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Abstract: Optimizing traffic control systems at traffic intersections can reduce network-wide fuel
consumption as well as improve traffic flow. While traffic signals have conventionally been controlled
based on predetermined schedules, various adaptive control systems have been developed recently
using advanced sensors such as cameras, radars, and LiDARs. By utilizing rich traffic information
enabled by the advanced sensors, more efficient or optimal traffic signal control is possible in response
to varying traffic conditions. This paper proposes an optimal traffic signal control method to minimize
network-wide fuel consumption utilizing real-time traffic information provided by advanced sensors.
This new method employs a priority metric calculated by a weighted sum of various factors, including
the total number of vehicles, total vehicle speed, vehicle waiting time, and road preference. Genetic
Algorithm (GA) is used as a global optimization method to determine the optimal weights in the
priority metric. In order to evaluate the effectiveness of the proposed method, a traffic simulation
model is developed in a high-fidelity traffic simulation environment called SUMO, based on a real-
world traffic network. The traffic flow within this model is simulated using actual measured traffic
data from the traffic network, enabling a comprehensive assessment of the novel optimal traffic
signal control method in realistic conditions. The simulation results show that the proposed priority
metric-based real-time traffic signal control algorithm can significantly reduce network-wide fuel
consumption compared to the conventional fixed-time control and coordinated actuated control
methods that are currently used in the modeled network. Additionally, incorporating truck priority
in the priority metric leads to further improvements in fuel consumption reduction.

Keywords: optimal traffic signal control; real-time traffic information; network-wide fuel consumption;
genetic algorithm

1. Introduction

As the transportation sector accounts for 67% of the United States’ petroleum consump-
tion, reducing transportation fuel consumption is crucial to overall petroleum consumption
reduction in the country [1]. Among various factors contributing to transportation fuel
consumption, traffic congestion has a significant impact on network-wide fuel consumption
by causing frequent stops of vehicles and extending their travel times in the traffic network.
Due to this fact, efficient or optimal traffic signal control is gaining increased attention as an
effective means to reduce network-wide fuel consumption and alleviate traffic congestion
within the traffic network.

Traditional traffic signal control methods, characterized by fixed signal phase and
timing, are inefficient, leading to increased travel times for vehicles and elevated network-
wide fuel consumption. With the advent of vehicle-detecting sensors, actuated traffic
control methods have been implemented at real-world traffic intersections. However, the
currently utilized actuated control methods employing proximity sensors still exhibit room
for improvement. Recent advancements in traffic monitoring technologies using advanced
sensors, such as cameras and radars, have opened the door to the development of new
traffic control methods.
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In order to further improve the network-wide energy efficiency of the vehicles, a new
traffic signal control method is proposed in this paper. By utilizing real-time traffic data
from advanced sensors, such as roadside cameras and radars, it is possible to obtain rich
and diverse traffic information, including the number of vehicles, total vehicle speed, and
total vehicle waiting time in each traffic phase. The proposed novel control method employs
various combinations of this diverse traffic information to control traffic signals at multiple
intersections optimally. Simulation results based on a real-world traffic network with
actual traffic data reveal significant improvements in the network-wide energy efficiency
compared to a conventional fixed-time method and a sensor-based actuated coordinated
control method. It is also shown that incorporating additional information on vehicle type
further improves network-wide fuel efficiency. Optimal control of traffic signals at multiple
intersections using diverse traffic information is novel and will pave the way for similar
research as more efficient and cost-effective advanced sensors are developed.

The remainder of this paper is organized as follows. Section 2 provides a literature
review of traffic data collection technologies and control methods. Section 3 presents the
simulation environment, including the network model, traffic volume model, and vehicle
models. Section 4 describes the conventional fixed-time control method for comparison
purposes. Section 5 introduces the proposed optimal control method. In Section 6, the
performance of the methods is compared in terms of network-wide fuel consumption.
Lastly, Section 7 concludes the paper and suggests directions for future research.

2. Related Works

To design a new traffic control method, related studies are investigated. Traffic data
collection technologies and traffic signal control with optimization methods are presented
from traditional ways to recent feasible ways.

2.1. Traffic Data Collection Technologies

The development of proximity sensors that can detect the presence of vehicles in an
intersection enabled adaptive traffic signal control based on real-time traffic conditions.
For example, inductive loop sensors [2] and wireless magnetometer sensors [3] have been
used to control traffic signals based on changing traffic conditions. As opposed to the
conventional fixed-time traffic signal control systems, these adaptive traffic signal control
systems can respond to real-time traffic changes by utilizing basic information provided by
proximity sensors. Although proximity sensors can provide basic traffic information, such
as the presence of a vehicle at a stop line, it has been difficult to develop optimal traffic
signal control systems based on this simple limited information. The recent advancement in
vehicle detection technologies using roadside cameras and radars has enabled the collection
of more diverse traffic information, including the type, size, and speed of multiple vehicles
approaching the traffic intersection.

With the assistance of machine learning algorithms, cameras have been used to detect
and track vehicles within a traffic network. For example, one study utilized various
deep-learning methods and a novel data association algorithm to estimate and monitor
traffic flow on a highway in real-time [4]. By providing accurate and reliable traffic flow
estimations, this system can be used for effective traffic management and help alleviate
congestion on highways. Another study combined stereo vision and deep learning to
reconstruct precise vehicle locations in a traffic scene [5]. This system used multiple cameras
to capture video footage of a traffic scene and then processed the video frames with a deep
neural network to construct 3D bounding boxes around detected vehicles, yielding vehicle
location and speed data. The system could also classify vehicle types based on the size of
the 3D bounding box. The results showed an average vehicle localization error of 1.81 m
using differential GPS as a reference and 1.68 m using a drone as a reference. Additionally,
other studies have applied computer vision algorithms to estimate and monitor traffic flow
using multiple cameras, potentially enhancing traffic safety and efficiency in a cost-effective
manner [6,7]. A simple and effective approach was also reported to compensate for errors
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in localizing vehicle centers detected by a single traffic camera and processed by YOLO.
The error was corrected using regression models trained with rectangular prism images.
When tested with stationary vehicles in a parking lot and a moving vehicle at a traffic
intersection, the results showed average vehicle localization errors of 0.43 m and 1.52 m,
respectively [8].

