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Abstract: The International Maritime Organization (IMO) has been progressively implementing
stricter regulations on ship carbon emissions, leading to many vessels adopting the virtual arrival
(VA) method to reduce their carbon footprint. However, the effectiveness of the traditional VA
method often varies in busy ports with complex traffic organization scenarios. To address this,
our study presents a novel, comprehensive model that integrates vessel scheduling with the VA
approach. This model is designed to achieve a dual objective: reducing carbon emissions through
virtual arrival while simultaneously minimizing vessel waiting times. In addition to these goals, it
incorporates essential aspects of safety, efficiency, and fairness in port management, utilizing the
NSGA-2 algorithm to find optimal solutions. This model has been tested and validated through
a case study at Ningbo-Zhoushan port, employing its dataset. The results demonstrate that our
innovative model and algorithm significantly outperform traditional scheduling methods, such
as First-Come-First-Serve (FCFS) and Virtual-Arrival Last-Serve (VALS), particularly in terms of
operational efficiency and reduction in vessel carbon emissions.

Keywords: virtual arrival; traffic organization; carbon emission reduction; waiting time; multi-objective
optimization

1. Introduction

Sea-going trade contributes approximately 2.9% of global CO2 emissions. Mitigating
greenhouse gas emissions (GHG) from the international shipping industry constitutes a
prominent and multifaceted challenge within both business and policy domains. This
critical issue stands as a focal point in contemporary research endeavors [1–3]. The Interna-
tional Maritime Organization (IMO) has set ambitious targets to reduce emissions from
sea-going vessels by 50% in 2050 compared to 2008, with a gradual decline in emissions
from 2030 onwards [4,5]. To achieve the emission reduction goals set by the IMO and
mitigate environmental impacts, it is imperative to reduce vessel emissions. Current re-
search [6–10] suggests that significant potential exists for emission reductions by improving
navigational efficiency (traveling at the minimum speed necessary). Reducing carbon
emissions from vessels and minimizing the waiting time at busy ports not only contributes
to environmental amelioration but also yields manifold economic benefits. By embracing
more environmentally friendly ship designs and clean energy sources, we can effectively
curtail carbon emissions, address climate change, and enhance air quality. Furthermore, the
reduction in port waiting times not only enhances the efficiency of maritime transportation,
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thereby reducing fuel and maintenance costs, but also facilitates trade circulation, thereby
elevating the economic competitiveness of both ports and nations.

Generally, a ship’s fuel consumption is linearly related to the third or fourth power
of its speed. Currently, ships tend to travel to ports at a higher speed and have to wait at
anchor, which increases fuel consumption and carbon emissions both when sailing in the
sea near the port and during the waiting period of the ship. One promising approach is
virtual arrival (VA), which is used in maritime operations to reduce carbon emissions and
improve efficiency in shipping. VA allows vessels to adjust their speed during voyages to
meet a required time of arrival at their destination, considering known delays at the port.
VA can reduce average sailing speeds by utilizing the time spent waiting to berth as extra
sailing time. Thus, speed optimization can lower fuel consumption and CO2 emissions.
It was estimated that around 15% of the total emissions of vessels are produced during
port visits [11].

Central to this method is sophisticated communication and planned coordination,
enabling ships to adjust their speed according to the latest port availability updates. In
contrast to the traditional approach, where ships maintain their speed and subsequently
wait at the port, VA dictates a reduction in speed during transit, synchronizing the ship’s
arrival with the availability of a berth. This strategy reduces the time ships spend idling
and waiting, leading to operational cost savings, and substantially decreases fuel consump-
tion, thereby contributing to a reduction in carbon emissions. However, the success of
this method relies heavily on the precision of the information received and the effective
coordination among various maritime stakeholders. This can present challenges, especially
in scenarios with stringent schedules. Consequently, while the VA method has emerged as a
critical strategy in the maritime industry for its potential to optimize operational efficiency
and environmental sustainability, its implementation and effectiveness can vary depending
on the specific logistical circumstances.

At some mega ports like Ningbo-Zhoushan, the effectiveness of the VA method is
further shaped by a diverse set of factors, extending well beyond the simple availability
of berths. These factors encompass pilotage requirements, the accessibility of deepwater
channels, and the intricacies of port traffic organization. For example, deepwater channels,
essential for larger vessels, are often constrained by both natural conditions and existing
traffic, requiring detailed timing and coordination. To enhance the operational efficiency
of such ports, traffic organization is usually adopted, designed to coordinate vessel move-
ments through the Vessel Traffic Service (VTS). Such a multifaceted environment poses
significant challenges to the VA method, as it introduces additional variables that may
impact the optimal speed adjustments for incoming vessels. Given these intricate condi-
tions, there is a pressing need for further research on the VA method in the context of traffic
organization at busy ports, focusing on a specialized optimization method for vessel entry
scheduling to ensure that the VA method remains effective in optimizing efficiency and
reducing environmental impact under traffic organization scenarios.

