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Abstract: Treatment of air pollution and health impacts are both crucial components of long-term
sustainability. Measuring individual exposure to air pollution is significant to evaluating public
health risks. In this paper, we introduce a big data analytics framework to quantify individual
PM2.5 exposure by combining residents’ mobility traces and PM2.5 concentration at a 1-km grid level.
Diverging from traditional approaches reliant on population data, our methodology can accurately
estimate the hourly PM2.5 exposure at the individual level. Taking Shanghai as an example, we model
one million anonymous users’ mobility behavior based on 60 billion Call Detail Records (CDRs) data.
By integrating users’ stay locations and high-resolution PM2.5 concentration, we quantify individual
PM2.5 exposure and find that the average PM2.5 exposure of residences in Shanghai is 60.37 ug·h·m−3

during the studied period. Further analysis reveals the unbalance of the spatiotemporal distribution
of PM2.5 exposure in Shanghai. Our PM2.5 exposure estimation method provides a reliable evaluation
of environmental hazards and public health predicaments confronted by residents, facilitating the
formulation of scientific policies for environmental control, and thus advancing the realization of
sustainable development.

Keywords: human mobility; mobile phone data; PM2.5 exposure

1. Introduction

Air pollution, which includes emissions from vehicles, industrial processes, and other
sources, contributes to environmental degradation. Pollutants can harm ecosystems, dam-
age vegetation, and affect water quality, thus undermining the sustainability of natural
resources. On the other side, poor air quality caused by pollution can have severe health
consequences, leading to respiratory diseases, cardiovascular problems, and even prema-
ture death. Therefore, quantifying the health impact of air pollution plays an important
role in urban sustainable development.

Exposure refers to the dynamic interaction between air pollutants and the surface
of human body, delineating the interplay between the environment and the human body.
Assessing the level of pollutant exposure involves evaluating both the duration of contact
and the concentration of associated pollutants [1]. As one of the environmental problems
derived from industrialization, the air pollutant PM2.5 has a serious impact on the health
of residents. Both long-term [2] and short-term [3] exposure to PM2.5 will have harmful
effects on human health, especially increasing the risk of cardiovascular and respiratory
diseases, as well as lung cancer, thus directly affects the health of residents. Since there
is no established research indicating that PM2.5 concentration below a certain threshold
is entirely harmless to humans, it is important to minimize exposure levels as much as
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possible. As PM2.5 has significant detrimental influences on human health, it is crucial to
quantify exposure to PM2.5 throughout the day. The estimation of exposure can stimulate
more discussions about public health concerns [4], provide more precise health guidance
for individuals, and also offer a scientific basis for comprehensive health management
of residents.

In the past few years, the quantification of human exposure to pollutants has been
constrained by the availability of extensive data and computational resources. Early studies
predominantly focused on aggregate level exposure assessments, such as community level
or neighborhood level [5–8]. This approach, however, is susceptible to the Modified Area
Unit Problem (MAUP) [9], where the outcomes are influenced by the geographical units or
spatial scales employed in the studies. Such aggregated analyses may only offer a partial
representation of actual exposure scenarios, potentially leading to imprecise conclusions.
Another limitation of aggregate level studies is the omission of the mobility behavior of
individuals. These studies, by basing exposure assessments predominantly on pollutant
concentrations at individuals’ residences and overlooking their mobility behaviors, give
rise to the Neighborhood Effect Averaging Problem (NEAP) [10]. Park et al. [11] validated
this problem, emphasizing the necessity of incorporating spatiotemporal variations in
both human mobility and pollutant concentrations to enhance the accuracy of exposure
assessments.

In urban built environment, particularly where traffic congestion and long-distance
commutes are prevalent [12], individuals may spend substantial time away from their
residences, making the consideration of mobility patterns in exposure assessments indis-
pensable. Therefore, it is necessary to assess exposure from the individual level rather than
aggregate level. Traditional methodologies for individual level exposure quantification
have relied on questionnaire surveys to gather trajectory information [13,14]. However,
these methods are labor-intensive, costly, and impractical for large-scale population studies.

