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Abstract: With an increase in local precipitation caused by extreme climatic phenomena, the frequency
of landslides and associated damage has also increased. Therefore, compiling fine-scale landslide
susceptibility assessment maps based on data from landslide-affected areas is essential. Deep neural
network (DNN) and kernel-based DNN(DNNK) models were used to prepare landslide susceptibility
maps of the mountainous Pyeongchang-gun region (South Korea) within a geographic information
system framework. To map landslide susceptibility, datasets of landslide occurrence areas, topog-
raphy, land use, forest, and soil were collected and entered into spatial databases, and 18 factors
were then selected from the databases and used as model inputs. The training and test datasets
consisted of 1600 and 400 landslide locations, respectively. The test accuracies of the DNN and DNNK
models were 98.19% and 97.53% and 94.11% and 92.22% for the area under the receiver operating
characteristic curve and the average precision value of the precision-recall curve, respectively. The
location of future landslides can now be quickly and efficiently predicted using remote sensing data
at a lower cost and with less labor. The landslide susceptibility maps produced in this study can
play a role in sustainability and serve as references for establishing policies for landslide prevention
and mitigation.

Keywords: landslide susceptibility; mapping; deep neural network; kernel-based DNN; extreme climate

1. Introduction

Landslides frequently occur worldwide and cause significant damage to human lives
and properties [1]. As with other natural disasters, the occurrence of landslides has been
unpredictable in recent years due to extreme precipitation events induced by abnormal
weather conditions attributed to global warming. In Korea, large-scale landslides have
historically occurred frequently because of the country’s geographic characteristics [2]. Ap-
proximately 70% of the total land area in Korea is mountainous terrain, and such areas now
often experience localized heavy rainfall caused by uncertain climatic characteristics [3]. In
summer, when heavy rain and typhoons occur together, large-scale landslides can occur in
almost all regions of Korea [4].

It is extremely important to assess the possibility of landslide occurrences and their
causative factors [5]. Generally, landslides occur as a result of the interaction between
weather, topography, geology, soil, and geophysical factors, and it is expensive and time
consuming to collect data pertaining to landslide areas that exist over a wide range [6].
In addition, as landslides are caused by complex interactions of several factors, objective
statistical analysis techniques are required to analyze the extensive field data obtained [7].
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Several studies have been conducted in recent years to assess landslide risks in moun-
tainous areas and reduce their negative impacts [8], and many studies on landslides have
been conducted using the geographic information system (GIS) framework [9]. Recent
analyses of landslide susceptibility have tended to utilize machine learning algorithms
in conjunction with stochastic and statistical models [10], and various machine learning
models, such as support vector machine (SVM), Gaussian naïve Bayes (GNB), Bernoulli
Naïve Bayes (BNB), and decision tree (DT), have been applied. In a case study conducted
in Isfahan province, Iran, GNB SVM, and BNB demonstrated accuracies of 80.1%, 81.5%,
and 50%, respectively, but the deep neural network (DNN)-based model demonstrated an
accuracy exceeding 90% with respect to determining landslide susceptibility [9]. In a study
in China, the DNN algorithm showed an accuracy of 87.30%, which was superior to that
of LSTM, CNN, and RNN of 86.50%, 85.60%, and 82.90% [11]. Additionally, meta-based
models (such as AdaBoost) and deep-learning models based on neural networks have been
widely used for landslide risk mapping [12].

With the development of various algorithms, meaningful results have been derived
from data gathered in the field; however, most of these algorithms determine the risk of
landslides based on the values assigned to each pixel [11]. Although the occurrence of a
landslide appears to relate to a singular point, it is critical to understand the interaction
between the elements within a certain radius of the occurrence of the landslide, and
the data of such information require analysis [13]. Therefore, the use of a kernel-based
algorithm and a pixel-based DNN can facilitate the extraction of spatial characteristics
and their application during training. As such, kernel-based modeling that reflects spatial
characteristics based on the kernel was also performed in this study.