Given the research gaps and challenges outlined, this paper aims to explore and
propose an advanced VA optimization method in the traffic organization scenarios of the
core port area of Ningbo-Zhoushan. To achieve this, we have developed a sophisticated
mathematical model that considers a range of factors, such as channel navigation rules, tidal
resources, and other important constraints. Non-dominated Sorting Genetic Algorithm II
(NSGA-2) is employed to solve complex mathematical problems, resulting in the optimal
vessel service order.

The rest of this paper is organized as follows: In Section 2, a review of the literature
related to traffic organization optimization and VA is provided. Section 3 describes and
analyzes the studied problem, along with an explanation of the relevant factors. In Section 4,
a mathematical optimization model is constructed, considering complex navigation rules
and channel constraints. Section 5 introduces a heuristic algorithm that has been proposed
for solving the model. In Section 6, actual inbound data from the core port area of Ningbo-
Zhoushan is utilized to build a specific model and conduct a case study. The model is
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then compared with other models, such as First-Come-First-Served (FSFC), to validate its
effectiveness under different scenarios. Section 7 ends the study with a conclusion and
future work.

2. Literature Review
2.1. Virtual Arrival

VA differs from scheduled voyages in that its purpose is not to reserve berthing time
in advance but only to adjust speed in response to known delays to avoid ships waiting at
anchor in advance. Firstly, as VA only minimizes the time spent at anchor before berthing
by slowing down the sailing speed, transport capacity is not affected; secondly, because
the total voyage time remains the same, cargo in-transit inventory costs will not increase
as in the case of slow-steaming [12]. In addition, VA has lower investment costs and is
easier to implement compared to other technologies aimed at reducing the carbon intensity
of ship operations [13,14].The fuel-saving potential of VA has been analyzed in several
studies. Alvarez et al. [15] used a simulation model where berth allocation, land-side
equipment assignment, and speed optimization were considered; their results suggest
that the VA can reduce fuel consumption by about 6% compared to the traditional FCFS
policy. Johnson and Styhre et al. [16] conducted a case study in which they analyzed
the effect of VA on two 5000 gross tonnage ships in short-sea shipping. They combined
interviews with Statement of Facts data to quantify the total waiting time during port calls
for the two ships. Through interviews, three “likely scenarios” were developed, estimating
the potential reduction in port call duration hours achieved by adopting slower sailing
speeds. The findings revealed a fuel reduction ranging from 2% to 8%, contingent on the
chosen scenario. These estimates were derived from ship-specific operational and design
specifications, enhancing the credibility of the results with empirical data from the case
study. However, the methodology and sample size limit the generalizability of the results.

In a study by Jia et al. [8], 5066 worldwide reductions in fuel consumption and
emissions were empirically assessed for a fleet of 483 VLCCs between 2013 and 2015
using Automatic Identification System (AIS) vessel position data, which was based on the
potential reduction in fuel consumption and emissions from the implementation of a virtual
arrival policy. The average sailing speed was reduced by using non-productive waiting
time at the destination port, assuming that the vessel speed could be adjusted throughout
the voyage. Their results show that fuel savings depend on how much unnecessary waiting
time can be utilized while sailing, with 7.26% fuel savings if waiting time is reduced by
25% and 19% fuel savings if all waiting time is eliminated.

Andersson and Ivehammar et al. [17] conducted a study using AIS data from Baltic
Sea countries to estimate the impact of the VA strategy and compare it with traditional
methods that involve significant waiting times. In analyzing speed reduction scenarios,
they assumed possible reductions of 5%, 10%, 25%, and 50%. Additionally, they considered
situations where ships could reduce speed 1, 4, 12, and 24 h before their estimated arrival
time. According to their research findings, if vessels reduce speed by 5% 12 h before arrival,
it could lead to annual fuel savings of 4826 tons and 15,106 tons of carbon dioxide emissions.

Merkel et al. [12] estimated the actual time spent by the ship at anchor waiting to
berth. Secondly, speed-related elasticities are applied to estimate the speed/fuel function
at different speeds to assess the potential for fuel savings from VA measures compared to
when waiting at anchor to sail. Using data from Swedish ports as an example, the potential
for fuel reduction (savings as a share of total voyage consumption) is considered to be
about 4.7–4.12% when speed is reduced 1–7 h prior to planned arrival.

Based on the research above, the abatement potential of a virtual arrival vessel depends
primarily on:

• The extent to which vessels can reduce their speed.
• How far in advance of the estimated arrival time do vessels receive reliable information.
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2.2. Vessel Traffic Optimization

Vessel traffic optimization refers to organizing a large number of vessels to enter and
leave the canal in an orderly manner within a given period of time so that waiting time
is shorter, thus reducing vessel delays and improving the efficiency of vessel traffic. The
target of the traffic organization is all the ships of different types and sizes that pass through
the canal every day, some of which enter the port via the canal from the outer sea or outer
anchorage [18–21].

