The findings reveal that
DE has a significant positive impact on GTFP, as evidenced by coefficients of 0.306 and
0.268, both significant at the 1% level. However, this influence is nonlinear, as indicated
by the negative coefficients for the squared term of DE. The FE model, bolstered by the
Hausman test, highlights an inverted U-shaped relationship between DE and GTFP. In
the initial stages of the digital economy, technological innovation and increased efficiency
significantly boosted the GTFP in the mining industry, leading to positive impacts. This
was primarily due to the reduction in production costs and improvement in productivity
brought about by early technological advancements. However, as the digital economy
continues to evolve, these initial positive effects begin to diminish and may even turn
negative. This shift could be attributed to the initial efficiency gains stimulating increased
production activities, but over time, this might lead to excessive exploitation of resources
and increased environmental pollution, adversely impacting GTFP.

It is important to note that the squared term of the digital economy only passed
the statistical significance test at the 10% level under the FE model, whereas it was not
statistically significant under the RE model. This indicates that while there are signs
of an inverted U-shaped relationship, the relationship is not very clear or strong. This
relatively marginal significance suggests that the impact of the digital economy on mining
GTFP could be subject to a variety of complex factors, such as the pace and nature of
technological change, market demand conditions, environmental policies, and specific
industry environments. Therefore, in interpreting the long-term impact of the digital
economy on mining GTFP, it is essential to consider these complex market dynamics and
macroeconomic trends.
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Table 4. Baseline regression results.

Variables GTFP EFCH TECH PTCU PTRC
FE RE FE RE FE RE FE RE FE RE

DE 0.306 *** 0.268 *** 0.596 *** 0.579 *** −0.375 *** −0.327 *** 0.971 ** 1.023 *** −0.396 *** −0.406 ***
(0.10) (0.08) (0.20) (0.17) (0.11) (0.09) (0.38) (0.32) (0.14) (0.13)

DE2 −0.311 * −0.218 −0.668 * −0.633 ** 0.436 ** 0.362 ** −1.081 −1.246 ** 0.439 * 0.440 **
(0.17) (0.14) (0.35) (0.27) (0.19) (0.15) (0.66) (0.52) (0.25) (0.20)

ER 2.21 2.65 3.18 4.33 (2.44) −3.977 ** 8.17 5.06 −6.199 * −7.214 ***
(2.19) (1.69) (4.45) (3.39) (2.40) (1.87) (8.47) (6.46) (3.23) (2.51)

GIL 0.26 −0.197 *** 0.51 −0.342 ** −0.363 * 0.160 * 0.64 −0.154 −0.577 ** 0.16
(0.18) (0.08) (0.36) (0.15) (0.20) (0.08) (0.69) (0.29) (0.26) (0.11)

ES −10.19 *** −3.533 *** −18.23 *** −7.369 *** 14.44 *** 4.465 *** −12.66 −7.726 * 15.47 *** 4.069 **
(2.02) (1.07) (4.12) (2.16) (2.22) (1.19) (7.84) (4.14) (2.99) (1.60)

HCL −1.082 −0.633 ** −3.347 −1.395 ** −0.793 0.764 ** −3.448 −1.22 0.54 0.832 *
(1.69) (0.30) (3.44) (0.60) (1.86) (0.33) (6.56) (1.16) (2.50) (0.45)

TPSL 0.287 ** 0.210 * 0.415 * 0.29 −0.422 *** −0.312 ** 0.30 0.29 −0.495 *** −0.405 **
(0.12) (0.11) (0.24) (0.23) (0.13) (0.12) (0.45) (0.43) (0.17) (0.17)

Constant 1.126 *** 1.094 *** 1.265 *** 1.194 *** 0.921 *** 0.935 *** 1.111 *** 1.142 *** 0.917 *** 0.955 ***
(0.07) (0.04) (0.15) (0.08) (0.08) (0.04) (0.28) (0.16) (0.11) (0.06)