The advent of big trajectory data, such as Call Detail Records (CDR), has provided
new opportunities for modeling human mobility [15–17]. Notable studies have leveraged
mobile phone data to elucidate disparities in PM2.5 exposure. For instance, Xu et al. [18]
utilized CDR data to investigate environmental justice aspects of PM2.5 exposure in Beijing,
revealing economic disparities in exposure levels. Similarly, Guo et al. [19] examined
exposure disparities across multiple temporal scales, although their study was limited
by the short duration of mobile phone data available, restricting the ability to assess
long-term stable exposure patterns of residents. Besides, it is worth noting that research
on the disparity of environmental air pollution exposure mainly focuses on developed
countries [20–25], while developing countries, despite suffering from more severe air
pollution, have relatively limited research on such exposure inequalities [26–28]. To the
best of our knowledge, there is also no paper studying the residents’ individual exposure
to PM2.5 in Shanghai, which is one of the most iconic cities in China.

In this paper, we propose a big data analytics framework to accurately quantify
individual PM2.5 exposure in Shanghai by coupling mobile phone data with PM2.5 concen-
tration data at a fine scale. The mobile phone data is generated by the interaction between
mobile phones and communication base stations in daily life from January to April 2014.
By performing stay point detection on mobile phone data, we can identify the user’s place
of residence and work, as well as the complete daily trajectory. Moreover, to infer fine-
grained PM2.5 concentration, we combine two types of data: station monitoring data with
high temporal resolution and China High Air Pollutants (CHAP) data with high spatial
resolution. This paper proceeds to compute the individual’s exposure to PM2.5 by utilizing
their stay behavior and environmental corresponding PM2.5 concentration. By comparing
the results with residence-based exposure, we demonstrate the importance of mobility
in measuring exposure. In addition, we analyze the spatial and temporal variations in
individual exposure, providing new perspectives and data support for policy formulation.
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This paper is organized as follows: Section 2 describes the data utilized in this study
and the methodology we propose, Section 3 presents the obtained results. In Section 4,
we further discuss the obtained results, and Section 5 presents our conclusions and fu-
ture work.

2. Materials and Methods
2.1. Data Description

In this section, we introduce the datasets used in this study. including Call Detail
Records (CDR) data and PM2.5 concentration recordings.

When a mobile phone user performs operations such as turning on and off the phone,
making a call, sending a text message, or using the mobile data network, his mobile phone
exchanges information with the base station on a regular or occasional basis to ensure the
quality of communication and to perform billing operations. In this process, communication
operators will record these interaction timestamps and interactive base station code or
location and other information in real-time. In addition to the data generated by the active
operation of the mobile phone user, the base station also periodically detects the signal of
the mobile phone and interacts with the mobile phone according to a specific time period.

Considering that the mobile phone always interacts with the nearest base station,
the CDR data can reflect the user’s location. In this paper, we use the Call Detailed Record
data of the Shanghai area provided by the communication operator, which contains the
records of one million anonymous users exchanging information with the base station from
1 January 2014, to 31 April 2014. Each record contains the user’s anonymous ID, the times-
tamp of the interaction with the base station, and the latitude and longitude of the base
station, as shown in Table 1. These one million users generated nearly 60 billion records.

To protect users’ privacy, the CDR data we use is not the most recent. This CDR dataset
is only utilized to support this research and has not been made public. Considering that the
land use types in Shanghai are relatively stable, correspondingly, the spatial distribution of
the population and daily mobility behavior in Shanghai are also stable. Therefore, even
though the data we use is collected in 2014, we can still obtain reliable information about
users’ daily mobility behavior for our research.

Table 1. Feature description in CDR data.

Feature Type Description

uid String Anonymous user ID
time String Timestamp of record, e.g., 20140101002656
lon Float The longitude of the base station, e.g., 121.469116
lat Float The latitude of the base station, e.g., 31.225176

The calculation of individual PM2.5 exposure requires PM2.5 concentration data with
high spatial and temporal resolution. In this paper, we fuse two PM2.5 datasets to generate
hourly PM2.5 concentration data for each 1-km grid.

Firstly, we collected the air quality data from the national fixed monitoring stations
provided by China National Environmental Monitoring Station. Specifically, we selected
the real-time concentration data of PM2.5 monitored hourly by fourteen fixed monitoring
stations in Shanghai for research. The spatial distribution and the number of monitoring
stations are shown in Figure 1.
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Figure 1. Study area in Shanghai. The orange part represents the study area, the green dots represent
the monitoring station locations, and the grey grids represent the specific study spaces.