Therefore, landslide susceptibility mapping using DNN algorithms that utilize kernel-
based learning to consider landslide occurrence points and the spatial distribution of
landslide-related factors in their vicinity was designed and conducted in this study [14]. To
map the landslide susceptibility of the Pyeongchang-gun region in South Korea, related
factors were derived using the frequency ratio (FR) within a GIS environment, and DNN
and kernel-based DNN (DNNK) algorithms were applied to 18 factors. Receiver operating
characteristic (ROC) and precision-recall (PR) curves were used to evaluate the accuracy of
each model. Test data (20% of the total data) were used to determine the accuracy of each
model. These results can serve as the foundation for developing sustainable systems to
monitor and manage the disasters associated with landslides.

2. Study Area and Data
2.1. Study Area

Pyeongchang-gun is located in the highlands of Gangwon Province to the east of
Seoul, South Korea. Approximately 65% of Pyeongchang-gun is located in highlands at an
elevation of 700 m above sea level, and the region is predominantly covered with forests
consisting of a variety of tall plants [15]. The average annual rainfall is 1082 mm (on
http://www.kma.go.kr/ (accessed on 11 November 2023), and most of the rainfall occurs
from June to August.

Granitic rocks dominate the geology of Pyeongchang-gun, and this is common in
the mountainous regions of South Korea. Considering that landslides often occur in
the Pyeongchang-gun area as a result of high altitudes and steep slopes, the prediction of
landslide susceptibility based on the factors that cause landslides is important to understand
the probability of potential disasters occurring [16]. This study focused on the areas of
Jinbu-myeon, Pyeongchang-gun, and Gangwon-do, which are located at 37◦16′ N and
128◦14′ E, as shown in Figure 1.

http://www.kma.go.kr/
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Figure 1. Map of the study area using an aerial image. 
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mine the precise landslide locations (Figure 2), high-resolution aerial photographs (10-cm 
resolution) were obtained using a map service (maps.daum.net) (accessed on 11 Novem-
ber 2023). An Ultra Cam-X sensor (Microsoft, Graz, Austria) was used to capture the trails 
of 2099 landslides that occurred in May 2008, and the results were confirmed using pho-
tographs taken after the incident (Figure 3). Several shallow soil slides and debris flows 
were observed in the study area (widths and lengths of <10 m and approximately 30 m, 
respectively). A total of 2000 locations were identified to conduct a comparative analysis 
of landslides, which were then classified into training and test datasets at a ratio of 8:2. 
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the study area, Pyeongchang-gun. 

Figure 1. Map of the study area using an aerial image.

2.2. Selection of Factors Related to Landslides

In the first step, probable landslide occurrence locations were identified. To determine
the precise landslide locations (Figure 2), high-resolution aerial photographs (10-cm res-
olution) were obtained using a map service (maps.daum.net) (accessed on 11 November
2023). An Ultra Cam-X sensor (Microsoft, Graz, Austria) was used to capture the trails
of 2099 landslides that occurred in May 2008, and the results were confirmed using pho-
tographs taken after the incident (Figure 3). Several shallow soil slides and debris flows
were observed in the study area (widths and lengths of <10 m and approximately 30 m,
respectively). A total of 2000 locations were identified to conduct a comparative analysis of
landslides, which were then classified into training and test datasets at a ratio of 8:2.
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Figure 3. (a–d) is the examples of major landslides identified in Pyeongchang-gun 2008. (http://maps.
daum.net) (accessed on 11 November 2023).

Numerous complex factors contribute to landslide occurrence. Therefore, selecting
factors that are most closely related to the probability of landslide occurrence is an essential
step in developing a landslide susceptibility map. Many components contribute to the
stability of landslides, including geological structure, vegetation cover, lithology, seismic
activity, geomorphological features, slope, climate, land use, and human activity [17]. As
shown in Table 1, 18 factors related to landslide susceptibility were identified based on
a literature review, and these were categorized into four types: topography, forest, soil,
and landcover types [18]. Geological factors were excluded from the modeling because
the geology at landslide locations in the study area was almost homogeneous [19]. The
18 factors considered for the analysis of landslide susceptibility were as follows.

