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Abstract: Driving behavior is an important factor affecting the risk of hazardous materials transporta-
tion. In this paper, we propose a transport risk evaluation method that considers driving risk. We
consider driving risk and establish a model of vehicle routing problems with a soft time window for
the transportation of hazardous materials and design a non-dominated genetic algorithm to solve the
bi-objective optimization model. Taking a network of 23 nodes and 38 road segments as an example,
59 pareto-optimal solutions were obtained for six drivers on nine different paths. Comparing different
solutions, it was found that driving risk, road population density, and transportation distance have
different impacts on transport cost and risk. Choosing drivers and routes can adjust the propensity
of cost and risk, allowing the decision-maker to select a solution for allocating drivers and routing
vehicles according to their risk preference.

Keywords: driving risk; vehicle routing problem; bi-objective optimization; hazardous materials
transportation

1. Introduction

With the ever-growing demand for transportation and the potential risk to public
safety, transportation of hazardous materials has gained the attention of researchers and
decision makers from government and non-governmental security organizations. It is
estimated that four billion tons of hazardous materials are transported worldwide each
year. According to the European Commission, around 60% of hazardous materials are
transported by road in Europe [1]. In China, more than 92% of accidents related to haz-
ardous materials occur during road transportation, and there are an average of 36 major
accidents involving road transport of hazardous materials every year [2]. Despite the low
accident rate, its impact on human and the environment is severe. Path optimization is an
effective way to reduce the incidence and impact of accidents. Thus, it is of great research
significance to optimize the path of hazardous materials transportation and provide a
scientific and reasonable transport solution that decision makers can use to choose a route
with an acceptable balance of cost and risk.

Vehicle routing problems for hazardous materials (HMVRP) is a type of bi-objective
VRP that has been a focus by researchers for some time [3–5]. Tarantilis and Kiranoudis [6]
proposed a list-based variant of the threshold accepting algorithm (LBTA) in order to mini-
mize population exposure by solving a Capacitated VRP. Zografos and Androutsopoulos [7]
defined the determination of hazardous materials distribution routes as a bi-objective ve-
hicle routing problem with time windows; this is because risk minimization accompanies
cost minimization in the objective function. They proposed a heuristic algorithm based on
insertion to solve the problem and integrated it into the decision support system of haz-
ardous materials transportation based on GIS. Androutsopoulos and Zografos [8] established
a time-dependent bi-objective HMVRP with time windows and proposed a labeling algorithm
based on the k-shortest path. Pradhananga et al. [9] designed a Multi-Objective Ant Colony
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System (MOACS) to solve a bi-objective hazardous material routing problem in which they
minimized the total scheduled travel time and the total risk value of the routes. Zheng [10]
proposed a multi-objective optimization model for VRP in hazardous material transportation
that aims to minimize road risk, the population affected along the way, and total cost while
using a multi-objective genetic algorithm. Garrido et al. [11] considered the risk difference and
risk equity of different types of hazardous materials, combined with social risk tolerance to
optimize the routing, and formulated a multi-objective optimization that considers cumulative
risk, cost, and travel time. Chai et al. [12] established mathematical models for vehicle routing
and scheduling for logistical distribution of hazardous materials in full container loads (FCL)
and converted the vehicle scheduling problem to a VRPTW. Cuneo et al. [13] formulated
a capacitated VRPTW based on a case study related to the distribution of fuels for an oil
company to its service stations. Bula et al. [14,15] proposed a multi-objective neighborhood
search algorithm and a cost ε-constrained meta-heuristic algorithm for VRP of hazardous
materials transportation. Meng et al. [16] proposed a multi-objective robust VRPTW model
that considered the uncertainty of hazardous materials transportation and designed a hybrid
evolutionary algorithm (HEA) to solve the robustness problem. Kang et al. [17] focused
on the bi-objective shortest optimization problem (BSP) between single original-destination
pairing of hazardous materials transportation that considered driving risk, which been eval-
uated by the analytic hierarchy process (AHP). Holeczek [18] assumed that the risk value
decreases linearly with the load capacity, and considered the loading of hazardous materials
in the risk assessment. Based on this, a VRPTW model was established and solved using a
two-step method.

Most studies only consider the relationship between accident rate, residents, and
environment in their risk evaluation, but driving risk and its impact are rarely considered.
Aggressive behavior and bad driving habits are one of the main causes of traffic accidents.
Based on the analysis of driving history data, driving behavior can be roughly described.
Thus, it is necessary to consider driving risk in the risk evaluation of hazardous materials
transportation. Driving risk is associated with many exposure factors [19], including
driving skills [20], age [21], gender [22], driver behavior [23], etc. In addition, cumulative
distance [24], road type [25], weather [26,27], and continuous driving time [28,29] are also
contributory factors.