Hausman 23.81 16.74 16.74 4.15 14.74
[0.001] [0.019] [0.000] [0.761] [0.039]

R-squared 0.12 0.096 0.158 0.04 0.125
Observations 420 420 420 420 420 420 420 420 420 420
Number of
provinces 30 30 30 30 30 30 30 30 30 30

Note: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

This shift may be because although the digital economy initially promoted GTFP
growth by improving EFCH and reducing costs, this growth has weakened over time.
Specifically, the positive impact of the digital economy on EFCH, reflected by coefficients
of 0.596 and 0.579, reveals the significant contribution of initial digitalization in enhancing
efficiency and saving costs. However, in the realm of TECH, the digital economy has a
negative impact, with coefficients of −0.375 and −0.327. This might reflect the ease of
optimizing existing technological pathways as opposed to achieving deep technological
innovations and breakthroughs. Despite the positive effect of the digital economy on
PTCU, evidenced by coefficients of 0.971 and 1.023, demonstrating its capacity to push
the industry towards or even meet current technological benchmarks, its effectiveness in
the PTRC remains uncertain, with coefficients of −0.396 and −0.406. This suggests that
while the digital economy has facilitated technological growth and catch-up, it may not
be sufficiently effective in narrowing the gaps in technological innovation, leading to a
gradual decline or shift towards a negative impact on GTFP in the long term.

5.2.2. Robustness Test Results

To ensure the reliability and accuracy of our research findings, we conducted a series
of robustness tests on the baseline model. Initially, we adjusted the sample study period,
selecting the time frame from 2012 to 2021 as the new research sample, and are presented in
Table 5. The choice of this time range is inherently justified, as it coincides with the primary
phase of 4G mobile network development in China, a period also characterized by rapid
advancements in the DE. In the results obtained after this adjustment, the coefficients of
the DE in the FE and RE models were 0.299 and 0.351, respectively. Both coefficients were
statistically significant at a 5% level, reinforcing our belief that the DE has a sustained and
significant positive impact on GTFP.

Subsequently, to further validate our models, we excluded data that included munici-
palities directly under the central government. As shown in Table 6, the coefficients for the
DE in the FE and RE models were 0.254 and 0.307, respectively. The former was statistically
significant at a 10% level, while the latter was significant at a 5% level. These findings are
highly consistent with our baseline model, thereby further affirming the positive role of
the DE in enhancing GTFP. The inconsistency in the significance of the squared term of
DE across two robustness tests suggests that the trend of the inverted U-shaped curve is
indeed not robust.
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Table 5. Robustness test with adjusted sample study period.

Variables GTFP EFCH TECH PTCU PTRC
FE RE FE RE FE RE FE RE FE RE

DE 0.299 ** 0.351 *** 0.611 ** 0.727 *** −0.356 ** −0.440 *** 1.407 ** 1.431 *** −0.437 * −0.589 ***
(0.15) (0.11) (0.29) (0.21) (0.17) (0.12) (0.62) (0.45) (0.23) (0.17)

DE2 −0.317 −0.336 ** −0.789 −0.873 *** 0.47 0.529 *** −1.732 −1.820 *** 0.56 0.697 ***
(0.25) (0.17) (0.50) (0.32) (0.29) (0.19) (1.07) (0.70) (0.39) (0.26)

ER 3.38 3.443 * 6.11 6.215 * −3.993 −5.602 ** 12.16 5.08 −8.355 ** −9.172 ***
(2.59) (1.95) (5.07) (3.78) (2.94) (2.25) (10.95) (8.20) (4.02) (3.06)

GIL 0.38 −0.141 0.886 * −0.14 −0.313 0.10 1.956 * 0.15 −0.637 0.03
(0.27) (0.10) (0.53) (0.20) (0.31) (0.12) (1.14) (0.43) (0.42) (0.16)

