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Abstract: Traffic flow prediction is an important function of intelligent transportation systems.
Accurate prediction results facilitate traffic management to issue early congestion warnings so that
drivers can avoid congested roads, thus directly reducing the average driving time of vehicles, which
means less greenhouse gas emissions. However, traffic flow data has complex spatial and temporal
correlations, which makes it challenging to predict traffic flow accurately. A Gated Recurrent Graph
Convolutional Attention Network (GRGCAN) for traffic flow prediction is proposed to solve this
problem. The model consists of three components with the same structure, each of which contains
one temporal feature extractor and one spatial feature extractor. The temporal feature extractor first
introduces a gated recurrent unit (GRU) and uses the hidden states of the GRU combined with an
attention mechanism to adaptively assign weights to each time step. In the spatial feature extractor, a
node attention mechanism is constructed to dynamically assigns weights to each sensor node, and it
is fused with the graph convolution operation. In addition, a residual connection is introduced into
the network to reduce the loss of features in the deep network. Experimental results of 1-h traffic
flow prediction on two real-world datasets (PeMSD4 and PeMSD8) show that the mean absolute
percentage error (MAPE) of the GRGCAN model is as low as 15.97% and 12.13%, and the prediction
accuracy and computational efficiency are better than the baselines.

Keywords: traffic flow prediction; graph convolutional networks; attentional mechanisms

1. Introduction

In the urbanization process of countries all over the world, the holdings of cars have
been rising [1]. While private cars have brought convenience to the lives of residents, they
have also created serious traffic congestion problems and contributed to higher greenhouse
gas emissions [2]. To solve this problem, many countries began to promote the construction
of intelligent transportation systems (ITS) [3].

ITS is an integrated system that applies advanced communication, control, sensing,
and computer technologies to solve traffic management and control problems [4]. The
primary goal of ITS is to provide a safe, efficient, and reliable transportation environment
for traffic participants [5]. In addition, ITS also has important positive effects on the natural
environment by promoting transportation technology innovation and reducing greenhouse
gas emissions [6,7]. Take traffic flow prediction as an example; as one of the main tasks of
ITS [8], accurate traffic flow prediction facilitates traffic management to release congestion
warning early so that drivers can avoid congested roads, thus directly reducing the average
driving time of vehicles, which means less greenhouse gas emissions [9].

The essence of traffic prediction is to extract the embedded characteristics of the region
through the geographical information of the road network and historical traffic data and to
predict the traffic flow in the future period accordingly [8]. With the emphasis on traffic
data, many sensors are deployed on the roads. The dataset consisting of time series data
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collected by the sensors and the geographic location of the sensors provides a solid data
basis for the field of traffic prediction [10]. Traffic flow data is a kind of data with complex
spatial and temporal characteristics. First, traffic flow data is an obvious time series data,
but the main difference from other time series data is that it is influenced by the spatial
structure of the road network [11]. As shown in Figure 1, The traffic flow measured by
a sensor at a particular time is related not only to the historical flow here but also to the
relative spatial location of that sensor in the road network. For example, the traffic flow
on a highway depends on the traffic flow on the merging ramps as well as the traffic
flow on the exiting ramps. Therefore, accurate traffic flow prediction is a challenging
problem. It is necessary to model and analyze both the temporal characteristics of traffic
flow and the spatial characteristics of the road network in order to effectively improve the
prediction accuracy.
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Existing traffic flow prediction methods have yielded promising results, yet several
challenges remain. Statistical methods [12–14], traditional machine learning methods [15–19],
and early deep learning methods [20–25] tend to consider traffic flow data as time-series
data and ignore the influence of the spatial structure of the road network [26]. The methods
using convolutional neural networks (CNN) are able to capture spatial features but are
only effective for grid structures [27–29]. The methods using advanced techniques such as
graph neural networks (GNN) or attention mechanisms can effectively capture the spatial
features of the road network, but they often apply only one or two separate techniques and
thus have a slight lack of ability to extract spatio-temporal features [30–40].

In this article, a gated recurrent graph convolutional attention network (GRGCAN)
for traffic flow prediction is proposed, which overcomes the above drawbacks. To capture
the spatial and temporal features in traffic flow data, a gated recurrent unit (GRU) [23]
combined with an attention mechanism is first used to learn temporal features in the data.
An attention mechanism and a graph convolution [31] module are fused to extract spatial
features among sensor nodes, and finally, feature loss in the network is reduced by a
residual connection.