Using the National Geographic Information Institute’s (1:1000 scale) digital eleva-
tion model (DEM; http://www.ngii.go.kr (accessed on 5 November 2023) as a reference,
topography-related factors were converted into raster data with a spatial resolution of 10 m.
Nine topographical factors were considered: plan curvature, profile curvature, slope, slope
length (LS), valley depth, relative height and slope position (RSP), terrain ruggedness index
(TRI), topographic position index (TPI), and terrain wetness index (TWI). Slopes are formed
by the erosion and deposition of topographic surfaces, and they play an important role
in determining the movement of landslide debris. In addition, water flow has a decisive
influence on the occurrence of landslides in most cases [20]. It was therefore determined
that, among the landslide-causing factors, topographical factors had the greatest influence
on landslide occurrence, and these were used as input data to determine the relationship
between landslides and these factors [21].

http://maps.daum.net
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http://www.ngii.go.kr
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Table 1. Data layer relating to a landslide within the study area.

Original Data Factors Data Type Scale

Aerial photograph Landslide location Point 1:1000

Topographical map a

Plan curvature

GRID 1:1000

Profile curvature
Slope

Slope length (LS)
Valley depth

Relative height and slope position (RSP)
Terrain roughness index (TRI)

Topographic position index (TPI)
Terrain wetness index (TWI)

Land use map b Land use

Forest map c
Timber age

Polygon 1:5000Timber diameter
Timber type

Soil map d

Soil drainage

Polygon 1:25,000
Gravel content in subsoil

Soil slope
Soil texture

Soil topography
a Topographical factors from a digital topographic map created by the National Geographic Information Institute
(http://www.ngii.go.kr) (accessed on 5 November 2023). b Land-use map compiled by the Korea Ministry of
Environment (http://eng.me.go.kr/) (accessed on 11 November 2023). c Forest map compiled by the Korea Forest
Service (https://map.forest.go.kr/forest/) (accessed on 11 November 2023). d Detailed soil map compiled by the
Rural Development Administration (http://www.rda.go.kr) (accessed on 11 November 2023).

The slope was defined as the angle formed by the vertical height and distance, and
the curvature values of the topographic surfaces were calculated using the geospatial
toolset in ArcGIS Pro 3.0 version. The plan and profile curvature factors represented the
morphological characteristics of the study area [22]. The value of a surface that was concave
upward was positive, and that of a surface that was concave downward was negative.
Two secondary geomorphological parameters, TWI, and TRI, can be used to describe and
quantify the relief of a given region [23]. Valley depth can also provide information about
the drainage flow in an area, which is helpful for identifying potential landslides (Figure 4).
Two factors affect topographical stability: RSP and TPI [24]. These two factors were used to
calculate the relative terrain location, such as the hilltop, valley bottom, exposed bridge,
flat plain, and upper or lower slope. In this respect, a positive value was obtained with
an increase in the difference in the relative position [25], and a value representing a high
slope or valley indicated a topographically unstable state. Topographical instability can
cause landslides when a significant amount of rainfall, and it was thus used as input data
in this study.

Various forest factors (such as wood type, density, age, and diameter) must also be
considered when evaluating landslide susceptibility [26]. In this study, three forest-related
factors were considered (age, diameter, and type of forest compiled by the Korea Forest
Service) (Figure 5). Forest density is associated with the density of the root systems that
support the soil and provide stability, and landslides are more likely to occur in non-forested
areas. It is also possible that areas with immature root systems are unable to withstand
runoff from the soil surface, resulting in soil erosion [27].