Radar-based object detection methods have also shown great promise, achieving
accuracy rates of 99% or higher in classifying vehicle types using confusion matrices in both
parallel and serial input convolutional neural network (CNN) structures [9]. While cameras
exhibit a detection range of 80 m [8], fusing camera detection with radar detection has the
potential to extend the range of vehicle detection. Recent research has suggested that radar-
based object identification is particularly suited for real-time scenarios, boasting a detection
range of up to 300 m [10]. These advanced traffic information collection technologies
enable more sophisticated control of traffic signals based on real-time information on the
total number of vehicles, their collective speed, and the type of vehicles approaching an
intersection.

2.2. Traffic Control and Optimization Methods

Conventionally, traffic signals have been controlled by a fixed-time method where
predetermined signal phase and timing for different phases are used to change traffic
signals [11]. Both fixed-time and adaptive traffic signal control systems have been applied to
coordinated control of neighboring intersections as well as single intersections. For example,
MAXBAND [12] and TRAffic Network StudY Tool (TRANSYT) [13] were developed for
fixed-time coordinated control of neighboring intersections. MAXBAND program was
used to define offsets between intersections to maximize traffic throughput without stops
at the intersections based on the speed limit. TRANSYT program determines offset time by
decreasing average vehicle travel time. However, signal phase and timing in these fixed-
time coordinated control methods were determined based on historical traffic data and
could be used only for undersaturated traffic areas [14]. As an adaptive coordinated control
method responsive to changing traffic conditions, the split, cycle, and offset optimization
technique (SCOOT) [15] was developed. Furthermore, optimization policies for adaptive
control (OPAC) [16] and PRODYN [17] were developed as model-based optimization
methods. These methods collect real-time traffic data and calculate appropriate control
parameters to optimally control neighboring traffic signals [14]. A recent study employed
a fuzzy controller with a multi-objective differential evolution algorithm to implement
coordinated control in an urban traffic network model, aiming to reduce the average
vehicle delay [18]. Another study proposed a coordinated control optimization method
based on an asymmetrical multiband model, incorporating phase optimization to minimize
vehicle delays and exhaust gas emissions [19]. For the optimization of traffic signal control
parameters, several different optimization methods have been utilized. A study utilized
the generalized reduced gradient (GRG) nonlinear method built in MS Excel to optimize
the phase length and cycle of two isolated traffic signals [20]. Genetic Algorithm (GA) has
been widely applied in many different traffic signal optimization problems [21–24]. Particle
swarm optimization (PSO) has also been used as an effective optimization algorithm for
traffic signal systems to reduce emissions and fuel consumption [25–27].

Assuming that rich and diverse traffic information is available through the use of
advanced sensors, emissions of different vehicle types were considered in a simulation
study [28]. However, this study was based on a simplified traffic grid model without
considering actual road or real traffic data. Other studies based on actual road and traffic
data distinguished vehicle types and evaluated their control methods [29,30]. Yet, these
studies did not provide vehicle specifications, and the proposed method was not compared
to any other adaptive traffic signal control systems. Another study investigated an adaptive
traffic signal control system that utilized vehicle speed information received from a vehicle-
to-infrastructure (V2I) communication system [31]. However, this research was limited to
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a simplified intersection without a left-turn lane, and the vehicle speeds were randomly
generated rather than based on real-world data.

To overcome these deficiencies, a new real-time optimal traffic signal control method
based on advanced traffic information is proposed and presented for a real road using
real traffic data in this paper. The proposed control method is simulated under real road
conditions, and the results are compared to those of a fixed-time coordinated method and
an actuated coordinated method based on the NEMA configuration [32].

3. Traffic Simulation Environment

In this study, the performances of conventional traffic signal controllers are evaluated
together with the proposed algorithm over a traffic corridor, including three intersections
in a simulation environment called Simulation of Urban MObility (SUMO) [33]. The target
traffic corridor is recreated in the SUMO simulation environment, and real-world historical
data are used to build the traffic volume model and then calibrate the microsimulation
model.

3.1. Traffic Network Model

In SUMO, the network file contains the definition of road geometry, lane layout,
intersection type, and traffic signal parameters. Figure 1 shows the completed network
model overlaid on an aerial image, with three intersections labeled TL1, TL2, and TL3, from
west to east. Detailed configurations of the three intersections are also shown in Figure 2.
This traffic network lies to the north of Tuscaloosa, Alabama, and represents a portion of
US82, which connects Tuscaloosa to smaller towns to the west. TL1 serves the aptly named
Airport Rd., which in addition to the Airport, also connects to an industrial district. This
industrial district, in combination with the truck traffic entering and leaving Tuscaloosa on
US82, contributes to heavy truck traffic in the network. Per the Alabama Department of
Transportation data, the average annual daily traffic (AADT) of the main road was 23,888 in
2021, and the average annual daily truck traffic (AADTT) was 11% at TL2, which is higher
than the Tuscaloosa average [34]. Additionally, the speed limit of the main road is 50 mph
(80 km/h), while the side roads have limits ranging from 35 to 45 mph (56.3–72.4 km/h).
Pedestrians and bikes are not allowed on the main road.
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In the dimensionally accurate model, induction-loop vehicle detectors are added in
locations based on documentation from the transportation authority. As the primary means
of calibration, the simulation detectors are placed to match the real locations to enable a fair
comparison between simulation and real-world detector data. Each real-world intersection
in the study area has additional “hockey-puck” detectors. Although not used for traffic
signal control, these single-lane detectors are used for augmenting traffic volume data in
the eastbound and westbound directions. In addition to the “hockey-puck” detectors, all
intersections have left turns and side-street detectors at the stop bar, each being 50 feet
long. The network file also contains information on the intersection layout, including valid
turn movements and the signal layout. Google Street View, Google Maps, and the local
transportation authority are used to determine the turning movements and signal layouts.