In brief, our main work is as follows:

• A temporal feature extractor is constructed, which introduces a GRU and uses its
hidden states of it combined with an attention mechanism to adaptively assign weights
to each time step.

• A node attention mechanism fused with graph convolution operation is constructed,
which can dynamically assign weights to each sensor node. A spatial feature extractor
based on this method is used to synthetically extract spatial features of traffic flow
data from a graph-based road network structure. In addition, a residual connection is
introduced into the network to reduce the loss of features in the deep network.

• To test the effectiveness of the proposed GRGCAN, the model and several other
baselines are applied to several real-world traffic flow datasets. The results show that
the GRGCAN can make accurate predictions of traffic flows with higher prediction
accuracy than baselines. In addition, the GRGCAN does not require module reuse and
thus has high training efficiency.
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The rest of the article is organized as follows. Section 2 reviews the existing traffic flow
prediction methods and their shortcomings. Section 3 introduces the definition of the traffic
flow prediction problem, followed by a detailed description of the structural details of the
model by introducing three feature extractors. Section 4 gives the details of the experiment,
including the datasets we used and how they were preprocessed, the experimental settings,
the evaluation metrics, and the baselines for comparison, followed by an analysis of the
experimental results. Section 5 is the conclusion of the article and future works.

2. Related Works

Traffic flow data is a kind of spatio-temporal data that exhibits strong dynamic corre-
lation in both spatial and temporal dimensions, so the prediction of traffic flow has been a
challenging and meaningful task [8,10,11]. After years of continuous research, researchers
have achieved rich results in the field of traffic flow prediction, mainly including statis-
tical methods [12–14], traditional machine learning methods [15–19], and deep learning
methods [20,24,25,28,29,32–36,39,40].

Early traffic flow prediction works generally use statistical methods. Hamed et al. [12]
used the autoregressive integrated moving average (ARIMA) method to develop a time
series model to predict the short-term traffic flow on urban arterials. Williams et al. [13]
modeled univariate traffic flow data as a seasonal ARIMA process. Zivot et al. [14] used
vector autoregressive (VAR) models for the prediction of multivariate time series. These
statistical methods consider traffic flow data as mere time series data and make a large
number of assumptions about the traffic flow system, and therefore have major limitations
and poor prediction accuracy.

With the rise of machine learning, these algorithms have been applied to traffic flow
prediction. Ding et al. [15] first applied a support vector machine (SVM) to the traffic
flow time series prediction work and made the prediction of short-term traffic flow more
effective. Sun et al. [16] proposed a Bayesian network-based traffic flow prediction method
in which the traffic flow between adjacent roads in a traffic network is modeled as a
Bayesian network. The joint probability distribution between the cause node (the data used
for prediction) and the effect node (the data to be predicted) is described as a Gaussian
mixture model (GMM), with its parameters estimated by the competitive expectation
maximization (CEM) algorithm. Jeong et al. [17] proposed an online learning weighted
support-vector regression (OLWSVR) model based on support-vector regression, which can
make effective predictions of short-term traffic flow. Johansson et al. [18] used a random
forest as a base model for time series prediction, which allows for determining the size
of the prediction intervals by using out-of-bag estimates instead of requiring a separate
calibration set. Zheng et al. [19] proposed a method based on the k-nearest neighbor (KNN)
algorithm to predict short-term traffic flow, which has the advantage of being insensitive to
extreme values. However, these methods have difficulty capturing non-linear features in
the data.

Due to the significant development of computer performance in recent years, deep
learning methods with the ability to process large-scale data and extract non-linear features
are widely used in traffic flow prediction. Hua et al. [20] used a feedforward neural
network for the first time to predict traffic flow, showing the great potential of deep
learning methods in this field. Recurrent neural networks (RNN) [21] are a class of neural
networks that process serial data inputs, and RNN and their variants, long short-term
memory (LSTM) [22] networks and GRU [23] networks are commonly used to process
time series data. For example, Fu et al. [24] used LSTM and GRU to predict short-term
traffic flow and showed that both LSTM and GRU achieved better accuracy compared to
statistical methods.