http://www.ngii.go.kr
http://eng.me.go.kr/
https://map.forest.go.kr/forest/
http://www.rda.go.kr
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Furthermore, the soil characteristics of the study area (including soil drainage, bedrock
type, texture, slope, and topography) were considered (Figure 5). Data on the spatial
distribution of the soil factors were obtained from the Korea Institute of Agricultural
Sciences (http://www.rda.go.kr) (accessed on 11 November 2023). Soil permeability
and porosity are related to the soil material, and they therefore influence the fluid flow
rate. Soil thickness affects the ability of the soil to absorb water, and it influences the
quantity of runoff [27,28]. When assessing land cover conditions (including runoff and

http://www.rda.go.kr
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infiltration rates) that are directly or indirectly associated with the occurrence of landslides,
it is also necessary to assess runoff and transportation conditions. This study utilized a
land-cover map published by the Korean Ministry of Environment at a scale of 1:5000
(http://eng.me.go.kr/) (accessed on 11 November 2023).

3. Methodology

Landslide occurrence is influenced by a variety of related factors; therefore, each factor
needs to be simplified when used as input data for the modeling process. The location of a
landslide and its neighboring area have a significant effect on natural phenomena; therefore,
it is necessary to analyze the landslide using a model that considers the spatial relationship
of the input data. In this study, landslide susceptibility was analyzed using kernel-based
deep learning models that consider the spatial values in the vicinity of landslides. Based
on the training data, 18 landslide-related factors were identified and organized in a spatial
database, and a map of landslide susceptibility was created using the DNN and DNNK
models based on the kernels (Figure 6).
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preprocessing, (2) deep neural network training and prediction, and (3) model evaluation.

Data on areas with landslide occurrences were obtained from the Korea Institute
of Geoscience and Mineral Resources, and areas without landslide occurrences were de-
termined using the FR method. After classifying the input data at equal intervals, the
ratio of the number of pixels occupied by each section to the total number of pixels was
calculated [29]. It was then possible to obtain the ratio of the number of pixels in each
section where landslides occurred and divide both values to obtain the FR of each section.
By extracting a section with a similar low FR value, a pixel without landslide occurrence
was identified.

Several additional restrictions were then set for the terrain extracted in an area without
landslide occurrence. Landslides generally occur in steep terrain; therefore, ArcMap 10.8
(ESRI, The Redlands, CA, USA) was used to determine whether landslides occur in areas
where the slope is <3◦. The considered landcover types were urban, agricultural, wetland,
and rivers. Assuming that landslides do not necessarily occur, a total of 2000 points were
randomly selected from the selected regions.

Additionally, data augmentation techniques were employed to enhance the training
process. Datasets were augmented in various ways to scale the real learning datasets. Data
augmentation not only increases the quantity of data but also helps the model to work well

http://eng.me.go.kr/
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without overfitting. In this study, the data were augmented by adding noise, image rotation,
flipping, and shifting. Noise injection usually consists of injecting a random-value matrix
extracted from a Gaussian distribution. It is one of the major data augmentation techniques
tested by Moreno-Barea [30]. Adding noise to a kernel or pixel can help DNN learn more
powerful features [31]. The flipping was performed by applying flipping based on the
horizontal and vertical axes to enhance the data. Rotation enhancement was performed by
rotating the image right on an axis between 180◦ and 270◦. This data enhancement was
useful for increasing the accuracy of the prediction results, and this was proven in the case
of ImageNet [32].

3.1. Deep Neural Network (DNN)

As a machine learning algorithm based on the principles and structure of human
neural networks, the DNN algorithm is widely used across a wide range of fields, including
prediction and classification [27,33]. In recent years, deep learning has evolved, and models
contain multiple hidden layers between the input and output layers and complex artificial
neural networks. The structure of the model used in this study is described in the following
sub-sections.

3.1.1. Pixel-Based Deep Neural Network (DNN)

The DNN model uses pixel data as the input. It is the most commonly used model,
and it provides fast calculations, is simple to use, and considers only a few parameters.
This study used a pixel-based DNN model with five hidden layers, with a total of 1000,
500, 150, 50, and 10 hidden nodes in each layer, respectively. A rectified linear unit
(ReLU) function was used as the activation function. A stochastic gradient descent (SGD)
optimizer was used, and the batch size, learning rate, and epoch were set to 128, 0.01, and
300, respectively [34].