To make up for this defect in the existing literature, we propose to increase the con-
sideration of driving risk when analyzing the risk of hazardous materials transportation.
Based on driving risk evaluation, a Vehicle Routing Problem with a Soft Time Window for
Hazardous Materials (HMVRPTW) model that aims to minimize risk and cost is established,
and a Non-Dominated Genetic Algorithm II (NSGA-II) is designed to solve it. This model
includes a coding rule. In addition, crossover and mutation strategies are proposed that
can efficiently obtain the Pareto-optimal route.

The paper is organized as follows. Section 2 introduces the driving risk impact index
and the driving risk evaluation. Section 3 establishes the bi-objective optimization model
of HMVRPTW with the goal of minimizingrisk and cost. Section 4 discusses the design
of an NSGA-II. Section 5 uses a hazardous materials transportation network, composed
of 23 nodes and 38 links, as an example in order to obtain the Pareto-optimal route and
analyze the different paths and driver assignments.

2. Driving Risk Evaluation
2.1. Driving Risk Impact Index

During the transportation of hazardous materials, driving risk primarily refers to the
risk of crash, overturn, leakage, explosion, and other accidents that could occur during
driving as a result of the driver’s characteristics and driving habits. Driving data can
directly reflect driving behavior, but it is meaningless to analyze the index of a single trip.
It is necessary to analyze a large amount of historical driving data to comprehensively
evaluate driving risk. According to the relevant research on hazardous materials trans-
portation and other freight transportation, many indicators affect driving risk. Based on
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the relevant transportation data of a regional branch of PetroChina in 2020, we chose the
data of 100 drivers with more than three years of driving experience and selected the key
indicators affecting driving risk from aspects including age, driving experience, educational
background, gender, driving speed, driving habits, and heavy vehicle mileage. From this
data, we built a driving risk evaluation index system, as shown in Table 1.

Table 1. Weight of all criteria for driving risk.

Criterion Weight
Plan (Level 1) Plan (Level 2)

Criterion Weight Criterion Weight

Driver’s
characteristics

0.4425

Age 0.4039

25–30 0.1060
30–35 0.0665
35–40 0.1646
40–45 0.2698
≥45 0.3931

Driving
experience/years 0.3404

3–7 0.4265
7–11 0.2537
11–15 0.1507
15–19 0.0867
≥19 0.0824

Educational
background 0.1391

Uneducated 0.4743
Primary 0.2781

Junior school 0.1184
High school 0.0832

Higher education 0.0460

Gender 0.1166
Male 0.3333

Female 0.6667

Driving habits 0.5575

Driving
Speed/km·h−1

(on urban roads)
0.4182

<45 0.0320
45–55 0.0583
55–65 0.1031
65–75 0.2976
≥75 0.5089

Rapid
acceleration/km·h−2 0.1906

<5 0.0330
5–10 0.0627
10–15 0.1401
15–20 0.2626
≥20 0.5016

Rapid
deceleration/km·h−2 0.2707

<5 0.0458
5–10 0.0907
10–15 0.1343
15–20 0.2515
≥20 0.5326

Heavy vehicle
mileage/km·d−1 0.1205

120–150 0.1248
150–180 0.0778
180–210 0.3506

>210 0.4918

2.2. Weights of Criterion

Different criteria have varying levels of influence on driving risk. By analyzing the
driving data, our own investigation, the scoring of experts, and using the analytic hierarchy
process (AHP) as an example, the assessment matrix of the criterion layer is determined
by pairwise comparison of a driver’s characteristics and driving habits. The satisfactory
consistency of the results is calculated and checked to determine the weight of each criterion.
The weights of all criteria at all levels are obtained by comparing them in pairs, as shown
in Table 1.
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Using the evaluation system, the driving risk weight of each driver is calculated to deter-
mine the transport risk associated with that driver during transportation of hazardous materials.

3. Problem Formulation

The HMVRPTW is defined on an undirected network G = (N, A) comprised of the
distribution center o, customer node subset N0, and non-customer nodes set N1. Each node
i ∈ N0 contains a fixed non-negative demand qi, a known service time τi, and a soft time
window [bi, ei]. Each arc (i, j) ∈ A is associated with a length dij, as well as any driver
m ∈ M driving a vehicle k ∈ K transporting hazardous materials on a road segment. These
road segments have an associated specified speed vijk, transport risk rm

ijk, and cost cm
ijk. The

transport vehicles depart from the distribution center according to the capacity restrictions
of the vehicles; after delivering to a certain number of customer nodes, they return to the
distribution center. Each customer node can only be served by one vehicle and the vehicle
can only pass once; for non-customer nodes, the vehicles can pass multiple times. The
vehicles need to arrive at customer nodes within the specified time window; if they arrive
early or late, the cost of transportation will be increased by a penalty. The transportation
cost of different levels of drivers is also different. The core of the problem rests in how
to arrange drivers and along which route to deliver so that the level of risk and target
is optimal.