ES −11.74 *** −3.645 ** −18.51 *** −5.635 * 18.29 *** 3.969 ** −7.198 −5.789 18.53 *** 2.29
(3.16) (1.53) (6.19) (2.95) (3.59) (1.76) (13.37) (6.46) (4.91) (2.39)

HCL −1.432 −0.441 −3.368 −0.69 −0.0326 0.61 0.73 0.29 −0.129 0.10
(2.84) (0.40) (5.57) (0.78) (3.23) (0.47) (12.04) (1.72) (4.42) (0.63)

TPSL 0.311 ** 0.19 0.35 0.20 −0.534 *** −0.288 * −0.177 0.02 −0.544 ** −0.297
(0.15) (0.13) (0.29) (0.25) (0.17) (0.15) (0.63) (0.53) (0.23) (0.20)

Constant 1.133 *** 1.061 *** 1.165 *** 1.060 *** 0.813 *** 0.985 *** 0.50 0.952 *** 0.902 *** 1.069 ***
(0.15) (0.06) (0.29) (0.12) (0.17) (0.07) (0.62) (0.26) (0.23) (0.10)

Hausman 21.69 13.19 29.28 4.81 11.92
[0.000] [0.070] [0.000] [0.680] [0.100]

R-squared 0.143 0.114 0.186 0.052 0.146
Observations 300 300 300 300 300 300 300 300 300 300
Number of
provinces 30 30 30 30 30 30 30 30 30 30

Note: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 6. Robustness test excluding direct-administered municipalities.

Variables GTFP EFCH TECH PTCU PTRC
FE RE FE RE FE RE FE RE FE RE

DE 0.254 * 0.307 ** 0.515 * 0.633 *** −0.294 ** −0.331 ** 0.934 * 1.258 *** −0.229 −0.410 **
(0.13) (0.12) (0.27) (0.24) (0.15) (0.13) (0.52) (0.46) (0.20) (0.18)

DE2 −0.065 −0.316 −0.224 −0.719 0.09 0.36 −0.647 −1.815 * −0.158 0.46
(0.30) (0.27) (0.62) (0.54) (0.33) (0.30) (1.18) (1.03) (0.44) (0.40)

ER 2.14 2.41 3.73 4.16 −3.146 −3.776 * 9.36 5.43 −7.097 ** −7.362 ***
(2.35) (1.84) (4.81) (3.72) (2.57) (2.03) (9.20) (7.07) (3.46) (2.73)

GIL 0.22 −0.199 ** 0.43 −0.360 ** −0.334 0.169 * 0.40 −0.195 −0.548 * 0.17
(0.20) (0.08) (0.41) (0.17) (0.22) (0.09) (0.78) (0.31) (0.29) (0.12)

ES −9.817 *** −4.528 *** −17.42 *** −8.527 *** 14.12 *** 5.915 *** −9.996 −8.409 15.00 *** 5.682 ***
(2.29) (1.42) (4.68) (2.88) (2.50) (1.57) (8.95) (5.47) (3.37) (2.11)

HCL −1.507 −0.587 * −4.127 −1.387 ** −0.38 0.709 * −3.875 −1.309 1.10 0.72
(1.84) (0.33) (3.76) (0.66) (2.01) (0.36) (7.18) (1.26) (2.70) (0.49)

TPSL 0.281 ** 0.219 * 0.42 0.31 −0.436 *** −0.346 ** 0.28 0.28 −0.518 *** −0.452 **
(0.13) (0.12) (0.26) (0.25) (0.14) (0.13) (0.49) (0.47) (0.18) (0.18)

Constant 1.131 *** 1.107 *** 1.277 *** 1.213 *** 0.929 *** 0.912 *** 1.118 *** 1.152 *** 0.922 *** 0.934 ***
(0.08) (0.05) (0.17) (0.09) (0.09) (0.05) (0.32) (0.18) (0.12) (0.07)