3.2. Traffic Volume Model

All three traffic signals in the real-world network of interest are equipped with high-
resolution data loggers, which store detector events as well as traffic signal states at a
resolution of 100 milliseconds. The recorded traffic volume vs. location information
is processed using a SUMO tool called “routeSampler”. This tool uses integer linear
programming (ILP) to generate vehicle trips (trip defines the route and the departure
probability inside of a time window) that satisfy the traffic counts at each location. It takes
a pool of possible routes to select from as input, which is defined by the user. To create the
pool of trips, the SUMO tool “randomTrips” is used to generate a list of possible routes in
the network layout. It is weighted towards a preference for routes that utilize multi-lane
roads. Owing to the layout of the network of interest, only routes that start and end at
the network’s boundaries can be considered realistic, and thus all routes not meeting this
condition are removed from the routeSampler input pool. The output of the routeSampler
is then fed to the simulation as an input. The corresponding simulated traffic volumes pass
USDOT calibration [35].

3.3. Vehicle Model

Several vehicle emissions and fuel consumption models are included in SUMO, as
reviewed in previous literature [36,37]. For this study, TU Graz’s PHEMLight model, which
approximates EU standard vehicles, is selected due to its superior performance compared
to other SUMO models [37]. Although the network of interest is in the U.S. and not Europe,
the PHEMLight model is still considered appropriate to assess the relative performance
of traffic signal controllers. To account for the fact that traffic in the real network is not
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comprised of a homogeneous fleet, two vehicle classes are used to approximate the fuel
consumption. The first class is a standard car (PC_D_EU4 in PHEMLight), while the second
class is a class 8 truck with a trailer (HDV_TT_D_EU6 in PHEMLight), which is commonly
used for freight transportation. This approach allows for a more accurate assessment of the
fuel consumption of the network, as well as separate treatment in the control scheme since
heavy-duty trucks consume considerably more fuel. The Intelligent Driver Model (IDM)
car-following model [38] is employed for all simulated vehicles, and each vehicle is sampled
from a distribution of model parameters to capture the variability in driving behaviors
among different drivers. The simulation assumes a weight of 1285 kg for passenger cars
and 29,945 kg for trucks.

4. Conventional Traffic Control System

Conventional traffic control systems have been based on either fixed-time or simple
adaptive algorithms using proximity sensors. In both cases, the traffic signal sequence is
predetermined with small variations based on the time of the day or binary detection of
vehicles using proximity sensors. A typical design of a traffic control system begins with
the definition of the traffic signal phases.

4.1. Traffic Signal Phases

In this study, traffic signal phases are defined based on the Traffic Signal Design Guide
and Timing Manual [39] published by the Alabama Department of Transportation (ALDOT).
In Figure 3, a standard phase numbering convention is shown for all traffic movements
except the right turns. This standardized representation of traffic movements allows
convenience in programming, modeling, and calculation of signal control parameters. In the
ALDOT manual, standard two-phase, four-phase, and eight-phase operations are described
based on traffic demands at a four-way intersection. Eight possible phase combinations
of the standard eight-phase directions can be utilized, as shown in Figure 4, for four-way
intersections, as the eight-phase operation allows efficient traffic signal control for a given
traffic demand. For three-way intersections, three different phase combinations can be
utilized, as shown in Figure 5. For each intersection, phase combinations are classified
into two types, primary and secondary, as shown in Figures 4 and 5. The combination of
2 + 6 phases is designated as primary, and all the other phase combinations are considered
as secondary. The purpose of this classification is to assign a higher priority to the main
road than the other side roads since traffic on the main road is responsible for the majority
of traffic volume.
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In Figures 6 and 7, aerial images of four-way and three-way intersections in the traffic
corridor used in the research are shown with phase combinations. In the figures, the
primary phase combination of 2 + 6 phases is clearly identified as the main road serving the
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majority of the traffic volume in the state route 82, while all side roads constitute secondary
phase combinations.
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4.2. Conventional Traffic Control Logics

Phase operations suggested by the ALDOT traffic manual are used to design conven-
tional control logic. As a baseline control algorithm for the comparison study, a fixed-time
four-phase logic is used for the four-way intersections, and a fixed-time three-phase logic
is used for the three-way intersection. Moreover, for the actuated and coordinated con-
trol, eight-phase dual-ring control logic based on the NEMA configuration is used in this
research. The four-phase operation sequence starts from 1 + 6 and ends at 4 + 8 phase
combinations, as shown in Figure 8. After the 4 + 8 phase combination, the sequence
repeats itself. The three-phase operation also repeats the sequence from 1 + 5 to 4 phase
combinations, as shown in Figure 9. The conventional eight-phase dual-ring control logic
based on the ALDOT traffic manual is shown in Figure 10, where two groups of four-phase
combinations are separated by a barrier based on the involvement of the main road. All
four phase combinations in the left group include at least one main road, while none in
the right group includes a main road. The eight-phase dual-ring operation is used for the
actuated coordinated control with proximity sensors.
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4.3. Fixed-Time Signal Timing Design

To calculate the optimal cycle length for the conventional control logic, Webster’s
method is used in this research [39]. According to Webster’s method, the cycle length, C,
can be calculated as

C =
1.5L + 5
1.0 − Yl

(1)

where L is the lost time per cycle in seconds and Yl is the ratio of the critical lane volume to
the saturation flow rate. The lost time per cycle can be calculated as the sum of the yellow
interval and all red clearance intervals over one cycle. Critical lane volume can be obtained
from the highest volume lane among all possible phases, and the saturation flow rate is
assumed to be 1800 (vehicles per hour) following the ALDOT manual.

The green interval time can be calculated once the cycle length has been established.
To accomplish this, it is necessary to have data on the yellow interval, all red clearance
intervals, and the critical lane volume for each phase combination. Using this information,
the green light time for each phase, Gl , can be calculated by

Gl = C
(

Yl

∑l Yl

)
− Yell − ARl (2)

where Yl is the critical lane volume for phase l in vehicles per hour, Yell is the yellow interval
for phase l in seconds, and ARl is all red clearance intervals for phase l in seconds. The
yellow interval and red clearance interval are chosen to be the values currently used in the
studied network. Green interval time is calculated by Equation (2), and the minimum green
interval is considered based on the ALDOT manual. Tables 1 and 2 show yellow, red, and
green interval times for four-way intersections and three-way intersections, respectively.