3.1.2. Kernel-Based Deep Neural Network (DNNK)

The second DNN model involved converting each input pixel into a kernel and using
it as input data. A kernel-based model has the advantage of incorporating peripheral
values into predictions, which would otherwise be lost in pixel-based data [27].

The kernel used a 9 × 9 m window with five hidden layers comprising a total of 1000,
500, 150, 50, and 10 hidden nodes in each, respectively. The ReLU function was used as an
activation function. An SGD optimizer was employed, and the batch size, learning rate,
and number of epochs were set to 128, 0.01, and 300, respectively.

3.2. Model Evaluation

The value of landslide susceptibility derived from a deep learning model is an estimate,
and therefore requires evaluation. The area under the curve (AUC) of the ROC and the
average precision (AP) values of the PR curve were used as quantitative indicators to
assess the accuracy of the predicted landslide susceptibility by the employed DNN and
DNNK models.

According to the ROC curve, the landslide susceptibility results were not used as is
but were reclassified based on the relative ranking. The relative ratio can be determined by
calculating the number of landslide occurrence locations cumulatively included in each
range [35]. It is possible to view the entire study area through the use of the relative ratio
and compare the results with those calculated using other models. For this purpose, the
AUC was calculated based on the test data (20%), which were not used for model training.

The quantitative performance of the model was evaluated using the AP value, which
represents the area under the PR curve. This graph shows how the precision and recall of
the model changed as the thresholds changed, and the higher the AP value, the better the
prediction performance of the model [27,36].
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4. Results

The landslide susceptibility map displayed in Figure 7 shows the results obtained
using the model in this study. One landslide susceptibility map (Figure 7a) was generated
using the DNN model, and another landslide susceptibility map (Figure 7b) was predicted
using the DNNK model. All the pixels in these maps represent values between 0 and 1,
with the exception of water areas, such as rivers. Landslides are more susceptible when the
value is closer to 1 and less susceptible when the value is closer to 0. In terms of risk classes,
the proportion of areas at very high, high, moderate, low, and very low risk covered 10%,
10%, 20%, 20%, and 40%, respectively, according to the results of the landslide susceptibility
map. Both models produced similar results in terms of spatial distribution, which was
confirmed using a ground truth map.
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According to the DNN model, landslide susceptibility was classified as very high,
high, moderate, low, and very low, with susceptibility value ranges of 0.981–1.0, 0.895–0.98,
0.46–0.894, 0.017–0.459, and 0–0.016, respectively. According to the DNNK model, land-
slide susceptibility was classified as very high, high, moderate, low, and very low, with



Sustainability 2024, 16, 245 10 of 13

susceptibility value ranges of 0.993–1.0, 0.95–0.992, 0.523–0.949, 0.017–0.522, and 0–0.016,
respectively. With the DNN and DNNK models, areas with susceptibility values > 0.95
accounted for 35.28% and 43.45% of the total area, respectively, and areas with susceptibility
values of >0.99 accounted for 21.42% and 27.37%, respectively.

The proportion of areas with low susceptibility was significantly higher with the DNN
model than with the DNNK model, and this was attributed to the influence from the water
area. Landslides are less likely to occur in waterbodies, such as rivers and lakes, or valleys,
and pixel-based DNN models do not competently predict water areas. In this respect, the
susceptibility prediction of the kernel-based DNNK model was good in non-forested areas
because the spatial information of adjacent pixels was considered.

ROC and AP values were used to evaluate the quantitative performance of the model.
Using landslide-related variables and landslide occurrence areas, the training dataset was
used to improve the predictive performance of landslide susceptibility. The predictive
performance was evaluated using a test dataset containing 20% of data that had not been
used for training. The ROC values of the DNN and DNNK models were 0.9819 and 0.9411,
respectively. The prediction accuracy of both models was >94%, but that of the DNNK
model was higher by 0.0408 (Figure 8a,c).
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The precision-recall graph shows precision versus recall for different decision thresh-
olds used in the DNN and DNNK models. The closer the graph is to the upper right, the
higher the precision and recall [37]. The AP values of the DNN and DNNK models were
0.9753 and 0.9222, respectively, but DNNK exhibited a 5.31% higher AP value than that of
the DNN (Figure 8b,d).