Hausman 19.59 14.73 30.55 6.53 22.61
[0.010] [0.040] [0.000] [0.480] [0.000]

R-squared 0.119 0.097 0.16 0.041 0.129
Observations 364 364 364 364 364 364 364 364 364 364
Number of
provinces 26 26 26 26 26 26 26 26 26 26

Note: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

5.3. Mediating Effects

To delve deeper into the mechanisms by which the DE influences GTFP, we introduced
industrial structure upgrading as a mediating variable. This decision stems from an under-
standing of the complex relationship between shifts in industrial structure and ecological
sustainability in modern economic development. We utilized an index representing the
sophistication of the industrial structure to operationalize this variable. The results are
presented in Table 7. Initially, we found that the DE and ISU were significantly negatively
correlated at the 5% significance level, with a coefficient of −0.263. This suggests that as
the DE expands, traditional sectors may face pressure to downsize or transform, triggering
a comprehensive adjustment of the industrial structure, especially those characterized
by high energy consumption and emissions. Subsequently, we noted that the ISU was
negatively correlated with GTFP at a 5% significance level, with a coefficient of −0.0947.
While this may initially appear counterintuitive, it likely reflects the elevated capital, tech-
nological, and resource inputs required in the nascent stages of industrial upgrading. Such
overinvestment could exacerbate environmental pressure in the short term, thereby tem-
porarily reducing GTFP. When considering the combined influence of DE and ISU, we
found that DE still had a statistically significant positive impact on GTFP at the 1% level,
with a coefficient of 0.296. This reaffirms the digital economy’s enduring and positive role
in fostering green productivity.
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Table 7. Regression results for the intermediate effects of industrial structure upgrading.

Variables GTFP EFCH TECH PTCU PTRC ISU

DE
0.296 *** 0.573 *** −0.364 *** 0.953 ** −0.383 *** −0.263 **

(0.10) (0.20) (0.11) (0.38) (0.14) (0.11)

DE2 −0.304 * −0.651 * 0.428 ** −1.068 0.429 * 0.30
(0.17) (0.35) (0.19) (0.66) (0.25) (0.21)

ISU
−0.0947 ** −0.227 *** 0.107 ** −0.175 0.132 **

(0.04) (0.09) (0.05) (0.17) (0.06)

ER
1.87 2.37 −2.055 7.55 −5.727 * −3.57

(2.18) (4.43) (2.39) (8.49) (3.22) (2.59)

GIL
0.19 0.34 −0.285 0.52 −0.481 * −0.724 ***

(0.18) (0.36) (0.20) (0.70) (0.27) (0.21)

ES
−11.08 *** −20.36 *** 15.45 *** −14.31 * 16.71 *** −9.407 ***

(2.05) (4.17) (2.25) (8.00) (3.03) (2.40)

HCL
−0.883 −2.868 −1.02 −3.079 0.26 2.11
(1.69) (3.42) (1.85) (6.57) (2.49) (2.01)

TPSL
0.308 *** 0.465 ** −0.446 *** 0.34 −0.524 *** 0.22

(0.12) (0.23) (0.13) (0.45) (0.17) (0.14)

Constant
1.379 *** 1.873 *** 0.634 *** 1.580 *** 0.564 *** 2.677 ***

(0.14) (0.28) (0.15) (0.53) (0.20) (0.09)
R-squared 0.13 0.11 0.17 0.04 0.14 0.11