The above machine learning and deep learning methods have improved the prediction
accuracy of traffic flow compared with statistical methods, but they are still based on the
analysis of temporal features of traffic flow data and ignore spatial features [25].
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With the gradual understanding of traffic flow, the complex spatial characteristics it
contains are recognized, which are derived from the spatial structure of the road network.
CNN [26] are models that are commonly used to extract local features of images. Ma
et al. [27] converted traffic flow data into images and then applied CNN to them to extract
features of the traffic flow for prediction. Yang et al. [28] combined CNN and LSTM to
construct the ConvLSTM model, which can predict future traffic flow in the absence of data.

However, CNN can only extract features from grid-structured data, which is difficult
to handle road network structures with non-Euclidean properties. This problem is solved by
the advent of GNN, which can represent arbitrary graph structures by adjacency matrices
to extract features of non-Euclidean data and are, therefore, more suitable for application to
traffic networks. Graph convolutional neural networks (GCN) [29] apply convolutional
operations to graph structures and can effectively extract features of graphs. Defferrard
et al. [30] proposed ChebNet, which uses Chebyshev polynomial approximation to compute
the graph convolution and substantially optimizes the computational efficiency of GCN.
Within the field of traffic flow prediction, GCN is often fused with other deep learning
methods to extract spatio-temporal features of the data simultaneously. Zhao et al. [31]
combined GCN and GRU and proposed the temporal graph convolutional network (T-
GCN), which can obtain the spatio-temporal correlation from traffic data. Yu et al. [32]
proposed the spatio-temporal graph convolutional network (STGCN) consisting of ST-
Conv blocks, which captures spatio-temporal correlations through GCN and CNN in each
ST-Conv block. Geng et al. [33] proposed the spatio-temporal multigraph convolution
network (ST-MGCN), which uses multigraph convolution to capture different types of
correlations between regions. Ge et al. [34] designed the global spatial-temporal graph
convolutional network (GSTGCN) for urban traffic prediction, in which temporal features
are extracted using 1D CNN, and residual connectivity and spatial features are extracted
using GCN, considering the influence of external factors. Wei et al. [35] proposed the
novel spatial-temporal graph synchronous aggregation model (STGSA), which constructs
the time dependency in time series as a graph with reference to the spatial graph and
aggregates it with the spatial graph to extract spatio-temporal features. However, features
may be lost in the process of graph construction and aggregation.

The attention mechanism is a method for extracting key information from data, which
is widely used in the fields of image processing [36] and natural language processing [37]
and has been used in recent years in the field of traffic flow prediction. The ST-MetaNet
proposed by Liang et al. [38] has a meta-graph attention network to capture diverse spatial
correlations and a meta-recurrent neural network to consider diverse temporal correlations.
Attention-based spatial-temporal graph convolutional networks (ASTGCN) proposed by
Guo et al. [39] used a spatio-temporal attention mechanism combined with spatio-temporal
convolution, which allows dynamic learning of correlations between space and time. The
spatial-temporal attention wavenet (STAWnet) proposed by Tian et al. [40] applies temporal
convolution and self-attention networks to capture the spatio-temporal features of the data
without prior knowledge of the graph.

Inspired by the above studies and considering the complex spatio-temporal character-
istics of traffic flow data, we construct the model using GRU, attention mechanism, GCN,
and CNN concurrently.

3. Method
3.1. Problem Definition

In this study, the road network is defined by the graph G = (V, E, A), where V is
a finite set denoting |V| = N traffic flow sensor nodes; E is a set consisting of edges
between nodes in graph G, representing the connectivity between nodes; A ∈ RN×N is the
normalized adjacency matrix of graph G, representing the direction and distance between
nodes. In graph G, the graph signal of time step t is Xt =

{
x1

t , . . . , xN
t
}
∈ RN×F, where

xn
t (n ∈ {1, . . . , N}) are all the features collected by the n-th sensor at time step t; F is the

number of features observed at each node.
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The goal of traffic flow prediction is to find a model fθ(·), where θ are learnable
parameters. The model takes the historical traffic flow sequence with a length of T and
the adjacency matrix A as inputs to give predictions for the next T′ time steps. The input
sequence is denoted as χ = {Xt−T+1, . . . , Xt} ∈ RN×F×T and the output sequence is
denoted as {Xt+1, . . . , Xt+T′} ∈ RN×F×T′ .