Table 1. Green, yellow, and red interval times in seconds for four-way intersections.

1 + 6 2 + 6 2 + 5 4 + 8

Yellow 4 4 4 5
Red 2 2 2 2

Green 24 24 13 8

Table 2. Green, yellow, and red interval times in seconds for three-way intersections.

2 + 5 2 + 6 4

Yellow 4 4 5
Red 1 1 1

Green 24 49 6

5. Priority-Based Traffic Control Algorithm

For the optimal control of the traffic signal, a priority-based algorithm is proposed in
this research. In this section, the details of the priority metric as well as the optimization of
the involved parameters, are described.

5.1. Priority Metric

In the proposed traffic signal control method, a priority metric is calculated for each
phase combination, and the one with the maximum value is given priority and receives
the next green light. This approach is based on the assumption that advanced traffic
measurement sensors such as cameras, radars, or LiDARs are available to detect and track
all vehicles in the approaching lanes at a traffic intersection. As a result, the traffic control
system can measure the speed and location of all vehicles in each approaching lane at a
traffic intersection. Furthermore, if the vehicles are stopped at a red light, the combined
waiting time of all stopped vehicles is calculated. Based on these directly measured and
indirectly calculated traffic information, different priority metrics can be formed. In order
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to study the effectiveness of various traffic information in the priority metric, three priority
metrics with different combinations of variables are applied in this research.

The first priority metric, VCPj
i (t), for the i-th intersection and j-th phase combination

at time instant, t, is defined as

VCPj
i(t) = α

j
i × vcj

i(t) + β
j
i × wtj

i(t) + γ
j
i (3)

where vcj
i is the total vehicle count, wtj

i is the total vehicle waiting time, α
j
i is the weight for

the total vehicle count, β
j
i is the weight for the total waiting time, and γ

j
i is the road priority.

The second priority metric, VSPj
i , for the i-th intersection and j-th phase combination can

be written as
VSPj

i(t) = α
j
i × vsj

i(t) + β
j
i × wtj

i(t) + γ
j
i (4)

where vsj
i is the total vehicle speed, α

j
i is the weight for the total vehicle speed. The total

vehicle speed is the sum of the individual speeds of all vehicles in the corresponding phase
combination. Although the same notation, α

j
i is used in different metrics, VCPj

i and VSPj
i ,

it is understood that α
j
i represents weights for different variables depending on which

priority metric it is used for. The third priority metric, TSPj
i , considers the vehicle type and

assigns a higher priority to heavy trucks as heavy trucks require more energy to stop and
start at a traffic light. TSPj

i is based on the second priority metric, VSPj
i , but when a heavy

truck is detected, the speed of the truck and the waiting time of the truck are multiplied by
amplification factors, λs, and λw, respectively, before added to the total vehicle speed and
the total vehicle waiting time.

The weights in the priority metrics should be optimized to minimize the network-wide
fuel consumption of all vehicles over a given period of time. Considering the fact that
the traffic volume for the primary phase combination is much higher than those for the
secondary phase combinations, the three weights, α

j
i , β

j
i, and γ

j
i , are simplified into two

groups such that one group is for the primary phase combinations and the other group
is for all secondary phase combinations regardless of the intersection. In this manner,
the number of parameters to be optimized is greatly reduced to only 6, as shown in the
following equations.

α
j
i =

{
αp if j = primary
αs if j = secondary

(5)

β
j
i =

{
βp if j = primary
βs if j = secondary

(6)

γ
j
i =

{
γp if j = primary
γs if j = secondary

(7)

If the decision on the next green light is based solely on the priority metric, an undesir-
able situation may occur. For example, even if one of the secondary phase combinations
receives a green light due to a high-priority metric, it will quickly return the green light to
the primary phase combination if a wave of vehicles is approaching the intersection in the
primary phase combination. After the wave of vehicles in the primary phase combination
has passed through the intersection, the secondary phase may receive the next green light
again due to the long waiting vehicles in that phase combination. Because of the overhead
time during signal switching, this type of frequent alternation of traffic signals will nega-
tively affect network-wide energy efficiency. Therefore, in order to prevent frequent signal
switching, once a green light has been assigned to a secondary phase combination, it will
maintain the green light until all vehicles that have arrived in the phase combination pass
through the intersection.
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5.2. Weight Optimization

In this study, a genetic algorithm (GA) is used to find the optimal weights to minimize
network-wide fuel consumption. As explained in Section 5.1, two parameter values (pri-
mary and secondary) exist for each of the three weights. Therefore, a total of six weights are
used and optimized for each priority metric. Since the priority metric is calculated for each
phase combination and compared to determine which phase combination will get the next
green light, only relative magnitude is important for the weights. For this reason, the most
important and largest weight, αp, which is for the total vehicle count or total vehicle speed
in the primary phase combination, is set to 1, and only the other five weights are optimized.
Additionally, since vehicle count, vehicle speed, waiting time, and road preference have
different units, their values are normalized so that their corresponding weights are ranged
between 0 and 1. A chromosome used in the GA is depicted in Figure 11, where it can be
seen that five out of six parameters are optimized within the range of [0, 1] while αp is fixed
at 1.
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Figure 11. Chromosome used in genetic algorithm for weight optimization.