3.1. Assumption

(1) There is a linear relationship between transport risk and driving risk in hazardous
materials transportation. (2) The loading of hazardous materials has a proportional effect
on the consequences of vehicle accidents. (3) For any driver, the risk value of transportation
with no load is zero. (4) Service time remains constant regardless of the vehicle load.

3.2. Symbols Definition

G: road network, G = (N, A).
N: node set, N = {1, 2, 3, . . . , n}.
A: link set among nodes, A = {(i, j) : i, j ∈ N}.
o: distribution center, o ∈ N.
N0: customer nodes set, N0 ⊂ N.
N1: non-customer nodes set, N1 ⊂ N.
dij: distance of link (i, j) ∈ A.
K: vehicle set.
M: driver set.
qi: demand of customer i (i ∈ N0).
tik: arrive time of vehicle k (k ∈ K) at node i (i ∈ N).
τi: serve time at node i (i ∈ N0).
[bi, ei]: time window restriction when node i is serviced.
lok: the load of vehicle k (k ∈ K) from distribution center o (o ∈ N).
lik: the load of vehicle k (k ∈ K) arrives at node i (i ∈ N0 ∪ N1).
vijk: driving speed of vehicle k between i and j ((i, j) ∈ A)
wm: driving risk (weight) of driver m (m ∈ M).
cm

ijk: cost of driver m (m ∈ M) drives vehicle k (k ∈ K) through link (i, j) ∈ A.
rm

ijk: risk of driver m (m ∈ M) drives vehicle k (k ∈ K) through link (i, j) ∈ A.
xm

ijk: decision variable. If driver m (m ∈ M) drives vehicle k (k ∈ K) through link
(i, j) ∈ A, xm

ijk = 1; else xm
ijk = 0.
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3.3. Risk and Cost

Base on the traditional risk evaluation [3], and taking into account the impact of
loading capacity and driving risk according to assumptions (1) and (2), the risk of driver m
driving vehicle k through link (i, j) is:

rm
ijk = dij pijρijπR2(wm/w)

(
ljk/lok

)
(1)

where pij is the accident probability of any vehicle passing through the link (i, j), ρij is the
population density around the link (i, j), R is the radius of the area affected by accidents,
wm is the driving risk of driver m, and w is the average value of all drivers’ driving risks,
which is calculated by:

w = ∑
m∈M

wm/|M| (2)

The cost of transporting hazardous materials is mainly related to travel distance, fuel,
road toll, material cost, maintenance cost, and labor cost. Taking these factors into account,
the cost of driver m driving vehicle k with a load through link (i, j) is:

cm
ijk = ( f s + ts + ms + cs + sm)dijljk (3)

and the cost of driver m driving empty vehicle k through link (i, j) is:

cm
ijk = ( f s′ + ts′ + ms′ + cs′ + sm)dij (4)

For a vehicle carrying a load, f s is the fuel consumption coefficient, ts is the traffic cost
coefficient, ms is the material consumption coefficient, cs is the maintenance cost coefficient,
and sm is the labor cost coefficient, which is dependent on the driver m; for an empty
vehicle, f s′ is the fuel consumption coefficient, ts′ is the traffic cost coefficient, ms′ is
material consumption coefficient, and cs′ is the maintenance cost coefficient.

Labor cost is the salary of the driver and escorts. According to the relevant regulations
of the logistics industry association, there must be one or more escorts accompanying
the driver during hazardous materials transportation, excluding the driver themselves.
Assuming that there is a linear relationship between the driver’s salary and the driving risk,
and that there is one escort accompanying the driver with a salary equal to the driver’s, the
labor cost sm of driver m can be expressed as:

sm = 2sb(1 + (wmax − wm)/(wmax − wmin)) (5)

where sb is base salary of the freight logistics industry, and wmax and wmin are the upper
and lower limits of driving risk for different drivers, respectively.

3.4. Mathematical Model

Considering the above costs and risks, the Vehicle Routing Problem with Soft Time Win-
dows for Hazardous Materials Transportation (HMVRPTW) model is formulated as follows:

minZ1 = ∑
m∈M

∑
k∈K

∑
(i,j)∈A

rm
ijkxm

ijk (6)

minZ2 = ∑
m∈M

∑
k∈K

∑
(i,j)∈A

cm
ijkxm

ijk + f1 ∑
k∈K

∑
i∈N0

max{bi − tik, 0}+ f2 ∑
k∈K

∑
i∈N0

max{tik − ei, 0} (7)

s.t.