Lübbecke et al. [22] studied the vessel traffic control problem in the Kiel Canal, con-
sidering constraints such as channel environment and safety intervals to minimize the
total vessel waiting time and navigation rules, and constructed a heuristic combination
algorithm to solve the traffic problem in an optimization study of vessel traffic organization.
Zhang et al. [23] developed a mixed integer linear programming (MILP) model to improve
ship transport efficiency with the shortest total waiting time as the optimization objective
while considering the constraints of navigation rules and safety intervals. A heuristic
algorithm combined with a simulated annealing algorithm and a genetic algorithm is also
used to solve the port-ship transportation scheduling model. Zhang and Zheng et al. [24]
developed an optimization model for traffic organization considering tides, aiming to
achieve the shortest total vessel waiting time. The model considers constraints such as
tidal time windows and navigation rules, and the results show that the scheduling is
more efficient than other strategies, including first-come, first-served (FCFS) and random
scheduling. Liu et al. [25] proposed a MILP model for one-way channel vessel scheduling
in ports. The model aims to reduce the weighted dwell time of all vessels, considering
constraints such as berths, navigation rules, and tidal time windows. An adaptive large
neighborhood search algorithm is constructed to solve the model.

Studies of vessel scheduling have primarily focused on improving the traffic efficiency
of ships in waterways; the constraints of the studies are time slot allocation, tide [7,26,27],
berth [28], vessel speed, traffic conflict, and capacity of sidings. However, there is a
significant gap in the literature when it comes to integrating the ship emissions problem
with ship scheduling optimization. Recent studies have shown that incorporating ship
emissions reduction into the scheduling process can yield a comprehensive and effective
ship emission reduction method. For instance, Jiang et al. [29] considered the complex
problem of vessel scheduling in a restricted channel, the berth allocation problem, and
a combined model that considers carbon emissions and proposed an adaptive, double-
population, multi-objective genetic algorithm (NSGA-II-DP) to calculate the mathematical
model. Xia et al. [30] propose a ship scheduling with speed reduction (SCR) model aimed
at optimizing ship arrival sequences and reducing ship speeds to achieve the objectives of
reducing the total scheduling time and carbon emissions of ships in port. Through a series
of experiments based on accurate port data, they have validated the effectiveness of this
novel ship emission reduction method, which can lead to a reduction in ship emissions of
8.0% to 11.9% and an improvement in traffic efficiency of 3.8% to 6.2%.

However, as mentioned in the previous section, the speed reduction of vessels may
affect their voyage planning. It leads to an increase in the inventory cost of the ships
compared to the VA. Therefore, this paper summarizes the emission reduction measures
for VA and establishes a new method for reducing vessel emissions in ports by combining
it with the traffic organization problem.

3. Problem Description

In studies on the optimization of the entry sequence, the FCFS criterion is usually
applied, in which vessels entering the port area earlier are given priority to cross the
channel reporting line over those entering later. However, in the process of vessel traffic
organization, there is a virtual arrival of the vessel that has been expected to arrive but
has not yet actually entered the port state of the vessel. A rudimentary example is used to
illustrate the existence of the solution set under the optimization model. Traffic organization
is actually the coordination of the timing and sequence of the passage of two types of ships
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approaching the port through the reporting line, as shown in Figure 1. Nonetheless, as the
number of vessels increases, it can be inferred from the knowledge of permutations that the
number of inbound orders will continue to grow. By considering factors such as reporting
line time and speed, there are increased possibilities for effective vessel traffic organization.

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 18 
 

nel reporting line over those entering later. However, in the process of vessel traffic or-
ganization, there is a virtual arrival of the vessel that has been expected to arrive but has 
not yet actually entered the port state of the vessel. A rudimentary example is used to 
illustrate the existence of the solution set under the optimization model. Traffic organiza-
tion is actually the coordination of the timing and sequence of the passage of two types of 
ships approaching the port through the reporting line, as shown in Figure 1. Nonetheless, 
as the number of vessels increases, it can be inferred from the knowledge of permutations 
that the number of inbound orders will continue to grow. By considering factors such as 
reporting line time and speed, there are increased possibilities for effective vessel traffic 
organization. 

 
Figure 1. Diagram of inbound ship traffic organization through channel（V1、V2 represent ship 
waiting at anchorage;V3 represents virtual arrival ship; S1–S3 represent the inbound sequence ）. 

The primary focus of this study is to ascertain how to determine the necessity for 
virtual arrival and the waiting time for two types of vessels in the anchorage area to enter 
the port. This includes optimizing the speed of the virtual arrival vessel in accordance 
with the entry time window. 

The FCFS principle can lead to problems in certain scenarios as the depth of the chan-
nel varies over time. To ensure safe passage through tidal waterways, vessels with large 
draughts often rely on the tide. A precise calculation of time windows for each vessel is 
imperative to determining their safe passage. Safety is ensured by maintaining a certain 
distance between successive ships, which can be converted from space to time to create a 
safe time interval. Optimal traffic organization involves coordinating the sequence and 
start time of vessel entries to match the tidal time windows. Furthermore, this study as-
sumes that the virtual arrival vessel is able to change its speed immediately after obtaining 
the order of traffic organization. 

In summary, the following factors should be considered in our model: 
• Vessel speed limit. 
• Port navigation rules. 
• Safe time intervals for ensuring navigation safety. 
• The tidal time window of large vessels. 

4. Methodology 
4.1. Vessel Fuel Consumption Calculation 

Fuel consumption is influenced by various factors, including engine type, ship design 
and size, sailing resistance, and navigation conditions [31]. The Admiralty formula is used 
to determine the specific fuel consumption per unit of time shown in Equation (1). 