The overall structure of the weight optimization process is shown in Figure 12. The GA
optimizer runs multiple traffic simulations in SUMO by changing the weights based on a
predefined scheme and selects the values that minimize the network-wide fuel consumption.
The optimization code is written in Python (version 3.9.6), and the TraCI interface is used to
communicate with the SUMO simulation model. For parallel optimization, a workstation
equipped with an AMD EPYC 7452 32-core processor, operating at 2.35 GHz, was utilized
on the Windows 10 operating system.
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Inspired by natural selection in organismic evolution, GA consists of a fitness function
and three operators, including reproduction, crossover, and mutation, to change chromo-
somes. The fitness function is a measure of the superiority of each solution, which is a set
of weights. From the biological point of view, fitness is a creature’s ability to survive in a
given environment. The fitness values of the solutions are used for the reproduction of
new offspring solutions from previous generation solutions. After offspring is copied from
the parent generation, a promising area in the solution space is searched by the stochastic
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selection, crossover, and mutation [40]. In this research, weight optimization is performed
with an initial population of 60 solutions to maximize the fitness function defined as the
negative network-wide fuel consumption. This GA search uses a random mutation whose
probability is set to 0.4 within a range from −0.01 to 0.01. Also, the number of parent
mating is set to 4. These parameters, summarized in Table 3, are all based on heuristic
tuning.

Table 3. Genetic algorithm parameters selected for weight optimization.

Parameters Values

Initial population 60
Mutation probability 0.4
Minimum mutation −0.01
Maximum mutation 0.01

Parent mating 4

6. Simulation Results and Comparison

The SUMO traffic model was simulated over 6 h from 6 AM to 12 PM using different
traffic signal controllers. The traffic data were recreated based on measured traffic infor-
mation. Vehicle detection was simulated in SUMO using multi-entry/exit detectors, with
the aim of replicating the behavior of radar sensors at three intersections. Based on the
performance of real radars, the radar detection range was limited to 140 m in the simulation.
Due to the network geometry, it was not possible to differentiate the intended movement
of vehicles until they were closer to each intersection, at which point lanes for individual
movements began. In cases such as the northbound approach at TL2, it is assumed that the
radar cannot differentiate whether the vehicle intends to continue through the intersection
or turn right. If there is a separate lane for the desired movement, the vehicle is first
categorized in the straight approach until it moves into the left-turn lane. The resulting
network-wide fuel consumption obtained by each traffic signal controller was compared
with that of the baseline controller.

For the baseline controller, the fixed-time four-phase traffic signal controller is used in
coordination mode. In this case, the coordination mode means that the signal switching at
the three intersections is coordinated such that when a wave of vehicles has passed through
an intersection, the next intersection in the downstream changes its signal to green so that
the vehicles can pass through without stopping. The coordination of the switching time
is determined based on the distance and the average vehicle speed between the adjacent
intersections. This method has been proven to be effective in improving the network-wide
fuel economy without any sophisticated control scheme.

In addition to the conventional fixed-time coordinated traffic controller, another con-
ventional traffic signal controller based on actuation and coordination is applied to study
the effectiveness of this scheme compared to other methods. In this case, it is assumed
that proximity sensors such as induction-loop sensors are installed in all intersections such
that the sensors can detect the presence of vehicles at the stop line without providing any
advanced traffic information. The method is based on the eight-phase dual-ring control
logic with the coordination of controllers at multiple intersections.

The optimized parameters for the three different priority metrics are shown in Table 4.
As explained in Section 4, the first parameter, αp, was set to 1 since only relative magnitudes
of the parameters are meaningful in this approach. In the table, it is shown that parameter
values for the secondary phase combinations are smaller than those for the primary phase
combinations. This is due to the fact that it is more energy efficient to assign a higher
priority to the main road than the side roads, as a larger volume of vehicles is moving
at higher speeds on the main road. Additionally, for the amplification factors, λs, and
λw, for TSP, the optimal values were found to be 8 and 3. Since the three priority metrics
use different combinations of variables and those variables are normalized, the absolute
magnitudes of the optimized parameters do not hold any special meaning.
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Table 4. Optimized parameters for three different priority metrics.

Priority Metrics
Parameters

αp αs βp βs γp γs

VCP 1 0.098 0.278 0.010 0.816 0.071
VSP 1 0.844 0.391 0.006 0.782 0.389
TSP 1 0.495 0.318 0.003 0.672 0.202

Table 5 presents the network-wide fuel consumption of the vehicles in the SUMO
simulation model operated by five different traffic signal control algorithms. For all
simulations, the total number of vehicles that were generated by SUMO was about 12,758.
In the four-phase fixed-time control, the system does not respond to dynamically varying
traffic conditions, operating based on a predetermined schedule. Therefore, the fuel
consumption is the largest among all control algorithms. In the adaptive control method
actuated by proximity sensors, the system can detect vehicles near the traffic stop line.
Based on the information on whether there are vehicles near the stop lines or not, the system
can actively respond to the changing traffic condition and thus improve the overall fuel
consumption. When more information is available on the surrounding traffic conditions
near a traffic intersection using advanced sensors, the control system can make a better
decision using priority metrics to improve the network-wide fuel efficiency further. Among
the three priority metrics, it was observed that the VSP based on the total vehicle speed
shows better fuel economy than VCP based on the total vehicle count. This can be attributed
to the fact that the total vehicle speed implicitly includes the number of vehicles with the
additional speed factor. Since it requires more energy to stop and start a vehicle moving
at a higher speed, this metric leads to more efficient control of the traffic signal. Finally,
it is observed that considering heavy trucks with larger weights in TSP results in even
further improvement in network-wide fuel consumption. This is also due to the fact
that it requires more energy to stop and start heavy trucks than light passenger vehicles.
Thus, assigning higher priority to heavy trucks improves fuel economy. In the priority
metric-based approaches, the average time that vehicles spent within the sensor detection
zone across all secondary phase combinations was approximately 85.6 s. This indicates
that while the priority metric-based approaches improve network-wide fuel efficiency by
favoring the primary phase combination, the waiting time for vehicles in secondary phase
combinations does not experience a significant increase.

Table 5. Comparison of fuel consumption by different traffic control algorithms.