∑
m∈M

∑
k∈K

∑
i∈N

xm
ijk = 1 ∀j ∈ N0 (8)
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∑
m∈M

∑
k∈K

∑
j∈N

xm
ijk = 1 ∀i ∈ N0 (9)

∑
j∈N

xm
0jk = 1 ∀m ∈ M, k ∈ K (10)

∑
i∈N

xm
i0k = 1 ∀m ∈ M, k ∈ K (11)

∑
i∈N

xm
ijk − ∑

j∈N
xm

ijk = 0 ∀m ∈ M, k ∈ K (12)

∑
m∈M

∑
j∈N0

qj ∑
i∈N

xm
ijk ≤ lok ∀k ∈ K (13)

∑
m∈M

∑
k∈K

∑
i∈N

qjxm
ijk = qj ∀j ∈ N0 (14)

xm
ijk ∈ [0, 1] ∀m ∈ M, k ∈ K, (i, j) ∈ A (15)

The model is a nonlinear integer programming problem in which objective function
(6) minimizes the total risk and objective function (7) minimizes the cost. The model
includes a soft time window constraint, with part 1 representing the transport cost in
function (7) and part 2 and 3 representing the penalty cost for violating the soft time
window constraint. f1 and f2 are the penalty coefficients for vehicles waiting and being
late, respectively. Equations (8) and (9) guarantee that each customer node can only be
served by one vehicle. Equation (8) states that the vehicle can only arrive at the customer
node once; Equation (9) states that the vehicle can only depart from the customer node
once. Equations (10)–(12) require that any driver driving the vehicle from the distribution
center must return to the distribution center after completing the delivery. Equation (10)
constrains the vehicle to start from node 0, while Equation (11) constrains the vehicle to
return to node 0. Equation (12) ensures the conservation of inflow and outflow for any
node. Equation (13) is the load constraint, ensuring that the demand at the customer node
served by the vehicle shall not exceed the load at the departure of the vehicle from the
distribution center. Equation (14) ensures that each customer node can only be served by
one vehicle.

In function (7), the recursive relationship between the time tjk vehicle k arrives at a
node j and the time tik it arrives at the previous node i can be expressed as:

tjk =
(

tik + τi + dij/vijk

)
xm

ijk k ∈ K, (i, j) ∈ A (16)

4. Solution Methodology
4.1. NSGA-II Algorithm

Genetic Algorithm (GA) is a computer science technique that uses the concept of
simulated evolution to search for optimal solutions. It includes genetic mutation, adaptive
selection, and crossover steps, through which the GA can find the optimal solution. In
multi-objective optimization problem solving, Deb’s Fast Non-Dominated Sorting Genetic
Algorithm with Elite Strategy (NSGA-II) [30] is the most widely used. It employs fast
non-dominated sorting to retain the superior individuals of the parent generation and
introduce them directly into the offspring to prevent the loss of solution in the Pareto
Front. It also proposes the crowding distance operator and elite strategy selection operator;
this significantly reduces the computational complexity when compared to NSGA. The
algorithm steps are as follows:

Step 1: Initialization. Randomly generate an initial population P0 with population size N.
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Step 2: Offspring generation. Use Pi to select, cross, and mutate in order to obtain the
offspring population Qi with population size N; set population Pi and Qi and merge into
Ri. Initially, i = 0.

Step 3: Fitness calculation. Decode the path according to the encoding rules and
calculate the objective function.

Step 4: Update population. Use the elite strategy to generate the offspring; that is to say,
the individuals in Ri are non-dominated sorted and all their boundary sets F = (F1, F2, · · ·)
are constructed. The individuals are added to the offspring population Pi+1 from F until it
is size reaches N.

Step 5: Iteration. Go to Step 2 and repeat until the number of iterations G is met.

4.2. Encoding and Decoding

Encoding and decoding are key technologies in the evolutionary algorithms; they
directly affect the correctness and efficiency of the algorithm. To illustrate the individual
encoding and decoding processes, take the transportation network shown in Figure 1 as an
example. There are 10 nodes in the network shown in Figure 1; node 1 is the distribution
center, the customer nodes are 5, 7, and 10, and the demand is 9 tons, 8 tons, and 13 tons
respectively. The rated load of the vehicles is 20 tons.
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4.2.1. Encoding

The integer coding method is used to encode the individual; the individual length is
the number of nodes. The code contains two key pieces of information: the service order
and the route of vehicles. The details of these pieces of information are explained in the
decoding process.

4.2.2. Decoding

The following are the decoding steps that are illustrated by taking the randomly
generated individual 1-2-8-4-9-5-3-10-7-6 as an example.

Step 1: Service order
Step 1.1: Find customer service nodes in individuals.
Step 1.2: According to the demand of customer nodes and vehicle load constraints,

the greedy strategy is adopted to select the customer nodes with its service order in the
individual in order to obtain the customer nodes and service sequence.

In the example, the customer nodes are 5, 10, and 7. The customer nodes and order of
vehicle service are shown in Table 2.

Table 2. Vehicle allocation.