{Xt+1, . . . , Xt+T′} = fθ(Xt−T+1, . . . , Xt; A) = fθ(χ; A) (1)

3.2. The Architecture of GRGCAN

Figure 2 demonstrates the structure of the GRGCAN model. The GRGCAN model
consists of three independent components with the same structure, and their inputs are
historical time series, day-period time series, and week-period time series, respectively.
Each component consists of three main parts: (1) Temporal feature extractor: for extracting
temporal features of traffic flow data, (2) spatial feature extractor: for extracting spatial
features of traffic flow data, (3) adaptive residual block: for reducing feature loss in deep
networks adaptively.
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3.2.1. Time Feature Extractor

Recurrent neural networks are the most used models for extracting features from time
series data, but traditional RNNs have problems of gradient disappearance or gradient
explosion when the sequence is too long. The advent of LSTM has solved these problems
to some extent, but its structure is complex and requires a long computation time. GRU
streamlines the unit structure while inheriting the ideas of LSTM, and the accuracy is also
improved. Therefore, we choose GRU as the component of the temporal feature extractor1
in the model. Instead of using GRU directly to predict the time series, the hidden states
of GRU are used to obtain the temporal features indirectly. The calculation process is
as follows:

zt = σ(WzXt + Uzht−1 + bz) (2)

rt = σ(WrXt + Urht−1 + br) (3)
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∼
ht = tanh(WhXt + Uh(rt � ht−1) + bh) (4)

ht = zt � ht−1 + (1− zt)�
∼
ht (5)

where ht is the output state at time step t;
∼
ht is the candidate hidden state at time step t; zt

is the update gate which determines how much information needs to be retained in the
current state ht from the historical state ht−1; rt is the reset gate which determines how

much information needs to be retained in the candidate hidden state
∼
ht from the historical

state ht−1; Wz, Uz, bz, Wr, Ur, br, Wh, Uh, bh are learnable parameters; σ(·) denotes the
sigmoid function; � denotes the Hadamard product.

For the traffic flow prediction, the impact of each historical time step on the future
is not equal. To better capture the temporal features in traffic flow data, an attention
mechanism is used to learn the output states of GRU to adaptively assign weights to each
historical time step. The calculation process is as follows:

AGRU = so f tmax

(
HWq1(HWk1)

T

√
T

)
(6)

ĤG = AGRUχ (7)

where AGRU is the weighting matrix for historical time steps; H = {h1, . . . , ht} ∈ RN×F×T

is the output state of GRU at T historical time steps; Wq1 and Wk1 are learnable parameters.
As shown in Equation (7), the output ĤG = {ĥG1, . . . , ĥGT} ∈ RN×F×T is obtained by
weighted summation, which will be used as the input of the spatial feature extractor.

3.2.2. Spatial Feature Extractor

The extraction of spatial features of road networks has been the key to traffic flow
prediction. In general, the spatial structure of the road network is represented by the
adjacency matrix, which reflects the location of the sensor nodes, so extracting the spatial
features of the road network is to extract the location features of the sensor nodes. A node
attention graph convolution operation is proposed to extract spatial features.

The attention mechanism is able to dynamically capture important information in the
data. An attention mechanism is applied to learn the input to adaptively assign weights to
each sensor node and capture the correlation between nodes. The calculation process is
as follows:

ANode = so f tmax

(
VTσ

(
(ĤGWq2)W(ĤGWk2)

T

√
N

+ b

))
(8)

where ANode is the weighting matrix for sensor nodes; Wq2, Wk2, W, V, b are learnable
parameters; σ(·) denotes the sigmoid function.

After that, the spatial features of the road network need to be extracted. The graph
convolution based on spectral methods [30] is suitable for traffic flow data with non-
Euclidean spatial structures. First, we calculate the normalized Laplacian matrix L of the
graph G and make an eigendecomposition of it:

L = IN − D−
1
2 AD−

1
2 = UΛUT (9)

where IN is an identity matrix; D is the degree matrix of the graph G; U is the eigenvector
matrix of L; Λ is the diagonal matrix consisting of the eigenvalues of L.