Method Fuel Consumption (L) Improvement (%)

Fixed-time four-phase coordinated (FFC) 1682 N/A
Actuated coordinated NEMA eight-phase (ACE) 1495 11.1

Priority metric with vehicle count (VCP) 1445 14.1
Priority metric with vehicle speed (VSP) 1441 14.3
Priority metric with truck speed (TSP) 1434 14.8

Table 6 shows the average fuel consumption per vehicle for two vehicle types (passen-
ger cars and trucks) by the five different traffic signal control methods. Classification of the
vehicle data shows that the number of trucks accounts for 8% of the total vehicles measured
during the 6-h time frame used in this research. Similar to the combined fuel consumption
shown in Table 5, both vehicle types show improved fuel consumption as the traffic signal
controller becomes more sophisticated with additional traffic information. One notable
observation is that when heavy trucks are separately considered with amplification factors
in TSP, it improves not only the fuel consumption of trucks but also that of passenger cars.
This may be explained by the fact that improving the traffic flow of the trucks also helps
improve the flow of passenger cars.
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Table 6. Comparison of fuel consumption per vehicle for passenger cars and trucks separately.

Method

Passenger Car (L) Truck (L)

Fuel Consumption Per
Vehicle (L) Improvement (%) Fuel Consumption Per

Vehicle (L) Improvement (%)

Fixed-time four-phase coordinated (FFC) 0.09068 N/A 0.5676 N/A
Actuated coordinated NEMA eight-phase

(ACE) 0.08123 10.4 0.5079 10.5

Priority metric with vehicle count (VCP) 0.07956 12.3 0.4704 17.1
Priority metric with vehicle speed (VSP) 0.07953 12.3 0.4669 17.8
Priority metric with truck speed (TSP) 0.07934 12.5 0.4620 18.6

Figures 13–17 show time–space diagrams for different controllers. In Figure 13, it
can be seen that FFC has regularly spaced signal intervals due to its fixed-time schedule.
As a result, a large number of vehicles in both directions are stopped, although the three
traffic signals are coordinated to facilitate continuous traffic flow. The traffic flow is greatly
improved when proximity sensors are used in ACE to detect vehicles at stop lines to
allow actuated coordinated operation of the traffic signals, as shown in Figure 14. When
the priority metrics are used to control the traffic signals, the traffic flow is even further
improved with few vehicles stopped at the intersections, as shown in Figures 15–17. The
time–space diagrams for the VCP, VSP, and TSP visually confirm the numerical results
shown in Tables 5 and 6.
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7. Conclusions and Future Works 
The goal of this study is to develop an optimal traffic signal control algorithm to min-

imize the total fuel consumption in a traffic network. For this purpose, a priority metric-
based traffic signal control algorithm was developed with optimized weighting factors, 
and the algorithm was evaluated in a traffic simulation environment called SUMO. In 
SUMO, three signaled intersections were implemented based on a real road, and the traffic 
flow was simulated based on measured traffic data on the road. For the priority metric for 
each phase combination, different combinations of total vehicle speed, the total number 
of vehicles, total vehicle waiting time, and road preference were used and later expanded 
with an additional truck priority. The optimal weights multiplied by the terms in the pri-
ority metric were found by utilizing the genetic algorithm. Once optimized, the priority 
values were calculated for all phase combinations based on real-time dynamic traffic in-
formation, and the lane with the largest value received the next green light. The simula-
tion results showed that the priority metric based on the total vehicle speed, total vehicle 
waiting time, and road preference performed best with a reduction in the network-wide 
fuel consumption by 14.3% compared to the baseline fixed-time four-phase coordinated 
controller and 3.6% compared to the actuated coordinated NEMA-based eight-phase con-
troller. Moreover, adding truck priority to the priority metric further improved the fuel 
consumption by 14.8% and 4.1% compared to the baseline fixed-time four-phase coordi-
nated controller and the actuated coordinated NEMA-based eight-phase controller, re-
spectively. It was also found that considering truck priority was not only effective in re-
ducing the total fuel consumption of trucks but also that of passenger cars. 

This study will be extended in the future in four different aspects. First, vehicle mass 
will be considered as an additional factor in the priority metrics to distinguish heavy 
trucks from light trucks for a higher priority. It is expected that the vehicle types and the 
associated vehicle mass can be estimated with good accuracy using camera and radar sen-
sors. Second, optimization of the weights in the priority metrics for varying traffic vol-
umes across the network can further reduce the total fuel consumption. Although it will 
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7. Conclusions and Future Works

The goal of this study is to develop an optimal traffic signal control algorithm to
minimize the total fuel consumption in a traffic network. For this purpose, a priority metric-
based traffic signal control algorithm was developed with optimized weighting factors, and
the algorithm was evaluated in a traffic simulation environment called SUMO. In SUMO,
three signaled intersections were implemented based on a real road, and the traffic flow was
simulated based on measured traffic data on the road. For the priority metric for each phase
combination, different combinations of total vehicle speed, the total number of vehicles,
total vehicle waiting time, and road preference were used and later expanded with an
additional truck priority. The optimal weights multiplied by the terms in the priority metric
were found by utilizing the genetic algorithm. Once optimized, the priority values were
calculated for all phase combinations based on real-time dynamic traffic information, and
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the lane with the largest value received the next green light. The simulation results showed
that the priority metric based on the total vehicle speed, total vehicle waiting time, and
road preference performed best with a reduction in the network-wide fuel consumption
by 14.3% compared to the baseline fixed-time four-phase coordinated controller and 3.6%
compared to the actuated coordinated NEMA-based eight-phase controller. Moreover,
adding truck priority to the priority metric further improved the fuel consumption by
14.8% and 4.1% compared to the baseline fixed-time four-phase coordinated controller
and the actuated coordinated NEMA-based eight-phase controller, respectively. It was
also found that considering truck priority was not only effective in reducing the total fuel
consumption of trucks but also that of passenger cars.

This study will be extended in the future in four different aspects. First, vehicle mass
will be considered as an additional factor in the priority metrics to distinguish heavy trucks
from light trucks for a higher priority. It is expected that the vehicle types and the associated
vehicle mass can be estimated with good accuracy using camera and radar sensors. Second,
optimization of the weights in the priority metrics for varying traffic volumes across the
network can further reduce the total fuel consumption. Although it will require a substantial
amount of optimization, this gain scheduling will further improve the network-wide energy
efficiency without requiring much computational load during operation. Third, an extended
priority metric will be developed to consider multiple adjacent intersections simultaneously.
The priority metric-based algorithm presented in this paper is a local method without
cooperating with other traffic controllers. Considering traffic signal controllers in multiple
adjacent intersections simultaneously will further improve the traffic control performance
by optimally planning for upcoming traffic conditions in advance using information from
adjacent traffic controllers. Finally, the benefits of other global optimization algorithms
in optimizing the weights of priority metrics will be examined. For instance, the particle
swarm optimization method [25–27] and the Nelder–Mead method [41,42] have been
employed in traffic control optimization problems previously, and we plan to consider
them in our future research.