Vehicle Customer Node Service Order

1 5, 7 1→5→7→1
2 10 1→10→1
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Step 2: Vehicle routing.
Step 2.1: Assign a new vehicle, determine the departing node (distribution center),

and mark it in the individual.
Step 2.2: Traverse the individual to find the first node connected to the previous node,

excluding the marked node.
Step 2.3: Judge whether there is a customer node in the connected nodes according

to the vehicle service order. If so, select the customer node as the next node of the route
and mark it, and remove the marking traces of other nodes in the individual except the
customer node; if not, continue.

Step 2.4: According to the vehicle service order, judge whether there is an adjacent
node shared by the current node and the customer node among the connected nodes. If so,
select the point as the next node of the route and mark it according to the traversal order;
if not, select and mark the next node according to the traversal order, and go to Step 2.2
until the vehicle has passed all customer nodes assigned to it and is ready to return to the
distribution center.

Step 2.5: Find the node connected to the previous node (the last customer node of the
vehicle distribution) in the individual.

Step 2.6: Judge whether there is a distribution center in the connected nodes (excluding
the marked nodes). If so, the vehicle returns to the distribution center and the decoding is
completed. If not, continue.

Step 2.7: Judge whether there is an adjacent node shared by the current node and
distribution center 1 in the connected nodes. If so, select the node as the next node and
mark it according to the traversal order; if not, select the next node and mark it according
to the traversal order; go to step 2.6 until the vehicle returns to the distribution center.

Step 2.8: Repeat Step 2 to assign the driving path of the next vehicle until all vehicle
driving paths are assigned.

Using the example individual as an example, allocate the driving path of the first
vehicle. In the individual, non-customer nodes 2 and 4 are connected to node 1; they
are the linked nodes of node 1 and customer node 5. Select node 2 as the next node and
mark it. Nodes 3 and 5 are connected to node 2 according to the vehicle service order;
select node 5 as the next node and mark it, then remove all of the markings (except for
the customer node). The nodes connected to node 5 are nodes 2, 4, 6, and 8, which are all
non-customer nodes. Among them, nodes 4 and 8 are the linked nodes of customer nodes 5
and 7, according to the traversal order; node 8 is selected as the next node and marked. The
nodes connected with node 8 are nodes 7 and 9; node 7 is the customer node, so select it
as the next node and mark it, then remove the mark trace (except for the customer node).
The vehicle has passed all customer nodes assigned to it (nodes 5 and 7) and is ready to
return to the distribution center. Nodes 4 and 8 are connected to node 7. Node 4 is the
linked node of customer node 7 and distribution center 1; select it as the next node then
mark it. The node connected to node 4 is distribution center 1; selecting it as the next
node, the vehicle returns to the distribution center, so the distribution path of vehicle 1 is
1→2→5→8→7→4→1. The above steps are shown in Figure 2. Repeat the decoding step to
get the distribution path 1→2→3→6→10→9→6→3→2→1 of vehicle 2.

4.3. Crossover Operator

Two individuals are randomly selected from the population and the crossover operator
is applied with a crossover probability to generate two new individuals. Take the two
individuals in Figure 3 as an example to illustrate the crossover operation. The main steps
are as follows:

Step 1: Randomly select the starting position b and ending position f of elements in
individuals p1 and p2.

Step 2: Exchange selected elements in the two individuals to generate two new
individuals p′1 and p′2.
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Step 3: Establish the mapping between the selected elements in descending order.
Taking two individual segments as an example. The mapping of the elements is shown
in Figure 4.
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4.3. Crossover Operator 
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Step 4: Conflict detection to ensure that the elements in the new individual are free
of conflict. For example, there are two element 2 s in the individual p′1; there is conflict as
a result. According to the mapping shown in Figure 4, the mapping 2↔ 3↔ 4 between
elements 4 and 2 is established (Figure 5), and the new individual q1 has no conflict.
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Step 5: Replace the elements according to the final mapping relationship, then generate
two new individuals q1 and q2.

4.4. Mutation Operator

Figure 6 shows the generation of a new individual through mutation. A randomly
selected individual p3 from the population with a mutation probability and two additional
mutation positions are selected randomly. The elements in these two positions are then
exchanged in pairs to generate a new individual q3.
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5. Numerical Experiments
5.1. Road Network

Take the road network composed of 23 nodes and 38 road segments (Figure 7) as
an example, in which node 1 is the distribution center and nodes 10, 11, 14, 17, and 23
are the customer nodes; other nodes are non-customer nodes. Vehicles can travel on any
road segment; the cost and risk are the same in both directions. The vehicle departs from
the distribution center and returns after serving all customer nodes in turn. The rated
load of the vehicle is 25 t, the radius of the area affected by a potential accident is 0.6 km,
the driving speed of the vehicle is 40 km·h−1, the waiting cost coefficient of vehicles is
60 CNY·h−1, and the late cost coefficient is 90 CNY·h−1. Table 3 shows the distance, the
surrounding population density, and the accident probability of the road segment. Table 4
shows the demand information of the customer node.
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Table 3. Road segment.