Based on that, the graph convolution operation ∗G of the graph signal x with C filters
gθ is defined as:

gθ ∗G x = UgθUTx = U
K−1

∑
k=0

βkTk(
∼
Λ)UTx =

K−1

∑
k=0

βkTk(
∼
L)x (10)
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∼
Λ =

2
λmax

Λ− IN (11)

∼
L = U

∼
ΛUT =

2
λmax

L− IN (12)

where K is the order of the Chebyshev polynomial; Tk(·) is the Chebyshev polynomial

of order k; βk denotes the polynomial coefficients and also the learnable parameters;
∼
Λ is

the diagonal matrix consisting of adjusted eigenvalues, which ensures the inputs of the
Chebyshev polynomial satisfy the range [−1,1]; λmax is the maximum eigenvalue of the

Laplacian matrix L;
∼
L is the Laplacian matrix with adjusted eigenvalues.

In the model, C and K are hyperparameters that need to be set. Similar to convolutional
neural networks, the number of filters C is currently set mainly by experience. The value
of C is set to 64 by references [39,41]. K is the order of the Chebyshev polynomial, which
means that the range of information extraction in the graph convolution is from 1st to K-th
order neighbors around each node [42]. As K increases, the performance of the model
improves slightly, but the computational cost also increases. Considering that extracting
information from the 1st–3rd order neighbors of each node will provide good performance,
and it is difficult to significantly improve performance by further increasing K, the value of
K is set to 3.

In the above process, we replace the input signal x with ĤG, multiply it with the weight
matrix ANode of sensor nodes, and use the rectified linear unit (ReLU) as the activation
function, then the node attention graph convolution is calculated as:

ĤN = ReLU

(
K−1

∑
k=0

βkTk(
∼
L)ANode ĤG

)
(13)

where ĤN = {ĥN1, . . . , ĥNT} ∈ RN×C×T is the output of this module.

3.2.3. Adaptive Residual Block

To reduce the loss of spatio-temporal features in the deep network, a residual connec-
tion is constructed, which can project the input into the feature space of the output of the
spatial feature extractor by 1 × 1 convolution. After summing with the adaptive residual
output, the output Ĥ = {ĥ1, . . . , ĥN} ∈ RN×C×T is obtained by the ReLU function. The
calculation process is as follows:

Ĥ = ReLU
(

ĤN + Wr � Γθr(χ)
)

(14)

where Γθr(·) denotes the 1 × 1 convolution operation with θr as the parameter; Wr is a
learnable parameter.

Finally, Ĥ is normalized, and an output that matches the predicted target shape is
subsequently obtained through the fully connected layer.

3.2.4. Multi-Component Fusion

GRGCAN model contains three structurally identical components, each with the
outputs Ĥh, Ĥd, and Ĥw. These three outputs are of different importance to the prediction
results [39]. For example, the importance of the day-period component and the week-
period component will be higher when predicting traffic flow on weekday morning peaks
compared to predicting traffic flow on suburban roads. Therefore, a learnable weight is
assigned to each output to learn the fusion method from the historical traffic flow data. The
calculation process is as follows:

Y = Wh � Ĥh + Wd � Ĥd + Ww � Ĥw (15)

where Wh, Wd and Ĥw are learnable parameters.
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4. Experiment
4.1. Datasets and Preprocessing

To test the performance of the GRGCAN model, we conducted experiments on two
real-world traffic flow datasets, PeMSD4 and PeMSD8. These PeMS datasets [43] are
collected by the Caltrans Performance Measurement System; they record traffic data for
major freeways in California over a period, updated every 5 min, i.e., the time step is
5 min. The data collected by redundant sensors were removed according to the method
of [39] to ensure that the distance between any adjacent sensors is larger than 3.5 miles.
Processed PeMSD4 records traffic flow data from 307 sensors in the California Bay Area
from 1 January 2018 to 28 February 2018. Processed PeMSD8 records traffic flow data from
170 sensors in San Bernardino, California, from 1 July 2016 to 31 August 2016.

The dataset is divided into the training set, validation set, and test set in the ratio of
6:2:2 according to the time order. In addition, to accelerate the convergence of the model
during training, the data were transformed by using zero-mean normalization to make
them average zero. The calculation process is as follows:

x =
∼
x −mean

(∼
x
)

(16)

where x is the processed traffic flow data;
∼
x is the raw traffic flow data; mean(·) denotes

the mean value operation.

4.2. Experiment Settings

We built the GRGCAN model using the deep learning framework PyTorch and con-
ducted experiments on a computer with a 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz
CPU, NVIDIA GeForce RTX3070 Laptop GPU, and 16G-DDR5 RAM.