Author Contributions: Conceptualization, H.-S.Y. and M.K.; methodology, H.-S.Y. and M.K.; soft-
ware, M.S. and M.K.; validation, M.K. and H.-S.Y.; formal analysis, M.K.; investigation, M.K.; re-
sources, H.-S.Y. and J.A.B.; data curation, M.K.; writing—original draft preparation, M.K. and M.S.;
writing—review and editing, H.-S.Y.; visualization, M.K.; supervision, H.-S.Y.; project administration,
J.A.B.; funding acquisition, J.A.B. and H.-S.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the U.S. Department of Energy, grant number DE-EE0009210.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. U.S. Energy Information Administration. Oil and Petroleum Products Explained. Available online: https://www.eia.gov/

energyexplained/oil-and-petroleum-products/use-of-oil.php (accessed on 1 July 2022).
2. Branke, J.; Goldate, P.; Prothmann, H. Actuated traffic signal optimization using evolutionary algorithms. In Proceedings of

the 6th European Congress and Exhibition on Intelligent Transport Systems and Services, Aalborg, Denmark, 18–20 June 2007;
pp. 203–225.

3. Tubaishat, M.; Shang, Y.; Shi, H. Adaptive traffic light control with wireless sensor networks. In Proceedings of the 2007 4th IEEE
Consumer Communications and Networking Conference, Washington, DC, USA, 1–13 January 2007; pp. 187–191.

4. Azimjonov, J.; Özmen, A. A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic
flow on highways. Adv. Eng. Inform. 2021, 50, 101393. [CrossRef]

5. Lu, D.; Jammula, V.C.; Como, S.; Wishart, J.; Chen, Y.; Yang, Y. CAROM-Vehicle Localization and Traffic Scene Reconstruction
from Monocular Cameras on Road Infrastructures. In Proceedings of the 2021 IEEE International Conference on Robotics and
Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11725–11731.

https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php
https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php
https://doi.org/10.1016/j.aei.2021.101393


Sustainability 2023, 15, 7637 17 of 18

6. Ge, L.; Dan, D.; Li, H. An accurate and robust monitoring method of full-bridge traffic load distribution based on YOLO-v3
machine vision. Struct. Control Health Monit. 2020, 27, e2636. [CrossRef]

7. Mandal, V.; Mussah, A.R.; Jin, P.; Adu-Gyamfi, Y. Artificial intelligence-enabled traffic monitoring system. Sustainability 2020, 12, 9177.
[CrossRef]

8. Li, S.; Yoon, H.-S. Vehicle Localization in 3D World Coordinates Using Single Camera at Traffic Intersection. Sensors 2023, 23, 3661.
[CrossRef] [PubMed]

9. Kwak, S.; Kim, H.; Kim, G.; Lee, S. Multi-view convolutional neural network-based target classification in high-resolution
automotive radar sensor. IET Radar Sonar Navig. 2023, 17, 15–26. [CrossRef]

10. Lim, H.-S.; Lee, J.-E.; Park, H.-M.; Lee, S. Stationary Target Identification in a Traffic Monitoring Radar System. Appl. Sci. 2020, 10, 5838.
[CrossRef]

11. Webster, F.V. Traffic Signal Settings; Road Research Technique Paper No. 39; Road Reserch Lab: London, UK, 1958.
12. Little, J.D. The synchronization of traffic signals by mixed-integer linear programming. Oper. Res. 1966, 14, 568–594. [CrossRef]
13. Robertson, D.I. ‘Tansyt’ method for Area Traffic Control. Traffic Eng. Control 1969, 11, 276–281.
14. Papageorgiou, M.; Diakaki, C.; Dinopoulou, V.; Kotsialos, A.; Wang, Y. Review of road traffic control strategies. Proc. IEEE 2003,

91, 2043–2067. [CrossRef]
15. Hunt, P.; Robertson, D.; Bretherton, R.; Royle, M.C. The SCOOT on-line traffic signal optimisation technique. Traffic Eng. Control.

1982, 23, 190–192.
16. Gartner, N.H. OPAC: A demand-responsive strategy for traffic signal control. In Proceedings of the 62nd Annual Meeting of the

Transportation Research Board, Washington, DC, USA, 17–21 January 1983.
17. Henry, J.-J.; Farges, J.L.; Tuffal, J. The PRODYN real time traffic algorithm. In Control in Transportation Systems; Elsevier:

Amsterdam, The Netherlands, 1984; pp. 305–310.
18. Lin, H.; Han, Y.; Cai, W.; Jin, B. Traffic signal optimization based on fuzzy control and differential evolution algorithm. IEEE Trans.

Intell. Transp. Syst. 2022, 1–12. [CrossRef]
19. Li, M.; Luo, D.; Liu, B.; Zhang, X.; Liu, Z.; Li, M. Arterial coordination control optimization based on AM–BAND–PBAND model.