ID Road Segment Distance/km Population
Density/Person·km−2 Accident Probability

1 1-4 26.36 300 0.0042
2 1-8 25.80 400 0.0040
3 2-3 26.12 120 0.0031
4 2-6 28.40 75 0.0032
5 3-1 25.62 180 0.0034
6 3-7 21.29 360 0.0036
7 4-5 30.09 320 0.0062
8 4-9 25.09 290 0.0035
9 5-10 30.06 260 0.0065
10 6-11 30.89 200 0.0042
11 6-7 23.19 690 0.0040
12 7-12 24.14 660 0.0042
13 7-8 21.35 400 0.0044
14 8-9 25.12 480 0.0043
15 8-13 27.48 520 0.0047
16 9-10 40.20 400 0.0045
17 9-14 25.60 760 0.0049
18 10-15 32.50 430 0.0042
19 11-12 20.67 680 0.0054
20 11-16 35.60 300 0.0052
21 12-13 23.50 700 0.0045
22 12-17 30.20 620 0.0050
23 13-14 25.29 620 0.0050
24 13-18 35.55 710 0.0053
25 14-15 27.35 850 0.0049
26 14-19 36.78 720 0.0048
27 15-20 35.70 650 0.0055
28 16-17 21.10 550 0.0032
29 16-21 30.12 420 0.0060
30 17-18 28.50 640 0.0050
31 17-21 28.56 500 0.0040
32 18-19 28.30 630 0.0049
33 18-22 30.58 530 0.0052
34 19-20 27.08 640 0.0036
35 19-23 24.16 480 0.0042
36 20-23 29.46 160 0.0064
37 21-22 32.60 200 0.0058
38 22-23 30.60 240 0.0055

Table 4. Customer node.

Node Demand/t Service Duration/h Time Window

10 10 1 09:30–11:00

11 8 1 13:00–14:30

14 10 1 10:30–12:00

17 7 1 14:30–16:30

23 8 1 12:30–14:00

5.2. Driving Risk and Cost

Taking the gasoline, materials, and salary in China as cost parameters, the fuel
consumption coefficient when loaded is f s = 0.2309 CNY·t−1·km−1, the material con-
sumption coefficient is ms = 0.0212 CNY·t−1·km−1, and maintenance cost coefficient is
cs = 0.0093 CNY·t−1·km−1. When the vehicle is unloaded, the fuel consumption coefficient
is f s′ = 1.5687 CNY·km−1, the material consumption coefficient is ms′ = 0.1673 CNY·km−1,
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and the maintenance cost coefficient is cs′ = 0.0426 CNY·km−1. Based on the driver’s
historical data, the driver’s driving risk is wm ∈ [0.1300, 0.2600], and the labor cost is
sm ∈ [0.07, 0.12] (CNY·t−1·km−1). Table 5 shows the driving risk value and cost informa-
tion of the six drivers in this example (w = 0.1942).

Table 5. Driving risk and cost of six drivers.

Driver 1 2 3 4 5 6

Driving risk (wm) 0.2129 0.1849 0.2417 0.1370 0.1622 0.2264
wm/w 1.0965 0.9522 1.2447 0.7055 0.8352 1.1659

Driving cost/CNY·t−1·km−1 0.0881 0.0989 0.0770 0.1173 0.1076 0.0829

5.3. Solution by NSGA-II

The algorithm was programmed in MATLAB (r2016a) with the following parameter
settings: population size N = 600, maximum iteration times G = 200, crossover proba-
bility 0.8, and mutation probability 0.2. The parameter values in the algorithm are set
according to the problem size and the analysis in the literature [30]. The Pareto-optimal
front, which includes 59 driving solutions on nine different paths obtained by the program,
is shown in Figure 8, and the details of the nine different paths are shown in Table 6.
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The program running environment is i7-8550U/8G, calculating 10 times in total, with
an average running time of 7.13 s; each time can obtain a Pareto optimal solution. In order
to verify the superiority of the algorithm proposed in this paper to solve the problem, an ant
colony algorithm is designed according to the literature [9]. When the running time of the
ant colony algorithm (500 ants and 30 iterations) reaches 7.13 s, the population terminates
the iteration and the solution obtained from one run is compared with the Pareto optimal
solution obtained by the algorithm proposed in this paper; these comparisons show that
the Pareto front obtained by the algorithm proposed in this paper is obviously better (see
Figure 9). By running the ant colony algorithm ten times with the 80% overlap of the
solution set obtained by the algorithm proposed in this paper as the ending condition, the
average run time was 13.38 s. It is evident that the algorithm proposed in this paper has a
significant advantage in solving the problem when compared to the ant colony algorithm.
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Table 6. Details of the nine paths.