Observations 420 420 420 420 420 420
Number of provinces 30 30 30 30 30 30

Note: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Further, we conducted a detailed analysis of the specific effects of the DE on the
decomposed elements of GTFP. Specifically, DE had a significant positive impact on EFCH,
verified at both 1% and 5% significance levels, with coefficients of 0.596 and 0.579, respec-
tively. This likely indicates that the rise of DE has accelerated improvements in technical
efficiency within the industrial sector, thus elevating the overall level of operational effi-
ciency. However, the impact on TECH was negative, with coefficients of−0.375 and−0.327,
both statistically significant at the 1% level. This could be attributed to the challenges in
achieving deeper technological advancements, such as the difficulty in transitioning to
new technological paradigms, high costs, and the need for extensive personnel training
and cultural adaptation, which may temporarily inhibit advancements in technology. On
the aspect of PTCU, the DE showed a positive impact, with coefficients of 0.971 and 1.023,
significant at the 5% and 1% levels, respectively. This suggests that the DE helps firms
approach or achieve the current technological frontier more quickly, thereby increasing
overall productivity. Finally, regarding PTRC, the impact was negative, with coefficients of
−0.396 and −0.406, both significant at the 1% level. This implies that while the DE aids
in technological progress and pure technical catch-up, its role in narrowing the potential
technical gap remains less evident.

5.4. Spatial Effects
5.4.1. Spatial Correlation Test

This study investigates the spatial correlation characteristics of DE. To accomplish this,
we employed both adjacency weight matrices and geographic distance weight matrices
to calculate Moran’s I index. The results are presented in Table 8. In many of the years
examined, Moran’s I index showed positive values and was statistically significant at a 5%
level or lower, irrespective of whether adjacency or geographic distance weight matrices
were used. This finding strongly suggests a significant positive spatial autocorrelation
among geographically adjacent regions in terms of digital economic activity. This result not
only underscores the importance of geographic factors in the development of DE but also
enhances the robustness of the conclusion.
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Table 8. Moran’s index is based on adjacency matrix and geographical distance matrix.

Year
Adjacency Geographical Distance

Z p-Value Z p-Value

2008 3.8723 0.0001 3.9480 0.0001
2009 3.5067 0.0005 3.4261 0.0006
2010 3.0384 0.0024 2.0744 0.038
2011 1.7049 0.0882 0.5901 0.5552
2012 3.3772 0.0007 3.8657 0.0001
2013 3.6149 0.0003 3.7184 0.0002
2014 4.3845 0.0000 4.9744 0.0000
2015 2.9135 0.0036 3.8501 0.0001
2016 3.3971 0.0007 3.4011 0.0007
2017 3.3848 0.0007 3.3398 0.0008
2018 4.1392 0.0000 4.0055 0.0001
2019 1.0821 0.2792 0.1452 0.8845
2020 0.9237 0.3556 −0.2348 0.8144
2021 2.9095 0.0036 2.7315 0.0063

However, there were a few years where spatial correlation was not markedly evident.
This could potentially be attributed to specific events or unaccounted-for variables during
those periods, such as the COVID-19 pandemic that began in 2019. It is worth mentioning
that while the global Moran’s I index can somewhat homogenize inter-provincial dispari-
ties, it is not entirely capable of capturing the local spatial correlations within individual
provinces. To address this, we specifically calculated local spatial correlations for the years
2015 and 2021, as depicted in Figure 6. The results further corroborated the presence of
significant positive spatial correlations and clustering phenomena.
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5.4.2. Analysis of Spatial Effects

Amidst the digitalization trend and Industry 4.0, DE has had profound implications
across various sectors, most notably in mining. Our spatial analysis of the relationship
between the DE and GTFP in the mining sector reveals noteworthy observations. The
results are presented in Table 9. First, the direct influence of the DE on mining GTFP is
positive. Specifically, the correlation coefficient between the DE and GTFP was measured
at 0.260, statistically significant at a 5% level. This result unequivocally demonstrates
the pivotal role that DE plays in enhancing both efficiency and sustainability in mining.
This is attributed not only to digital technologies’ ability to improve productivity and
reduce costs but also to their capacity to facilitate more effective resource management and
minimize environmental impact through data analytics and intelligent decision making.
More strikingly, the DE not only influences local mining productivity but also manifests
a strong spillover effect in the spatial dimension. This is evidenced by an indirect impact
coefficient of 0.512, signifying that the development of the DE in one region not only uplifts
its own mining GTFP but also positively affects adjacent regions. This territorial spillover
is likely the result of various interacting factors, including but not limited to knowledge
sharing, technology transfer, and capital mobility. However, it should be noted that we
observed a certain negative influence of the square term of DE on GTFP. This observation
may suggest that although the initial stages of DE implementation can significantly enhance
mining GTFP, excessive digitalization may lead to diminishing returns. This is not to assert
that further development of the DE will inevitably have negative consequences, but rather
to emphasize the need for caution regarding potential risks and challenges such as data
security, technology dependence, and social and environmental impacts.