Shanghai’s environmental monitoring stations were only able to provide hourly PM2.5
monitoring data after May 2014. We compared the daily average PM2.5 concentration of
nine monitoring stations in Shanghai within four months in 2014 and 2015. The results in
Table 2 show that there is slight difference in the average PM2.5 concentration data between
2014 and 2015 in Shanghai. Therefore, in this paper, we used the PM2.5 data from January
to April 2015 provided by the environmental monitoring stations in Shanghai to extract the
daily pattern of PM2.5.

Table 2. Comparison of daily average PM2.5 concentration in 2014 and 2015.

Average PM2.5 2014 2015 Diff
Concentration (ug/m3) (ug/m3) (ug/m3)

January 76.61 83.03 −6.42
February 52.32 64.39 −12.07

March 56.87 54.10 2.77
April 52.93 55.80 −2.87

The other dataset is China High Air Pollutants (CHAP), a high spatial resolution and
high-quality near-surface PM2.5 pollutant dataset in China reconstructed by Jing et al. [29,30].
They constructed a Space-Time Extra-Trees (STET) model by fusing aerosol optical depth
(AOD) data, meteorological data, land surface conditions, and population distribution
to estimate the concentration of PM2.5. This dataset provides the daily average PM2.5
surface concentration on a 1-km grid over China from 2000 to 2021. The cross-validation
determination coefficient and root mean square error of the model used to estimate PM2.5
in this dataset were 0.92 and 10.76 respectively. In this paper, we select the daily PM2.5
concentration data in Shanghai from January 2014 to April 2014 within the scope of 1-km
grids to calculate the individual PM2.5 exposure.
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For the daily PM2.5 data in the Shanghai area provided by the CHAP dataset, we
first performed the visual analysis, as shown in Figure 2. From the temporal perspective,
the pollution problem is more prominent in January of winter 2014, with the monthly
average concentration of 62 ug/m3, while the average concentration of February, March,
and April are 42 ug/m3, 44 ug/m3 and 38 ug/m3 respectively. From the spatial perspective,
the spatial distribution of PM2.5 concentration in Shanghai showed a trend of high in the
west and low in the east.

PM2.5 
concentration
(ug/m )

January Feburary

March April

3

Figure 2. The daily average PM2.5 concentration in Shanghai from CHAP dataset.

2.2. High-Resolution PM2.5 Data

As introduced above, we used two PM2.5 datasets in our research. The PM2.5 data
provided by the fixed monitoring station has high temporal resolution and low spatial
resolution, while the CHAP dataset has low temporal resolution and high spatial resolution.
Therefore, we combine these two spatiotemporal PM2.5 concentration datasets and derive a
new PM2.5 dataset that can provide hourly PM2.5 concentration data in every 1-km grid
in Shanghai. We used the hourly PM2.5 concentration provided by the fixed monitoring
station to correct the daily average PM2.5 concentration data of the 1-km grid provided by
the CHAP dataset to infer the hourly PM2.5 concentration of each 1-km grid in Shanghai.
In order to obtain the hourly average PM2.5 concentration data based on the corresponding
daily average PM2.5 concentration data, we define a parameter named correction factor. For
each fixed monitoring station, we estimate its hourly average PM2.5 concentration in the
m month based on the data provided by the fixed pollutant monitoring station and then
calculate the average PM2.5 concentration for the whole month. The ratio of these two
concentration records is the hourly correction factor for the monitoring station this month.
Specifically, for monitoring station f , we use C f ,m,d,h to represent its PM2.5 concentration on
day d hour h in month m and the correction factor CFf ,m,h of the station at the h hour of the
m month is calculated as follows:
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C f ,m,h =
∑d∈M C f ,m,d,h

|M| (1)

C f ,m =
∑d∈M ∑23

h=0 C f ,m,d,h

|M| × 24
(2)

CFf ,m,h =
C f ,m,h

C f ,m
(3)

where M represents the set of days in the m-th month. Since we have 14 fixed monitoring
stations, we can calculate a total of 14 × 4 × 24 = 1344 correction factors. Section 3.1
provides an example of calculated correction factors for monitoring stations.

Subsequently, we map the daily average PM2.5 concentration data of the 1-km grids
in the CHAP dataset to the grids in Shanghai and delete the grids without mapping
values. Following this, we calculate the average of the grids with multiple mapping values.
We regard Ĉ(x,y),m,d as the daily average PM2.5 concentration of the Grid(x, y) in the d-
th day, the m-th month. Then for every grid, we use the correction factor of the fixed
monitoring station that has the nearest distance to it to correct its PM2.5 concentration data
and obtain the hourly average PM2.5 concentration in this grid. This operation is shown in
the following equation:

Ĉ(x,y),m,d,h = CFf(x,y),m,h × Ĉ(x,y),m,d (4)

Now, we have obtained the PM2.5 concentration of 24 h per day from January to April
2014 in Shanghai and the high-resolution (per hour for each 1-km spatial grid) PM2.5 data
is of great importance to calculate the individual PM2.5 exposure.