Path No. Vehicle Path Distance/km

1
1 1→4→9→14→13→12→11→12→17→12→7→3→1

624.09
2 1→4→5→10→15→20→23→19→18→13→8→1

2
1 1→4→9→14→13→12→11→16→17→12→7→3→1

629.92
2 1→4→5→10→15→20→23→19→18→13→8→1

3
1 1→4→9→14→13→12→11→16→17→12→7→3→1

635.06
2 1→4→9→10→15→20→23→19→18→13→8→1

4
1 1→4→9→14→19→23→19→18→17→12→7→3→1

639.18
2 1→4→5→10→9→8→7→6→11→12→7→3→1

5
1 1→4→9→14→19→23→22→21→17→12→7→3→1

649.98
2 1→4→5→10→9→8→7→6→11→12→7→3→1

6
1 1→4→9→14→19→23→19→18→17→12→7→3→1

629.91
2 1→4→5→10→9→8→7→12→11→12→7→3→1

7
1 1→4→9→14→19→23→22→21→17→12→7→3→1

640.71
2 1→4→5→10→9→8→7→12→11→12→7→3→1

8
1 1→8→9→14→19→23→19→18→17→12→7→3→1

629.38
2 1→4→5→10→9→8→7→12→11→12→7→3→1

9
1 1→4→9→14→19→23→22→21→17→12→7→3→1

645.85
2 1→4→9→10→9→8→7→6→11→12→7→3→1
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5.4. Results and Discussion

Table 7 shows the Pareto-optimal solutions with their associated risk and cost. Solution
1 has the lowest total risk; it is transported by drivers 4 and 5 through path 8. Solution 59
has the lowest total cost; it is transported by drivers 3 and 6 through path 3. Both routes are
not the shortest distance.

Different drivers are selected on the same path, and the total risk and cost are different.
Taking path 5 as an example, different drivers are selected. The Pareto-optimal solution is
shown in Table 8.
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Table 7. Pareto-optimal solutions (partial).

Solution No. Path Driver Risk Cost
/CNY

1
1→8→9→14→19→23→19→18→17→12→7→3→1 4

402.5062 4394.09
1→4→5→10→9→8→7→12→11→12→7→3→1 5

59
1→4→9→14→19→23→22→21→17→12→7→3→1 3

768.3525 3849.75
1→4→9→10→9→8→7→6→11→12→7→3→1 6

Table 8. Pareto-optimal solutions (partial).

Solution No. Path Driver Risk Cost
/CNY

3
1→4→9→14→19→23→22→21→17→12→7→3→1 4

411.1256 4343.33
1→4→5→10→9→8→7→6→11→12→7→3→1 5

13
1→4→9→14→19→23→22→21→17→12→7→3→1 4

465.5105 4238.69
1→4→5→10→9→8→7→6→11→12→7→3→1 1

26
1→4→9→14→19→23→22→21→17→12→7→3→1 5

539.9801 4111.56
1→4→5→10→9→8→7→6→11→12→7→3→1 3

30
1→4→9→14→19→23→22→21→17→12→7→3→1 1

562.9320 4082.62
1→4→5→10→9→8→7→6→11→12→7→3→1 6

41
1→4→9→14→19→23→22→21→17→12→7→3→1 6

611.4671 4007.39
1→4→5→10→9→8→7→6→11→12→7→3→1 3

49
1→4→9→14→19→23→22→21→17→12→7→3→1 3

651.2104 3939.51
1→4→5→10→9→8→7→6→11→12→7→3→1 6

Table 8 shows that the driving risks of six drivers are ranked from low to high, with
driver 4 having the lowest driving risk and driver 3 having the highest driving risk. Table 8
shows that for transportation on the same path, the decision maker can arrange drivers
according to the preference of risk and cost. (1) When focusing on the risk, the decision
maker needs to choose drivers with low driving risk. For example, when compared with
solution 49, the driving risk of drivers 4 and 5 are lower than that of drivers 3 and 6, and
the total risk of solution 3 is lower than that of solution 49. (2) When focusing on cost,
decision makers can choose drivers with higher driving risk. For example, compared with
solution 13, the driving risks of drivers 6 and 3 in solution 41 are greater than those of
drivers 4 and 1, and the total cost of solution 41 is more economical than that of solution 13.
(3) When comprehensively considering the risk and cost, the decision-maker can combine
the drivers with both low and high driving risk. For example, when compared with
solutions 3 and 41, the total cost of solution 26 is lower than that of solution 3 and the total
risk is lower than that of solution 49.

Under the same service order, the total risk and cost of the same drivers on different
paths can also differ greatly. Taking drivers 4 and 5 as an example, Table 9 shows the total
risk and cost of different paths under the same service order.