Sustainability 2022, 14, 10065. [CrossRef]
20. Dimitrov, S. Optimal control of traffic lights in urban area. In Proceedings of the 2020 International Conference Automatics and

Informatics (ICAI), Varna, Bulgaria, 1–3 October 2020; pp. 1–6.
21. “Brian” Park, B.; Yun, I.; Ahn, K. Stochastic optimization for sustainable traffic signal control. Int. J. Sustain. Transp. 2009, 3,

263–284. [CrossRef]
22. Stevanovic, A.; Stevanovic, J.; Zhang, K.; Batterman, S. Optimizing traffic control to reduce fuel consumption and vehicular

emissions: Integrated approach with VISSIM, CMEM, and VISGAOST. Transp. Res. Rec. 2009, 2128, 105–113. [CrossRef]
23. Kwak, J.; Park, B.; Lee, J. Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel

consumption. Transp. Plan. Technol. 2012, 35, 145–160. [CrossRef]
24. Al-Turki, M.; Jamal, A.; Al-Ahmadi, H.M.; Al-Sughaiyer, M.A.; Zahid, M. On the potential impacts of smart traffic control

for delay, fuel energy consumption, and emissions: An NSGA-II-based optimization case study from Dhahran, Saudi Arabia.
Sustainability 2020, 12, 7394. [CrossRef]

25. Olivera, A.C.; García-Nieto, J.M.; Alba, E. Reducing vehicle emissions and fuel consumption in the city by using particle swarm
optimization. Appl. Intell. 2015, 42, 389–405. [CrossRef]

26. Garcia-Nieto, J.; Olivera, A.C.; Alba, E. Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans. Evol.
Comput. 2013, 17, 823–839. [CrossRef]

27. Celtek, S.A.; Durdu, A.; Alı, M.E.M. Real-time traffic signal control with swarm optimization methods. Measurement 2020, 166, 108206.
[CrossRef]

28. Zhao, J.; Li, W.; Wang, J.; Ban, X. Dynamic traffic signal timing optimization strategy incorporating various vehicle fuel
consumption characteristics. IEEE Trans. Veh. Technol. 2015, 65, 3874–3887. [CrossRef]

29. Zhao, Y.; Ioannou, P. A traffic light signal control system with truck priority. IFAC-PapersOnLine 2016, 49, 377–382.
30. Zhao, Y.; Ioannou, P. A co-simulation, optimization, control approach for traffic light control with truck priority. Annu. Rev.

Control. 2019, 48, 283–291. [CrossRef]
31. Li, J.; Zhang, Y.; Chen, Y. A self-adaptive traffic light control system based on speed of vehicles. In Proceedings of the 2016 IEEE

International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vienna, Austria, 1–3 August 2016;
pp. 382–388.

32. Schrader, M.; Wang, Q.; Bittle, J. Extension and Validation of NEMA-Style Dual-Ring Controller in SUMO. In Proceedings of the
SUMO Conference Proceedings, Virtual Event, 9–11 May 2022; pp. 1–13. [CrossRef]

33. Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.-P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner, E.
Microscopic traffic simulation using sumo. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2575–2582.

34. Alabama Department of Transportation. TDM Public. Available online: https://aldotgis.dot.state.al.us/TDMPublic/ (accessed
on 20 October 2020).

35. Wunderlich, K.E.; Vasudevan, M.; Wang, P. TAT Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software 2019
Update to the 2004 Version; Federal Highway Administration: Washington, DC, USA, 2019.

https://doi.org/10.1002/stc.2636
https://doi.org/10.3390/su12219177
https://doi.org/10.3390/s23073661
https://www.ncbi.nlm.nih.gov/pubmed/37050721
https://doi.org/10.1049/rsn2.12320
https://doi.org/10.3390/app10175838
https://doi.org/10.1287/opre.14.4.568
https://doi.org/10.1109/JPROC.2003.819610
https://doi.org/10.1109/TITS.2022.3195221
https://doi.org/10.3390/su141610065
https://doi.org/10.1080/15568310802091053
https://doi.org/10.3141/2128-11
https://doi.org/10.1080/03081060.2011.651877
https://doi.org/10.3390/su12187394
https://doi.org/10.1007/s10489-014-0604-3
https://doi.org/10.1109/TEVC.2013.2260755
https://doi.org/10.1016/j.measurement.2020.108206
https://doi.org/10.1109/TVT.2015.2506629
https://doi.org/10.1016/j.arcontrol.2019.09.006
https://doi.org/10.52825/scp.v3i
https://aldotgis.dot.state.al.us/TDMPublic/


Sustainability 2023, 15, 7637 18 of 18

36. Krajzewicz, D.; Behrisch, M.; Wagner, P.; Luz, R.; Krumnow, M. Second generation of pollutant emission models for SUMO. In
Proceedings of the Modeling Mobility with Open Data: 2nd SUMO User Conference 2014, Berlin, Germany, 15–16 May 2014;
pp. 203–221.

37. Hausberger, S.; Krajzewicz, D. COLOMBO Deliverable 4.2: Extended Simulation Tool PHEM Coupled to SUMO with User Guide;
Institute of Transportation Systems: Berlin, Germany, 2014.

38. Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev.
E 2000, 62, 1805. [CrossRef] [PubMed]

39. Andrew Sullivan, S.L.J.; Tedla, E.; Doustmohammadi, E. Traffic signal Design Guide & Timing Manual; Alabama Department of
Transportation: Montgomery, AL, USA, 2015; p. 240.

40. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, 13th ed.; Addison-Wesley: Reading, MA, USA,
1989; p. 432.

41. Spiliopoulou, A.; Papamichail, I.; Papageorgiou, M.; Tyrinopoulos, Y.; Chrysoulakis, J. Macroscopic traffic flow model calibration
using different optimization algorithms. Oper. Res. 2017, 17, 145–164. [CrossRef]

42. Maripini, H.; Vanajakshi, L.D.; Chilukuri, B.R. Simulation-Based Optimization for Heterogeneous Traffic Control. In Proceedings
of the Fifth International Conference of Transportation Research Group of India: 5th CTRG Volume 2, Bhopal, India, 18–21
December 2019; pp. 135–149.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1103/PhysRevE.62.1805
https://www.ncbi.nlm.nih.gov/pubmed/11088643
https://doi.org/10.1007/s12351-015-0219-4

	Introduction 
	Related Works 
	Traffic Data Collection Technologies 
	Traffic Control and Optimization Methods 

	Traffic Simulation Environment 
	Traffic Network Model 
	Traffic Volume Model 
	Vehicle Model 

	Conventional Traffic Control System 
	Traffic Signal Phases 
	Conventional Traffic Control Logics 
	Fixed-Time Signal Timing Design 

	Priority-Based Traffic Control Algorithm 
	Priority Metric 
	Weight Optimization 

	Simulation Results and Comparison 
	Conclusions and Future Works 
	References