2.3. Recognizing Individual’s Stay Locations

As we introduced above, the CDR data reveals users’ mobility behavior. In order to
infer the mobility trace of residents, we must know the specific location where the user
stayed. There are two types of stay behavior [31]. One is when the user’s coordinate is
completely kept at the same location for a period of time, which is unusual because even at
the same location, the user’s mobile phone usually produces slightly different records. The
second type of stay behavior is more common and shows that the individual moves or stays
within a certain range of the same location, but the presence of different base stations in the
vicinity leads to subtle differences in their location record data. Therefore, it is not credible
to determine the user’s historical stay location only based on their coordinate changes.

In this paper, we utilize the clustering method proposed by Jiang et al. [16] to recognize
users’ stay behavior based on their CDR data. As Figure 3 shows, we cluster the CDRs from
the temporal dimension and spatial dimension respectively. By doing this, we can filter out
the disturbance of the user’s coordinates among base stations and delete the outliers so
that we can cluster different records near the same location into a single point.

Firstly, we apply clustering in the temporal dimension to filter out the disturbance
of locations. We cluster the points, which are temporally and spatially close in the record
sequence into a single location, and take the difference value between the first record
and the last record in the clustering as the dwelling time of this point. For example,
assuming that user i has a CDR sequence Di = (di(1), di(2), . . . , di(ni)), where di(k) =
(t(k), lon(k), lat(k)) is a 3-tuple recording the timestamp and coordinates of the k-th record.
By setting a distance threshold ∆d1 (500 m), we cluster CDRs within the threshold to
their center point (the point with the smallest sum of distances to other points), and we
calculate the time difference between the earliest record and the latest record as the user’s
dwelling time at this cluster point. After this process, Di is transferred to a new sequence
D

′
i = (d

′
i(1), d

′
i(2), . . . , d

′
i(n

′
i)), where ni ̸= n

′
i, d

′
i(k) = (t(k), dur(k), lon(k), lat(k)) is a

four-tuple to record the arrive time, dwelling time and coordinates after clustering of the
k-th record.
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di(k+1)

di(k+2)
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d′i(g)
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d′i(q)
si(m)

Clustering in 
temporal dimension

Clustering in 
spatial dimension

Figure 3. Clustering users’ CDRs to recognize their stay behavior.

Then we apply the clustering operation in spatial dimension to filter out outlier
locations. Specifically, we set ∆d2 (500 m) as the distance bar to further cluster loca-
tions in the CDR sequence. Here we only merge spatial-closed locations and delete
records whose dwelling time is less than ∆dt (10 min in this paper) after spatial clus-
tering. Then we get the final stay behaviors Si = (si(1), si(2), . . . , si(mi)), where si(k) =
(t(k), dur(k), lon(k), lat(k)). In this way, we finally filter out the locations that users pass by
and retain the long-time stay behaviors that are conducive to downstream modeling tasks.

After generating users’ daily stay locations from their CDR data, we further identify
the location of the users’ residences. On the one hand, the location of the user’s home is
convenient for us to calculate the pollutant exposure based on residence. On the other hand,
it is important to understand the location of the home in the mobility trajectory, because the
environment and landuse around residences of users affect their daily travel and activities,
which is related to their mobility pattern. Assuming that most users go out during the day
on weekdays and return home from their workplaces at night, we define the location with
the highest frequency of visits on weekday nights and all day on weekends as the user’s
home location. If a user’s total number of visiting ’home’, which is calculated by the above
rule, is less than 10, then we claim that this user is a short-term visitor of the city and delete
his records. Detailed results of this subsection can be found in Section 3.2.