Compared with the DNNK model, the DNN model yielded higher quantitative results;
however, according to the ROC results, both models predicted a 90% landslide occurrence in
<10% of the area (Figure 8a,c). A combination of forest, soil, geological, and topographical
factors acts together to produce a landslide. It is difficult to generalize landslide patterns as
they occur in more than one direction, and each landslide area varies in shape and structure.
For these reasons, a patch-based model was applied, and it exhibited good performance.

5. Discussion and Conclusions

Landslides are among the most common natural disasters occurring globally, resulting
in numerous casualties and extreme economic losses annually. It is important to analyze
and predict areas that are prone to landslides that are caused by changing temperatures
and precipitation relating to climate change. The Gangwon-do region is significant in the
context of sustainability due to its regional environment, which has many steep slopes. It
is predominantly mountainous and susceptible to landslides; therefore, data of landslide
information are available, and it was thus chosen as the research object here.

It is not possible to identify an individual factor responsible for landslide occurrence,
as it is caused by a combination of several factors. It is important to reflect on the spatial
characteristics of the surroundings because topographical elements play a significant role in
causing landslides. Therefore, we evaluated landslide susceptibility in Pyeongchang-gun
in Gangwon-do using a deep learning model that has been actively researched in recent
years and has been proven to perform extremely well in kernel-based analyses.

In this study, we employed the pixel-based DNN model and the DNNK model (a
kernel-based DNN model). Eighteen landslide-related factors were used as input data, and
a spatial database with a grid size of 10 m × 10 m was constructed. A training dataset
was used to train the model, and a test dataset was employed to evaluate and verify
the models’ performance. Although pixel-based models are effective, they are limited
by their inability to incorporate spatial features. The kernel used in this study was 9 m
× 9 m so that the effects of landslide occurrence factors within a radius of about 10 m
were considered. A performance evaluation of susceptibility prediction using ROC values
suggested that the DNN model performed better than the DNNK model by 4.08%. The
AP values showed that the DNN and DNNK models provided prediction performances of
97.53% and 92.22%, respectively, and that these values were similar to those of the ROC. In
terms of accuracy, the results of the DNNK model were somewhat lower than those of the
pixel-based DNN model; however, the areas with high vulnerability were better outlined.
In future studies, we anticipate characterizing spatially extensive landslides according to
kernel size differences.

Landslides can seriously impact communities and their resilience, but understanding
landslide risk can help strengthen response and recovery strategies. It is crucial to develop
policy alternatives to strengthen damage recovery capabilities, such as pre-established
recovery plans. To support rapid recovery in the event of a disaster, smooth operational
support is required, such as designating emergency transportation routes that reflect the
characteristics of the disaster. In this context, it is vital to use various methods to evaluate
resilience [38]. It is necessary to establish a system that links recovery and prevention before
a disaster occurs and to strengthen resilience by linking roles between metropolitan and
local governments. Social resilience and physical resilience have been evaluated on a sub-
district scale [39], but it is necessary to institutionalize resilience assessment methods and
establish landslide risk data that consider social aspects that can be universally applied. The
landslide susceptibility maps presented in this study can serve as references for establishing
policies that prevent landslides and mitigate their effects.
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As demonstrated in this study, the location of potential landslide occurrences can
be efficiently determined using remote sensing data (such as aerial photographs), which
reduces the time, cost, and labor required when conducting field investigations. The
DNN and DNNK models were used to produce landslide susceptibility maps of the study
region, which can be employed in the prediction of future landslides. In future studies, we
intend to apply an image Convolution Neural Network (CNN) to compare and analyze the
prediction accuracy using pixel-based methodologies [40], and this method could be used
to predict landslide risks in other areas.
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