Table 9. Regression results of SDM model.

Variables Direct Effect Spillover Effect
GTFP EFCH TECH PTCU PTRC GTFP EFCH TECH PTCU PTRC

DE 0.260 ** 0.546 *** −0.305 *** 0.835 ** −0.322 ** 0.512 * 0.85 −0.659 ** 1.584 −0.65
(0.10) (0.21) (0.11) (0.40) (0.15) (0.27) (0.56) (0.31) (0.98) (0.40)

DE2 −0.288 * −0.642 * 0.375 ** −1.035 0.371 −0.797 ** −1.453 * 1.011 ** −2.477 * 1.039 *
(0.17) (0.34) (0.18) (0.65) (0.25) (0.39) (0.83) (0.47) (1.45) (0.61)

ER 2.041 3.008 −1.331 8.341 −4.671 0.436 0.784 −0.561 1.226 −1.635
(1.99) (4.04) (2.17) (7.71) (2.94) (0.55) (1.29) (0.99) (1.75) (1.27)

GIL 0.0639 0.18 −0.0653 0.0665 −0.254 0.0114 0.0429 −0.0247 0.000791 −0.0858
(0.19) (0.38) (0.20) (0.72) (0.27) (0.05) (0.11) (0.09) (0.13) (0.11)

ES −8.961 *** −15.32 *** 10.87 *** −12.54 12.22 *** −1.906 ** −4.020 ** 4.375 *** −1.78 4.118 ***
(2.10) (4.19) (2.34) (7.66) (3.06) (0.95) (1.91) (1.34) (1.82) (1.49)

HCL −1.216 −3.463 −0.503 −3.608 0.891 −0.269 −0.942 −0.205 −0.539 0.32
(1.61) (3.27) (1.75) (6.25) (2.37) (0.42) (1.07) (0.79) (1.23) (0.91)

TPSL 0.195 * 0.25 −0.249 * 0.09 −0.305 * 0.04 0.07 −0.100 * 0.01 −0.103
(0.12) (0.24) (0.13) (0.45) (0.18) (0.03) (0.07) (0.06) (0.08) (0.07)

rho 0.179 ** 0.212 *** 0.297 *** 0.148 *** 0.259 *** 0.179 ** 0.212 *** 0.297 *** 0.148 *** 0.259 ***
(0.08) (0.08) (0.07) (0.01) (0.07) (0.08) (0.08) (0.07) (0.01) (0.07)

Log-L 375.7427 77.7747 342.6651 −186.419 214.8062 375.7427 77.7747 342.6651 −186.419 214.8062

Note: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Regarding the decomposed components of GTFP, our analysis revealed important
insights. DE significantly and positively affects EFCH and PTCU, further affirming the
digital economy’s ability to enhance technical efficiency and advancements in mining
technology. Conversely, TECH and PTRC were negatively impacted, possibly due to the
increased complexity and uncertainty introduced by the widespread application of digital
technologies. Overall, the DE exerts a highly positive effect on mining GTFP, with a total
coefficient of 0.772, statistically significant at a 1% level. This finding not only reaffirms
the centrality of the DE in augmenting mining productivity but also suggests that future
policy formulation should consider the multi-dimensional effects and influences of the DE
to achieve more sustainable and efficient mining operations.