2.4. Calculating Individual Exposure

As we mentioned above, the essence of quantitatively describing exposure is to focus
on the concentration of pollutants and the duration of contact [1]. Duan [32] has once
provided a method to calculate exposure by linearly combining concentration and dwelling
time. In this paper, we implement two methods to quantitatively calculate individual
exposure: ER represents the exposure calculated solely based on the home location of an
individual, and ES represents the exposure calculated based on the mobility behavior of an
individual. As the traditional method of estimating the exposure based on residences, ER

only uses the location of users’ homes and does not take count of their mobility behavior.
The exposure calculation method based on mobility behavior, ES, takes into account
people’s stay at various locations during one day and evaluates the impact of staying at a
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specific location on the exposure. The calculation method of these two exposure metrics of
user u in the h hour of day d in month m can be expressed as:

ER
u,m,d,h = Ĉ(xu

R ,yu
R),m,d,h × 1 (5)

ES
u,m,d,h = ∑

i=1
Ĉ(xu

Si
,yu

Si
),m,d,h ×

duru,m,d,h(Si)

3600
(6)

Here, (xu
R, yu

R) represents the grid where user u lives, (xu
Si

, yu
Si
) represents the grid

where user u stays in his trajectory, duru,m,d,h(Si) represents the stay time, which is recorded
in second, of user u in the grid within the h hour of day d of month m, and the unit of the
final PM2.5 exposure is ug·h·m−3.

3. Results
3.1. Example of Correction Factor

After calculating the correction factors in line with the method introduced in Section 2.2,
in this subsection we select the calculated correction factors from two monitoring stations
and provide further explanation on these correction factor values. We take the JingAn region
monitoring station (No. 1147A) located in the city center and the Dianshanhu monitoring
station (No. 1146A) located in the suburb as examples to explore their correction factors in
these four months. Figure 4 shows the correction factor calculated for the two monitoring
stations in different months. Where the y-axis represents CFf ,m,h − 1, if it is greater than 0, it
means that the concentration at that hour needs to be adjusted upward relative to the daily
mean, otherwise it means that it needs to be adjusted downward, and 0 indicates no change.
Figure 4 shows that there are differences in the adjustment rules of monitoring stations in
different months and locations. In general, the correction rate per hour is hardly more than
20%. The monitoring station in the city center will have a peak at around 10:00 am, and the
peak time of January and February is later than that of March and April, because the
sunrise time is later in winter, and the peak time of PM2.5 concentration will be delayed. In
addition, the concentration of PM2.5 in the suburban monitoring stations fluctuates more
than that in the city center during the day, and in the early morning hours (around 0:00
to 5:00), the concentration of PM2.5 in each monitoring station is lower than the average
except in January.

Januray Feburary

March April

Figure 4. Correction factors for monitoring stations 1146A and 1147A per hour from January 2014 to
April 2014
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3.2. Stay Behavior and Home Locations

We process the user’s raw CDR data according to the clustering method introduced in
Section 2.3, filter out outlier records, and recognize the users’ stay behavior in their daily
travel based on the original CDR data. Figure 5 shows the distribution of the number of
users’ daily stay locations. We find out that more than 80% residents visit one to three
different locations per day and only a small number of users visit more than five locations
per day.

Figure 5. Distribution of the number of locations visited by mobile phone users per day. Each point
located at (x, y) represents that the proportion of users who have an average daily record count of x
is y relative to the total number of users.

In line with the home location identification method introduced in Section 2.3, we
identify the location of users’ residences based on their stay behaviors and filter out short-
term visitors to Shanghai. After this process, our data finally includes 647,010 users.
Subsequently, we calculate the region of the users’ homes based on the inferred coordinates
of their homes and normalize the number of residences within the administrative district.
The distribution of home locations obtained from the CDRs data in Shanghai is shown in
Figure 6.

5

10

15

20

25

30
Density (%)

Pudong New
District

Fengxian
District

Jinshan
District

Songjiang
District

Qingpu
District

Jiading
District

Baoshan
District

Minhang
District

1 — Yangpu 
2 — Hongkou 
3 — Jingan
4 — Putuo
5 — Changning 
6 — Xuhui 
7 — Huangpu

1
23

4
5

6
7

Figure 6. Distribution map of users’ home locations. We have normalized user home location counts
across districts, showing each district’s proportion to Shanghai’s total. Darker colors indicate more
home locations.
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3.3. Calculated PM2.5 Exposure and Analysis

Utilizing the methods introduced in the above sections to process the CDR data and
PM2.5 concentration data, we calculate different exposures according to Equations (5) and (6).
The results are shown in Table 3. Where we find that the average individual exposure
calculated by users’ home location is less than that based on stay behaviors.

Table 3. The average PM2.5 exposure of different calculation methods.