Table 9 shows that the same drivers are selected to transport in the same service order.
If focused on the risk, the decision maker can reduce the risk by selecting the road segment
with a relatively low surrounding population density. For example, the population density
of road segments (11→16) and (16→17) in solution 2 are lower than those of road segments
(11→12) and (12→17) in solution 7. If focused on the cost, the cost can be reduced by
selecting the road segments with short distances. For example, if the distance of the path in
solution 7 is shorter than that of solution 2, the cost will be lower.
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Table 9. Pareto-optimal solutions (partial).

Solution No. Path Driver Risk Cost
/CNY

2
1→4→9→14→13→12→11→16→17→12→7→3→1 4

407.4593 4367.60
1→4→9→10→15→20→23→19→18→13→8→1 5

4
1→4→9→14→13→12→11→16→17→12→7→3→1 4

416.0787 4316.85
1→4→5→10→15→20→23→19→18→13→8→1 5

7
1→4→9→14→13→12→11→12→17→12→7→3→1 4

433.2476 4293.67
1→4→5→10→15→20→23→19→18→13→8→1 5

For different drivers driving on different paths, take solutions 5, 6, and 7 as examples;
if different drivers are selected, the total risk and cost are shown in Table 10.

Table 10. Pareto-optimal solutions (partial).

Solution No. Path Driver Risk Cost
/CNY

3
1→4→9→14→19→23→22→21→17→12→7→3→1 4

411.1256 4343.33
1→4→5→10→9→8→7→6→11→12→7→3→1 6

13
1→4→9→14→19→23→19→18→17→12→7→3→1 4

465.5105 4238.69
1→4→5→10→9→8→7→12→11→12→7→3→1 1

36
1→4→9→14→19→23→22→21→17→12→7→3→1 2

585.2382 4045.60
1→4→5→10→9→8→7→12→11→12→7→3→1 6

38
1→4→9→14→19→23→19→18→17→12→7→3→1 2

597.1895 4032.59
1→4→5→10→9→8→7→12→11→12→7→3→1 1

Table 10 shows that there is a situation where drivers with high driving risk can be
used to transport, but that the total risk is small; this is caused by different paths having
different population densities. For example, between solutions 3 and 13, the driving risk
of driver 6 is higher than that of driver 1, but the total risk of solution 3 is lower than that
of solution 13 due to driver 1 driving the vehicle through high-density population areas
(23→19), (19→18), and (18→17). The same phenomenon also occurs between solutions
36 and 38. Therefore, when the decision maker chooses drivers with high driving risk to
transport hazardous materials with cost as the motivating focus, they can reduce the risk
by choosing those road segments with relatively low population density.

In conclusion, if the total risk needs to be reduced, the decision-maker should choose
drivers with less driving risk and paths with low population density. If the cost needs to
be reduced, drivers with high driving risk can be selected, but the risk can be reduced by
selecting paths with a low-density population. If the risk and cost need to be considered
at the same time, the decision maker should choose the driver with less driving risk and
those paths with shorter distances.

6. Conclusions and Future Work

This study has considered driving risk in the hazardous materials vehicle routing prob-
lem, doing the following work in terms of risk assessment, and presenting a mathematical
model to solution algorithm:

(1) For the evaluation of driving risk in hazardous materials transportation, an AHP
method is proposed that can evaluate driving risk according to the history of driving data,
the investigation, and scoring by experts.
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(2) For the mathematical model, the coexistence of customer nodes and non-customer
nodes in the transportation network is considered in the HMVRPTW model. For the general
VRP problems, non-customer nodes are eliminated by solving the shortest path between
two customer nodes. However, in hazardous materials transportation, there is a set of
Pareto-optimal shortest paths between any two customer nodes; these paths may pass
through different non-customer nodes.

(3) For the solving method, an individual encoding/decoding method suitable for the
mathematical model in this study is proposed. This method includes both the service order
of the customer nodes and all the nodes that the vehicle passes through. For this coding
method, an evolutionary strategy including crossover and mutation is proposed.

The proposed approaches, when applied to the distribution of hazardous materials,
generate Pareto-optimal solutions from which the decision maker can select the most
appropriate driver allocation and vehicle routing, based on their risk preference.

Similar to the transport risk of hazardous materials, there is no unique or recognized
correct standard for the evaluation of driving risk. The AHP method suggested by experts
has been used in the study; this method has a certain subjectivity, because the objectivity of
the evaluation results of driving risk need to be further verified. Thus, in future research,
the number of samples will be expanded to obtain a more applicable driving risk evaluation
model to more adequately study the impact of driving risk on transport risk and routing
optimization for hazardous materials transportation. The VRP problem model of hazardous
materials transportation considering the driving risk is established and a solving method is
proposed. However, to build software applications on this basis, there may be a long way
to go in terms of data collection, algorithm optimization and result verification.
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