We use 1 h of historical traffic flow data as input, i.e., the input sequence length T is
12, to predict the traffic flow in the next 1 h, i.e., the output sequence lengths T′ are 3, 6,
and 12, respectively. In the training process, we used the mean absolute error (MAE) as the
loss function (L1 loss function) and adaptive moment estimation (Adam) optimizer. With a
balance of training efficiency and equipment limitations, the learning rate was set to 0.001,
the batch size was set to 32, and the model was trained 100 times.

4.3. Evaluation Metrics

We used three common metrics for evaluating deep learning models to assess the
performance of the GRGCAN model: mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE). At time step t, they are calculated
as follows:

MAE =
1
N

N

∑
i=1
|ŷi − yi| (17)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (18)

MAPE =
1
N

N

∑
i=1

|ŷi − yi|
yi

(19)

where N denotes the number of nodes in graph G; ŷi is the predicted value of traffic flow;
yi is the true value of traffic flow.

4.4. Baselines

To test the performance of the proposed GRGCAN model, the following seven models
were used as baselines.

• GRU [23]: Gated recurrent unit network: treating traffic flow data as simple time series.
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• T-GCN [31]: Temporal graph convolutional network: a model that uses two-layer
GCN to extract spatial features and GRU to extract temporal features.

• MSTGCN [39]: Multi-component spatial-temporal graph convolutional networks:
a model that uses GCN and CNN to extract spatial and temporal features of the
data, respectively.

• ASTGCN [39]: Attention-based spatial-temporal graph convolutional networks: an
MSTGCN-based model that uses spatio-temporal attention mechanism and spatio-
temporal convolution to extract features.

• STSGCN [41]: Spatial-temporal synchronous graph convolutional networks: a model
that constructs localized spatio-temporal graphs and applies GCN.

• STAWnet [40]: Spatial-temporal attention wavenet: A model that applies temporal
convolution to capture temporal features and a self-attention network to capture
dynamic spatial features without requiring prior knowledge of the graph.

4.5. Result Analysis

Table 1 shows the performance of the GRGCAN model with the other baseline models
on the two datasets. Considering that the warning period of traffic congestion is roughly
30 min [44], the time steps to be predicted are set to 3 (15 min), 6 (30 min), and 12 (1 h).

Table 1. Performance of each model at a given prediction time step.

Dataset Model
15 min (T’ = 3) 30 min (T’ = 6) 60 min (T’ = 12)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMSD4

GRU 27.43 44.76 17.95% 25.28 43.07 16.29% 31.17 49.19 20.73%
T-GCN 26.55 41.87 19.01% 24.27 39.53 16.87% 29.64 45.50 20.82%

MSTGCN 20.74 32.60 14.13% 24.00 37.15 16.40% 30.35 44.92 21.26%
ASTGCN 19.97 31.59 13.54% 21.51 33.86 14.64% 25.06 38.79 17.34%
STSGCN 19.72 31.81 13.12% 21.63 33.81 14.22% 24.78 38.55 16.17%
STAWnet 20.87 32.09 13.57% 23.02 35.09 14.82% 24.70 37.81 16.61%

GRGCAN 19.54 31.49 12.71% 21.32 34.37 13.77% 24.95 39.12 15.97%

PeMSD8

GRU 24.51 38.64 14.66% 23.16 37.37 13.53% 27.23 41.70 16.32%
T-GCN 23.15 37.37 13.77% 22.24 36.60 12.97% 25.63 39.26 15.51%

MSTGCN 16.61 25.61 10.44% 19.11 29.61 11.82% 24.87 37.54 15.35%
ASTGCN 16.14 24.90 10.24% 18.05 27.81 11.21% 21.90 33.12 13.31%
STSGCN 15.97 24.76 10.55% 17.29 27.19 11.26% 19.45 30.74 12.49%
STAWnet 15.95 24.45 10.92% 17.73 27.14 12.01% 20.10 30.44 13.41%

GRGCAN 15.56 24.26 9.65% 17.23 26.91 10.45% 20.28 31.47 12.13%

Bold represents the best performance.

Figure 3 shows the prediction results of the GRGCAN model for the traffic flow during
24 h on both datasets.