PM2.5 Exposure January February March April Overall
(ug·h/m3) Mean Std Mean Std Mean Std Mean Std Mean Std

Home location based 75.325 43.561 52.234 32.620 57.107 27.449 52.115 18.016 60.328 33.763
Stay behavior based 75.350 43.764 52.196 32.718 57.136 27.682 52.263 18.167 60.374 33.925

Subsequently, we further analyzed the differences of individual exposure in the spatial
and temporal dimensions. First, we analyzed the differences in hourly average PM2.5
exposure over 24 h every day. We calculated the distribution of the average exposure of
all users at different times based on the hourly stay behavior of 647,010 users and the
spatiotemporal PM2.5 data with high resolution. Results are shown in Figure 7.

Results in Figure 7 reveal that the average PM2.5 exposure of users is on the high side
during the morning peak and evening peak (9 am to 11 am and 6 pm to 8 pm) periods of
each day. We suggest that one conceivable reason is that high emissions from automobile
exhaust during commuting hours result in high airborne PM2.5 concentrations, and thus
the calculated exposure level is higher than the daily average exposure level.

0 5 10 15 20
Hour

PM
2.

5 
ex

po
su

re
 (u

g/
m

 )

55

110

165

220

0

3

Figure 7. The box plot of PM2.5 exposure of all mobile phone users per hour per day. (The colors
of the different boxes are automatically designated by the plotting library and do not convey any
particular meaning in this figure.)

Moreover, we analyzed the differences of individual PM2.5 exposure in different
months. We calculated the average hourly exposure of all users in different months
and visualized this part of the data in Figure 8. We found that the average exposure
level in January was significantly higher than the other months because the overall PM2.5
concentration in January was higher. The average exposure levels in February and March
are similar, and the interquartile range in April is the shortest, indicating that there is no
significant difference in the average hourly exposure of all residences within April.
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Figure 8. The box plot of PM2.5 exposure of all mobile phone users per hour per month.

For the spatial difference analysis, we compared the average PM2.5 exposure levels
of residents living in different regions. We mapped each user’s home location to the
corresponding grid and then calculated the average exposure of all users living in that grid
under different computational methods. These results shown in Figure 9 reveal that the
individual PM2.5 exposure in Shanghai has a decreasing trend from west to east, which is
relatively close to the distribution of PM2.5 concentration.

90

60

30

75

45

Location Exposure Residence Exposure Exposure
(ug • h / m )3

Figure 9. Spatial distribution of PM2.5 exposure under different calculation methods

4. Discussion

In our experimental segment, we calculated the exposure suffered by residents at
the individual level. In addition to calculating the average exposure of all residents, we
also conducted further analysis of the individual exposure in the temporal and spatial
dimensions. We also analyzed the results obtained from the two different methods of
calculating exposure. In Figure 10, we not only show the discrepancy between two different
exposure estimating methods but also illustrate the geographical environment around
Shanghai. Additionally, We collect data on population, industry, and urban construction for
each administrative district in Shanghai from the official website of the Shanghai Bureau of
Statistics (https://tjj.sh.gov.cn/tjnj/20170629/0014-1000201.html accessed on 9 December
2023) for the year 2014. These data are exhibited in Figure 11.

https://tjj.sh.gov.cn/tjnj/20170629/0014-1000201.html
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Location Exposure - Residence Exposure

3

-3

0

Exposure
(ug • h / m )3

Figure 10. The spatial distribution of the difference in PM2.5 exposure under different calculation
methods, coupled with the geographical environment map of the vicinity surrounding Shanghai.

(a) (b) (c)
(ratio) (ratio)(Num/km  )

Factory num/District area Factory employee/Population Green area/District area
2

Figure 11. (a) The density, which is denoted in units per square kilometer, of industrial enterprises.
This value is calculated by dividing the number of industrial enterprises in the district by the area
of the district. (b) The proportion of the population employed by industrial enterprises to the
total population in different districts. (c) The proportion of green space area to the total area in
different districts.

The result in Figure 10 indicates that the exposure calculated based on stay behavior is
slightly higher than that calculated based on the residence in eastern Shanghai. However,
the outcome is the contrary in western Shanghai. The spatial distribution of pollutant con-
centration in Shanghai is the main reason for this result. Figure 11a shows that the density
of industrial enterprises in the eastern region of Shanghai is relatively low, and Figure 11c
reveals a high proportion of green space in the same area. Moreover, according to the
geographical location of Shanghai shown in Figure 10, the eastern part of Shanghai is near
the sea and can benefit from sea breezes. These factors provide a good explanation for the
west-high and east-low trend in the spatial distribution of PM2.5 concentration in Shanghai
as shown in Figure 2.