Figure 1. Diagram of inbound ship traffic organization through channel (V1, V2 represent ship
waiting at anchorage; V3 represents virtual arrival ship; S1–S3 represent the inbound sequence).

The primary focus of this study is to ascertain how to determine the necessity for
virtual arrival and the waiting time for two types of vessels in the anchorage area to enter
the port. This includes optimizing the speed of the virtual arrival vessel in accordance with
the entry time window.

The FCFS principle can lead to problems in certain scenarios as the depth of the
channel varies over time. To ensure safe passage through tidal waterways, vessels with
large draughts often rely on the tide. A precise calculation of time windows for each vessel
is imperative to determining their safe passage. Safety is ensured by maintaining a certain
distance between successive ships, which can be converted from space to time to create a
safe time interval. Optimal traffic organization involves coordinating the sequence and start
time of vessel entries to match the tidal time windows. Furthermore, this study assumes
that the virtual arrival vessel is able to change its speed immediately after obtaining the
order of traffic organization.

In summary, the following factors should be considered in our model:

• Vessel speed limit.
• Port navigation rules.
• Safe time intervals for ensuring navigation safety.
• The tidal time window of large vessels.

4. Methodology
4.1. Vessel Fuel Consumption Calculation

Fuel consumption is influenced by various factors, including engine type, ship design
and size, sailing resistance, and navigation conditions [31]. The Admiralty formula is used
to determine the specific fuel consumption per unit of time shown in Equation (1).

Fi = (
vi

vd,i
)

m
× (

ri
rd,i

)
n
× Fd,i (1)

where Fi is the hourly propulsive fuel demand of the vessel i while sailing at the current
speed vi; vd,i is the design speed for the vessel i; ri/rd is the current to maximum draft ratio;
Fd,i is the fuel consumption under standard conditions. The parameter m is set to 3, and the
parameter n is set to 2/3 [12,32].
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4.2. Modeling Approach for Implementation of VA

A counterfactual ‘pseudo’ speed is constructed for VA vessels, representing the speed
at which the vessel could have sailed to avoid waiting at anchor. The basic formulation of
the pseudo-speed for vessel i is given in Equation (2):

v′i = max[Di/(t0,i + ∆ti), vmin,i] (2)

where v′i represents the counterfactual pseudo speed for the vessel i; represents the sailing
distance between the vessel’s position when speed optimization can begin; the port of
call, t0,i represents the original sailing time to port at the time when speed optimization
can begin; ∆ti represents the time spent by the vessel at anchor; and vmin,i represents a
lower bound with a minimum threshold beyond which speed reduction does not generate
fuel savings. The expression thus shows the speed that would be required for a vessel
to eliminate.

Based on the vessel’s initial sailing speed in the traffic organization and the calculated
virtual arrival speed, the difference in expected fuel consumption resulting from speed
adjustments can be estimated. To achieve this estimation, the main engine fuel consumption
is computed at both speeds during the period from speed adjustment to arrival, as shown
in Equation (3).

∆Fi = Bi × v3
i × t0 − Bi × v′3i × Di

(t0,i + ∆ti)
(3)

where v′i <= vi; Bi is fixed parameters for fuel consumption of different vessels i.
To calculate the potential decrease in CO2 emissions, we can utilize the fuel savings

calculation while also taking into consideration the emission factor (EF). The EF is a
representation of the amount of CO2 released for each kilogram of fuel that is consumed.
By factoring in the type of fuel utilized by the vessel, we can accurately determine the
potential CO2 reduction in Equation (4):

∆Ei = ∆Fi × EF (4)

4.3. Model Assumptions

The organization of vessel traffic in waterways involves multiple departments and
resources. At the same time, many factors affect the passage of ships through waterways.
Based on a comprehensive analysis of the mechanisms of traffic organization in multiple
waterways, critical common factors are extracted, and some other special factors are
simplified. To facilitate this study, the proposed model has the following assumptions:

(1) Berths, anchorages, and loading and unloading equipment are not considered.
(2) The ship traffic organization studied in this article does not consider wind, visibility,

and flow
(3) The virtual arrival ship meets a speed greater than the average speed of incoming

ships by 10 knots, and the distance to the port is more than 100 nautical miles.
(4) The virtual arriving vessel starts to optimize the sailing speed immediately after

learning the traffic organization scheme.

4.4. Mathematical Model

The model’s primary goal is to optimize the efficiency of port operations for all vessels
presently engaged, ensuring their tasks are completed swiftly and effectively. Simultane-
ously, it places a strong emphasis on minimizing carbon emissions to the lowest feasible
level by reducing the speed of virtual arriving vessels. This objective is pursued while
meticulously taking into account critical factors such as the strategic spacing between
adjacent vessels, adherence to safe sailing speeds, and the consideration of each vessel’s
draft. We simplify the planning time by discretizing it into equal periods. The length of
each period is determined as the maximum common unit time for the relevant operation
duration. This approach allows us to represent various arrival times in a standardized
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manner, streamlining the planning process. Variable and parameter settings can be seen in
the table below (Table 1).