Based on the experimental results, the following were observed. (1) GRGCAN achieves
excellent accuracy on both datasets and performs best on most metrics, especially when
the number of time steps to be predicted is small. (2) All models that consider the spatial
characteristics of the data outperform the GRU net, which implies that the spatial informa-
tion of the traffic data is important for prediction. (3) The trends of traffic flow predicted by
GRGCAN are generally consistent with the trends of the actual values. (4) As shown in
Figure 3a, the predicted value at the outlier in the dataset is not disturbed by the outlier,
which indicates the model’s good robustness.
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Due to the immediacy of traffic flow, the computational efficiency of traffic flow
prediction models is important. As shown in Table 2, we compared the training efficiency
of GRGCAN and baselines on the PeMSD4 dataset (except GRU, which does not consider
spatial features), indicated by the average training time of 1 epoch for each model.

Table 2. Average training time of each model.

Model Average Training Time (s/epoch)

T-GCN 25.22
MSTGCN 32.80
ASTGCN 43.36
STSGCN 103.39
STAWnet 44.63

GRGCAN 19.71
Bold represents the best performance.

It is observed that GRGCAN achieves the best training efficiency, which shows its
streamlined and effective structure. In T-GCN, two repeated graph convolution operations
are performed, which leads to a rise in computational effort. In MSTGCN and ASTGCN,
the ST block needs to be reused twice to achieve better results, which leads to a rise in
the number of parameters. STSGCN needs to construct the localized spatial-temporal
graph first, and STAWnet uses a self-learning adjacency matrix, both of which lead to the
generation of additional computations.

Due to GRGCAN’s excellent computational efficiency and short-time prediction accu-
racy, it is well suited to be used for real-time traffic regulation and other tasks.

4.6. Ablation Experiment

To verify the validity of each module in the GRGCAN model, the temporal feature
extractor, the spatial feature extractor, and the adaptive residual block were removed from
the model, respectively. Then the prediction experiments were conducted on the PeMSD4
dataset for the future 1-h traffic flow (T′ = 12). We name the three degenerate models
GRGCAN-1, GRGCAN-2, and GRGCAN-3, respectively. The experimental results are
shown in Table 3.
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Table 3. Results of ablation experiments.

Model MAE RMSE MAPE

GRGCAN 24.95 39.12 15.97%
GRGCAN-1 26.61 41.34 18.51%
GRGCAN-2 28.35 43.26 23.88%
GRGCAN-3 25.81 39.65 18.39%

Bold represents the best performance.

The experimental results show that the original model outperforms the three degener-
ated models. Thus, the temporal feature extractor, spatial feature extractor, and adaptive
residual block all positively impact the model’s performance. Among them, the most sig-
nificant impacts on the model performance are the spatial feature extractor, which indicates
that the application of the node attention mechanism helps to effectively extract the spatial
features of the traffic flow data.

5. Conclusions

To support the construction of intelligent transportation systems, relieve traffic pres-
sure, and reduce greenhouse gas emissions, a GRGCAN model for traffic flow prediction
is proposed. In this model, GRU and GCN are combined with an attention mechanism
to adaptively extract spatio-temporal features of traffic flow and reduce the loss of fea-
tures in the deep network by adaptive residual connection. The experimental findings
of one-hour traffic flow prediction using two real-world datasets, namely PeMSD4 and
PeMSD8, indicate that the GRGCAN model has a significantly lower MAPE of 15.97% and
12.13%, respectively. Moreover, it outperforms the baseline models in terms of accuracy.
Notably, the streamlined model does not reuse structures, which results in an efficient
computational performance. The average training time per epoch is as low as 19.71 s. In
addition, the ablation experiment proves that either temporal feature extractor, spatial
feature extractor, or adaptive residual connection has a positive effect on the performance
of the model. In conclusion, the GRGCAN is a novel traffic prediction model that can
effectively capture the spatio-temporal features in graph-structured traffic data and provide
accurate prediction results.

In future research, we hope to construct more accurate models by considering factors
that have an impact on traffic flow, such as weather [45], epidemic [46], or driver’s driving
style [47]. In addition, we will further consider the impact of cyclical vacations on traffic and
try to research using techniques such as continual learning [48]. It is possible to contribute
to a more environmentally friendly intelligent transportation system by predicting the
greenhouse gas emissions generated by road traffic accordingly.
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