This study examines the impact of the digital economy on the GTFP in the mining
industry, employing a GTFP calculation method like that used in the manufacturing sector
as per the literature [55]. We found that while the digital economy initially has a positive
impact on mining, it may shift to an inverted U-shaped curve over time, in contrast to
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the manufacturing sector where significant effects become apparent only after reaching a
certain threshold of investment. Additionally, consistent with the literature [56], we identify
industrial structure upgrading as crucial for efficiency and low-carbon development. We
also observed spatial spillover effects of the digital economy, aligning with the findings
of the literature [57,58], which highlight its extensive impact across different industries
and regions.

6. Conclusions and Policy Implications

This study utilizes panel data from 30 provinces, municipalities, and autonomous
regions in China, spanning from 2008 to 2021, to estimate the GTFP under technological
heterogeneity in the mining sector through the MML index model. To delve further into
the impact of the DE on mining GTFP, we also employed the spatial Durbin model and
mediation effect models for empirical verification. The study yields the following conclu-
sions: (1) The findings validate a positive influence of the DE on GTFP, which is statistically
significant at the 1% level. While the DE contributes positively to technological progress
and pure technical catch-up, its role in enhancing technical efficiency and reducing the
potential technological gap remains inconclusive. Control variables such as environmental
regulations and government intervention also have varying degrees of influence on GTFP
and its components. (2) The study uncovers the mediating role of industrial structure
upgrading in the relationship between the DE and GTFP. Specifically, the DE exerts a
constrictive effect on industrial structure, which may yield negative repercussions for
GTFP in the short term. Through component analysis, we further ascertain that the DE
positively influences technological progress and pure technical catch-up. (3) Beyond the
direct positive impact of the DE on local mining GTFP, our research identifies a significant
spatial spillover effect. This implies that the benefits of the DE extend beyond elevating
local mining productivity to affecting adjacent regions, thereby exhibiting its inter-regional
diffusion and influence.

Based on the above conclusions, this paper derives the following policy implications.

(1) Promote and apply deep technological innovation. By providing research and devel-
opment funding, tax incentives, and fostering public–private sector cooperation, real
technological innovation, and breakthroughs are stimulated. Implementing technol-
ogy demonstration projects, promoting industry best practices, and offering financial
incentives support businesses in adopting and applying these innovative technologies.

(2) Industry transformation for environmental efficiency. Governmental strategies should
focus on the connection between DE, GTFP, and industrial structural change. Publicly
announced goals should emphasize green operations, low carbon emissions, and value
addition. Financial incentives can guide polluting industries towards eco-friendliness.
Environmental management should span the entire industrial process, ensuring
genuine eco-friendly transformations. These measures will harmonize economic
growth with environmental responsibilities, further promoting sustainable GTFP.

(3) Cross-regional collaboration for sustainable mining. Given the DE’s impact on mining
efficiency and its regional spillovers, a strategy promoting regional mining sustainabil-
ity is vital. Establishing Centers for Digital Innovation in Mining can foster knowledge
sharing and tech transfers. A cross-regional environmental regulatory body should
ensure unified eco-standards and oversight. Financial incentives, like awards, can
motivate companies to focus on regional environmental impacts. These recommenda-
tions push for leveraging DE’s potential to amplify regional sustainability in mining,
aligning individual mining progress with wider regional green objectives.

Considering the findings from our study, particularly the observed inverted U-shaped
relationship between the DE and GTFP, future research directions should focus on deep-
ening the understanding of this complex relationship. It is essential to explore the causes
behind the dominant negative effects that emerged, especially in the context of the U-shaped
curve we identified. Further investigation could benefit from employing heterogeneous
panel estimators, which would allow for a more nuanced examination of the thresholds
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within this relationship. Specifically, utilizing panel thresholds could provide valuable
insights into the varying impacts of DE on GTFP across different regions or sectors.
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