Table 1. Notations and descriptions.

Notation Description

n: the number of incoming ships that need to be dispatched at the current stage;
I: set of all inbound ships, we use the index i ∈ I = {1 : n};
li: the length of the vessel i;
ri: the draft depth of the vessel i;

Tai: the estimated arrival time of the vessel i;
Tsa f etyi: the safety time interval between the vessel and the preceding vessel;

d: the distance of the vessel from the anchorage to the waterway;
vi: the average speed of the vessel i;
Di: the distance between the vessel i and the port when adjusting its speed;
Bi: the fixed parameters for fuel consumption of different vessel i;

Vadjusti: the adjust speed of the VA vessel i;
CL: the length of the waterway;
Cd: the original depth of the waterway;

TH(t): the tidal height considering time;
SWDi: the surplus water depth of the vessel;

Ioi : if the vessel i is a virtual arrival vessel, it is 1. Otherwise, it is 0.
Tstarti: the start of vessel dispatch time (from the time of entering the port from the

outer anchorage);
Tstarti: the start of vessel dispatch time (from the time of entering the port from the

outer anchorage);
Tini/Touti: the time when the vessel arrives at the beginning and end of the waterway;

Aii′ : the entry and exit sequence of vessel i and vessel i′, whereAii′ = 1 indicates
that ship i is scheduled before vessel i′, and Aii′ = 0 indicates that vessel i is

scheduled after vessel

The mathematical model of vessel optimal scheduling is as follows:

Max E = ∑
i∈I

∆Fi × EF (5)

Min T = ∑
i∈I

(Tstart,i − Tai) (6)

∆Fi = Ioi × (Bi × (
Di
Tai

)
3
× Tai − Bi × (Vadjusti)

3 × (Tstarti)), ∀i ∈ n (7)

Vadjust,i = Ioi × max(Di/Tstarti, Vmin), ∀i ∈ n (8)

Tstarti ≥ Tai, ∀i ∈ I (9)

Tsa f etyi = 6 × li/vi, ∀i ∈ I (10)

Tini = Tstart,i + d/vi (11)

Touti = Tini + CL/vi (12)

M × (1 − Aii′ ) + Tini′ − Tini ≥ Tsa f etyi, ∀i ∈ I (13)

Cd + TH(t) = CD(t) (14)

ri + SWDi ≤ CD(Tini)
(15)

ri + SWDi ≤ CD(Touti)
(16)

ri + SWDi ≤ minCD(Tini i ,Touti)
(17)

Aii′ + Ai′i = 1, ∀i, i′ ∈ I (18)

Aii′ ∈ {0, 1} , ∀i ∈ I (19)
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Equation (5) represents the maximization of the total reduction of carbon emissions
from vessels; Equation (6) represents the minimization of the total waiting time for all
vessels; Equation (7) represents the reduction of carbon emissions from ships; Equation (8)
represents the speed limit for virtual arrival to ensure safe navigation of ships in port;
Equation (9) ensures that the vessel dispatch time is greater than the expected arrival
time; Equation (10) represents the safe time interval between the two vessels entering
the port; Equation (11) indicates the time when the ship enters the waterway (reporting
line); Equation (12) indicates the time when the ship leaves the waterway; Equation (13)
represents the actual water depth of the channel considering the T time of the tide, used to
calculate whether the water depth of the channel meets the requirements for safe navigation
of ships during navigation, avoiding grounding. Equation (14) denotes that the depth of the
channel meets the requirements for vessel navigation, considering the safety margin when
the vessel enters the channel; Equations (15) and (16) ensure that the depth of the channel
meets the navigation requirements when the vessel leaves the channel; Equation (17)
ensures that the depth of the vessel’s navigation channel meets the requirements during
navigation; due to the periodic changes in tides, it is not only necessary to ensure that the
water depth meets the requirements when entering and leaving the channel, but also to
ensure that the water depth that changes during the navigation of the ship must always
meet the navigation requirements; and Equations (18) and (19) indicate the sequence in
which vessels i and i′ entered the port.

5. Algorithm Design

Due to the inherent complexity of the port vessel scheduling problem, it involves a
multitude of variables and constraints, contributing to substantial temporal intricacies.
Consequently, the scheduling of vessels at ports is recognized as a challenging and uncertain
polynomial (NP) problem, given its intricate nature and the multitude of factors influencing
scheduling decisions [33,34]. The solution of the model for this problem mainly involves
the sequence of ships entering and leaving the port, and the model is a multi-objective
optimization. Considering the model constraints and the complexity of the multiple
optimization objectives, it is not possible to use some exact solution software for the solution.
Employing heuristic algorithms, including genetic algorithms, list search methods, and
particle swarm optimization algorithms, facilitates the identification and comparison of
a spectrum of feasible solutions. This enables the determination of a relatively optimal
solution through a comparative analysis. Consequently, the quest for a more optimal ship
scheduling algorithm necessitates the design of an enhanced and efficient approach.