Due to the influence of this pollutant distribution trend, when we estimate the PM2.5
exposure, we always find that residents living in the eastern part of Shanghai suffer lower
levels of PM2.5 exposure than those living in the western part of Shanghai, irrespective of
whether their spatial movement was considered or not. Residents in the Pudong new area
have the lowest average PM2.5 exposure per hour, and residents in the Jinshan district have
the highest PM2.5 exposure. Although mobility behaviors can somewhat reduce the effect of
the residential environment on individual PM2.5 exposure to be closer to the overall average,
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our experimental results show that the individual PM2.5 exposure in Shanghai is still highly
correlated with the residential environment. If the concentration of PM2.5 around the
user’s residence is high, then his overall exposure to PM2.5 is high. And vice versa, if the
concentration of PM2.5 around the user’s residence is low, his exposure is low.

Specifically, from the temporal perspective, our experimental results indicate that
individuals have a relatively high exposure to PM2.5 during morning and evening rush
hours. Therefore, the government can introduce policies to encourage the public to travel
green during commuting by implementing measures such as moderate vehicle restrictions
and constructing more bicycle lanes. Besides, the pollution exposure levels in January
are significantly higher than in February, March, and April, highlighting the severity
of pollution problems in winter. From the perspective of environmental sustainability,
therefore, it’s necessary to promote winter pollution prevention and control initiatives
further. For example, government departments can actively promote to residents the use
of renewable energy sources such as biomass, solar, and geothermal energy for heating,
so as to reduce coal burning. From the spatial perspective, as we have introduced above,
the PM2.5 exposure levels of residents in Shanghai display a distinct pattern of higher in the
west and lower in the east. One reason is that the pollutant concentration is relatively higher
in the western part of Shanghai. Additionally, as shown in Figure 11b, the proportion of
residents engaged in industrial production is higher in the western part of Shanghai. These
residents are exposed to higher levels of pollutants during their daily work, which is also a
reason for the higher average exposure level in the western part of Shanghai. Therefore,
policy-making should prioritize addressing pollution control efforts in the western regions
of Shanghai, reducing the generation of pollutants such as PM2.5 from the source. Residents
living in the western region can also consider equipping their homes with air purifiers to
mitigate the health impacts of pollution exposure.

Furthermore, we noticed a limitation during the collection of concentration data
from stationary monitoring stations in Shanghai. These pollutant concentration monitoring
stations are mainly concentrated in the city center, while the suburban areas lack monitoring
stations. This imbalance may affect the accuracy of the overall study results. Therefore,
we believe that cities should pay attention to the balance of monitoring station selection
when setting up pollutant monitoring stations. Pollutant concentrations in urban centers
are highly variable and higher on average, which is why monitoring stations are more
concentrated in urban centers. However, monitoring pollutants in suburban areas can help
researchers better study the overall distribution of pollutants and the exposure of residents.
Therefore, additional pollutant monitoring stations in suburban areas can facilitate air
pollution research and provide more reliable health guidance to residents living in the
suburbs. At the same time, low-cost air quality sensors [33,34] might present a significant
solution to the uneven spatial distribution of monitoring stations.

5. Conclusions

In this paper, we initially apply a clustering method to recognize users’ stay behavior
based on their CDR data and propose a reasonable approach to estimate the high-resolution
PM2.5 concentration in every 1-km grid every 1-h slot. Subsequently, we propose a big data
analysis framework for individual exposure estimation, which is the main work of this
paper. This framework can quantify large-scale estimation of individual exposure based on
users’ stay behaviors and high-resolution PM2.5 concentration data.

When it comes to future work, we believe it is possible to further differentiate user
dwell behavior, calculate different exposure levels for indoor and outdoor spaces, and even
more accurately assess the impact of whether the user wears a mask on exposure estimation.
Additionally, we believe that we can further improve the precision of individual exposure
estimation by calculating the exposure of an individual’s transition based on the detailed
travel behavior of the user. However, these efforts require finer-grained user behavioral data
and detailed trajectory data. In a word, this paper proposed a novel individual exposure
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estimation framework, offering fresh viewpoints and substantiating data to guide the
development of environmental policies for mitigating individual-level pollutant exposure.
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