Currently, multi-objective optimization algorithms are more commonly used in dealing
with multiple-objective optimization problems. Deb [35] proposed the NSGA-II algorithm.
It is widely used in many fields. The main feature of this algorithm is the fast, non-
dominated sorting idea. The NSGA-II algorithm searches along the direction of Pareto’s
front and obtains an optimal solution set in line with the model optimization after many
iterations. Hence, this study opts for the application of NSGA-II to address the proposed
model. Beginning with a randomly generated initial population, the algorithm calculates
the fitness value for each individual. It then selects those individuals for the next generation
based on the principle of non-dominated sorting. Subsequently, a portion of the population
undergoes crossover operations, guided by a predetermined crossover probability. Addi-
tionally, a selection of individuals is subjected to mutation operations in accordance with the
set mutation probability. This process iterates progressively, generating new populations in
each cycle until the pre-defined stopping conditions are met. Through several generations
of evolution, the algorithm gradually converges, ultimately identifying the individual in
the population with the optimal fitness. The specific steps are shown in Figure 2.
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5.1. NSGA-II Algorithm

The process involves selection, crossover, and mutation following a fast, non-dominated
sort. The resulting offspring are then amalgamated with the initial group, doubling the
population size. The new group undergoes hierarchical organization through fast, non-
dominated sorting and crowding distance calculation. This stratification categorizes the
population based on the level of individual non-inferior solutions. The new groups are
sequentially added according to their hierarchical levels during selection. Subsequently, the
final output is then achieved after deriving the Pareto front iteratively, where the progress
is depicted in Figure 3.
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5.2. Gene Coding and Population Initialization

Vessels are assigned numbers based on the quantity set I and the chronological order
of their application to enter the port. In Figure 4, vessel numbers serve as gene codes.
To create a chromosome, the number sequence is intentionally disrupted, generating a
random permutation (with I! possible combinations). The inbound times of vessels are
then arranged according to this sequence, adhering to the constraint that the scheduling
time of a vessel is influenced by the scheduling times of vessels preceding it. This process
is iterated to generate the specified number of chromosomes, collectively forming the
initial population.
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5.3. Non-Dominated Sorting and Congestion Calculation

A set of excellent non-dominated solutions can be obtained by non-dominated sorting,
which outperforms multiple objective functions and is not dominated by other solutions.

The set of individuals of different Pareto ranks is obtained by fast, non-dominated
sorting, but for the set of individuals of the same rank, it is necessary to introduce the
calculation of crowding distance. In the calculation of the crowding distance for each
rank, the maximum and minimum solutions of each objective function are assigned in-
finite values; the crowding distance of the intermediate part of the solutions is equal
to the absolute difference between the function values of the two neighboring solutions
after normalization.

id =
m

∑
j=1

(∣∣∣ f i+1
j − f i−1

j

∣∣∣)i − 1 (20)

5.4. Fitness, Selection, Crossover, and Mutation

Fitness: Equation (5) maximizes the carbon emission reduction value, and its fitness is
the objective function itself; Equation (6) minimizes the total waiting time, and the fitness
function is the reciprocal of the objective function.

Selection: The criterion used to select individuals for reproduction is Roulette Wheel
Selection. Therefore, the higher the fitness value it has, the greater the probability of
being selected.

Crossover: The two-point crossover is used in the GA. First, it randomly generates
two integers as two crossover points, then the chromosome is divided into two segments;
second, the middle genes are exchanged while the rest of the genes are retained and
mapped, thus ensuring that the chromosome remains valid.

Mutation: First, two mutation points are generated randomly, and then the genes in
the positions are exchanged.

6. Case Study

The actual port ship scheduling is relatively complex, and the proposed model cannot
fully meet the actual situation. Therefore, this article uses simulation methods to validate
the model and algorithm. Using the ship data information of a particular channel in Ningbo
Port for one day, the calculation results of the model algorithm are compared with those
based on the FCFS principle and the Virtual Arrival Last-Served (VALS) principle. In this
case, the length of the channel is 20 nautical miles (nmail), the initial depth is 11.5 m, and
the anchorage is 10 nmail from the port. The tidal equation is shown below.

TH(t) = 2.65 sin(42t + 0.75) + 1.99 sin(30t + 2.3) (21)

The basic information about the ship is obtained by processing AIS data, as shown
in Table 2, including vessel number, average sailing speed, draft, estimated arrival time,
etc. The virtual arrival vessel has a virtual vessel value of 1. The parameter of NSGA-II
Algorithm settings are shown in Table 3.

Figure 5 presents the comparison of effectiveness between the particle swarm opti-
mization algorithm (PSO) and NSGA-II. The left figure shows the relationship between
the number of generations and the best total waiting time. It can be clearly seen that both
algorithms can reduce the best total waiting time of ships within a limited number of
generations (e.g., 350), and the optimization results of NSGA-II are significantly better
than PSO, resulting in a greater reduction in the waiting time of ships. In terms of solving
efficiency, PSO is more prone to getting stuck in local optima, as seen from the graph
as a stepped green curve, while NSGA-II can stably approach the optimal solution until
convergence. The right figure shows the relationship between the number of generations
and the reduction in emissions. Similarly, as the number of generations increases, the
emissions gradually decrease, and NSGA-II outperforms PSO. Specifically, for NSGA-II,
the optimal solution was found in approximately 250 steps, resulting in a reduction of
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98.5 tons in emissions, while PSO did not complete convergence. This comparison under-
scores the proficiency of the NSGA-II algorithm in adeptly optimizing the organization of
maritime traffic for virtual arrivals, affirming its robustness in multi-objective optimization
scenarios. Furthermore, Figure 6 illustrates the correlation between the total waiting time
and the optimized speed of virtual arrival ships. As the total waiting time increases, the
optimized speed tends to decrease towards the lower speed limit. However, it is worth
noting that when the total waiting time reaches 9000 min, although the carbon emission
reduction attains its maximum value, it may not be practical due to the prolonged waiting
periods. Such extended waiting times could adversely impact the overall efficiency of
port operations.

Table 2. Information on vessels entering the port at the current stage.

Id Length Aaverage_Speed Estimated_Arrival_Time Draft Virtual Vessel

1 335 9 120 11 0
2 295 7.9 180 11.4 0
3 300 7.4 180 13.1 0
4 147 11 250 6.7 0
5 337 12 255 11.1 0
6 304 10 280 10.6 0
7 143 8 300 8 0
8 172 12.8 330 8.4 0
9 289 15 350 13 0

10 143 8 360 8 1
11 330 15 365 14 0
12 399 12 375 14.2 1
13 172 12.8 400 8.4 0
14 137 12.5 400 10 1
15 100 7.8 425 12.6 1
16 157 8.2 436 13.8 0
17 252 6.1 438 12.5 1
18 178 6.5 442 13.7 0
19 312 13 460 13.1 0
20 173 12 460 10.4 1
21 259 13.7 490 10.6 0
22 148 7.3 523 12 0
23 229 7.4 550 13.1 0
24 217 16 560 13.7 1
25 223 8 575 12.7 1
26 330 12 600 15 0
27 200 13.3 628 14 0
28 330 15 630 10 1
29 180 7.1 639 13.7 0
30 217 7 700 12.9 0
31 166 8 730 8.8 0
32 229 7 760 12 0

Table 3. The parameter settings of the algorithm.

Parameter Values

Population size 50
Probability of crossing 0.8
Probability of variation 0.1
Number of iterations 500

Table 4 shows information about the Pareto optimal solution set obtained. Each Pareto
optimal solution represents the entry order of the ship in sequence. The Pareto frontiers of
the 11 optimal solutions are shown in Figure 7 (red cross represents the optimal solution,
blue dot represents the general solution). It demonstrates a pattern observed in the NSGA-II
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results, where improving one objective leads to a weakening of the other objective: the
lower the carbon emissions, the lower the fuel consumption, the slower the ship, the longer
the voyage time will increase, and the longer the total waiting time will be.
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Table 4. Pareto optimal set.

Serial Number Vessel Order Emission Reduction
Value (Ton)

Total Waiting Time
(Min)

1

[1, 4, 5, 7, 6, 2, 10, 8, 13, 21,
14, 20, 15, 3, 16, 18, 11, 17,
22, 25, 29, 26, 12, 19, 28, 9,

30, 27, 23, 24, 31, 32]

52.91 2367

2

[1, 4, 5, 7, 6, 2, 10, 8, 13, 21,
14, 20, 17, 15, 11, 18, 16, 3,
22, 12, 29, 26, 19, 30, 28, 9,

25, 27, 23, 24, 31, 32]

58.56 2429

3

[1, 4, 5, 7, 6, 2, 10, 8, 20, 21,
14, 16, 15, 13, 3, 18, 17, 11,
22, 12, 29, 25, 26, 30, 23, 9,

28, 19, 27, 24, 31, 32]

60.17 2526

4

[1, 4, 5, 7, 6, 2, 10, 8, 13, 21,
14, 16, 15, 3, 20, 18, 17, 11,
22, 9, 12, 25, 26, 19, 28, 29,

30, 27, 32, 24, 31, 23]

62.72 2590

5

[1, 4, 5, 7, 6, 2, 10, 8, 13, 21,
14, 16, 15, 3, 11, 22, 17, 20,
18, 12, 9, 25, 26, 19, 28, 29,

30, 27, 32, 24, 31, 23]

63.61 2665
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Table 4. Cont.

Serial Number Vessel Order Emission Reduction
Value (Ton)

Total Waiting Time
(Min)

6

[1, 4, 5, 7, 6, 2, 10, 8, 13, 21,
14, 16, 15, 3, 20, 18, 17, 11,
22, 25, 19, 26, 12, 28, 9, 29,

30, 27, 32, 24, 31, 23]

65.95 2743

7

[1, 4, 5, 7, 6, 2, 10, 8, 20, 21,
14, 16, 13, 15, 17, 18, 11, 3,
22, 25, 12, 26, 29, 9, 28, 30,

19, 27, 32, 24, 31, 23]

70.08 2927

8

[1, 4, 5, 7, 6, 2, 10, 8, 14, 13,
21, 20, 16, 3, 19, 17, 11, 10,
26, 22, 12, 25, 9, 18, 27, 28,

29, 31, 32, 24, 27, 23]

77.23 3342

9

[1, 4, 5, 7, 6, 2, 10, 8, 17, 20,
14, 21, 16, 15, 3, 18, 13, 11,
22, 12, 29, 26, 28, 25, 9, 19,

30, 31, 32, 24, 27, 23]

79.46 3514

10

[1, 4, 5, 7, 6, 2, 10, 8, 17, 13,
14, 21, 15, 3, 19, 17, 16, 11,
22, 12, 29, 26, 28, 30, 25, 31,

9, 24, 32, 18, 27, 23]

82.39 3639

11

[1, 4, 5, 7, 6, 2, 10, 8, 13, 20,
14, 21, 15, 3, 19, 17, 16, 11,
22, 25, 29, 26, 28, 30, 12, 31,

32, 18, 9, 24, 27, 23]

84.49 3865
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The objective values under different traffic organization schemes can be seen in
Figure 8. The detailed schedule for the first Pareto-optimal solution for ship schedul-
ing can be found in Table 5. This table displays the scheduled times for each ship in the
sequence, as well as a comparison to the results obtained through the FCFS and VALS
approaches. By utilizing the Pareto-optimal solutions provided by the proposed model,
the total waiting time can be reduced by up to 31.41% compared to FCFS and up to 65.37%
compared to VALS. Additionally, all virtual arrival ships can reduce their CO2 emissions
by at least 23.29% compared to the original sailing conditions. Table 6 shows the results of
vessel speed optimization.
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Table 5. Scheduling scheme of various strategies.

ID Estimated_Arrival_Time
(Min) NSGA-II (Pareto1) FCFS

Actual_Start_Time VALS

1 120 120 120 120
2 180 308 331 333
3 180 499 500 500
4 250 250 507 766
5 255 262 509 509
6 280 353 514 514
7 300 300 519 425
8 330 363 522 643
9 350 664 524 524
10 360 360 529 768
11 365 514 532 528
12 375 648 536 532
13 400 400 542 538
14 400 493 544 540
15 425 497 546 1230
16 436 506 548 542
17 438 518 551 438
18 442 509 559 442
19 460 654 564 558
20 460 495 570 570
21 490 490 572 563
22 523 526 575 566
23 550 708 578 659
24 560 710 581 1304
25 575 575 584 1306
26 600 643 600 600
27 628 706 628 628
28 630 660 631 1311
29 639 639 639 639
30 700 700 700 700
31 730 730 730 730
32 760 760 760 760

Total waiting time(min) 2367 3454 6841

Table 6. Virtual arrival vessel speed optimization of Pareto1.

ID Initial Speed (Knots) Optimal Speed (Knots)

9 17.14 9.03
19 13.04 9.17
23 16.45 13.54
24 15.89 13.48
27 14.33 12.74
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7. Conclusions

This article proposes a new comprehensive model that combines vessel scheduling and
virtual arrival methods to improve operational efficiency in complex traffic organization
scenarios. Specifically, a model was constructed to minimize waiting time and carbon
emissions while considering the optimization solution using the NSGA-2 algorithm. This
model has been tested and validated through a case study at Ningbo-Zhoushan port. The
results demonstrate that our innovative model and algorithm significantly outperform
traditional scheduling methods.

• The total waiting time can be reduced by up to 31.41% when compared to FCFS and
up to 65.37% when compared to VALS.

• Through the implementation of virtual arrival, all ships involved exhibit a notable
reduction in CO2 emissions, achieving a minimum decrease of 23.29% compared to
their original sailing conditions.

• This model has robust scalability to other ports due to its design based on algorithms
and strategies rather than relying on the special properties of specific ports.

Above all, it can increase port operational effectiveness and guarantee the delivery
of more dependable services. In addition, due to the algorithmic and strategic design
of this model, as opposed to relying on the characteristic properties of specific ports, it
exhibits robust scalability to other ports. Other ports can adapt and apply this model
according to their individual characteristics and datasets to optimize vessel scheduling
and reduce carbon emissions. This adaptability is underpinned by the model’s capacity to
accommodate diverse port-specific features and data patterns. For instance, distinct ports
may encounter varying traffic flow patterns, cargo demands, and geographical conditions.
By fine-tuning the model parameters, a more precise alignment with these variations
can be achieved, enhancing its efficacy within specific environmental contexts. Finally,
through the exchange of best practices and data sharing, different ports can mutually
benefit from each other’s experiences, facilitating further refinement of the model to cater
to localized demands. This collaborative effort contributes to establishing a global standard
for port management, propelling the industry towards a more environmentally sustainable
and efficient trajectory. In summary, the scalability of this model not only reinforces
its applicability to specific ports but also provides a solid foundation for international
collaboration and mutual development.

However, this study can be further improved in several directions. One future research
direction can focus on the complex interaction relationship between entering and exiting
ports instead of entering the port. In addition, by integrating IoT technology, ports can
utilize real-time data from sensors and devices on ships to capture and reflect current ship
information more accurately. The integration of real-time data helps provide more accurate
information support, enabling virtual arrival optimization to be adjusted timelier, thereby
improving the accuracy of decision-making and operational efficiency [36,37].
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