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Abstract: Historical road crash data are the main indicator for measuring road safety outcomes.
Over the past few decades, significant efforts have been made in obtaining and exploiting Surrogate
Safety Measures (SSMs). SSMs have the potential to provide excellent sustainable road safety
indicators and proxy measurements which can complement traditional historical crash analyses or
even substitute them. By using SSMs, crash data collection demands can be bypassed and areas can
be investigated before crashes occur. Due to such advantages, the objective of the present research is
to provide a review of the scientific literature regarding studies exploiting SSMs for historical crash
record investigations. Specifically, 34 studies were examined, providing insights on the different
types of SSMs collected under real road environment conditions, the way they are collected, their
connection with specific road crash types, and the type of the developed statistical models are
examined and discussed. Particular focus is also placed on the temporal dimension of the collection
period of both SSMs and road crashes. Finally, the overall trends deriving from the reviewed studies
are summarized and future research directions are provided.

Keywords: road safety; surrogate safety measures; road crashes; study characteristics; data collection
periods

1. Introduction

Road crashes and their related casualties constitute a major societal and public health
problem as it is estimated that more than 1.35 million people are killed in road crashes and
tens of millions are seriously injured annually [1]. Improving road safety is also included
as a key component of the United Nations’ Agenda, as manifested by Sustainable Develop-
ment Goals (SGDs) 3.6 and 11.2, which aim to reduce road fatalities and injuries by half
and provide sustainable and safe transport for road users of all age groups respectively [2].
Until now, the main indicator for measuring road safety outcomes has been historical crash
data, considered to be hard evidence for the measurements of road safety performance.
Even if it is natural to rely on road crash historical records for the assessment of the road
safety level of an examined area or road, specific drawbacks of road safety analyses based
on historical crash records have been determined as well.

In particular, a long period of time is typically required to collect a sufficient sample
of road crash data that could allow for reliable estimates of the road safety level as road
crashes are rare events by nature [3]. When examining large geographical areas, road
crashes also face the typical issues inherent in all point data such as spatial dependence
and spatial heterogeneity [4]. Moreover, any before-and-after study based on historical
crash records for the evaluation of the implementation of a road safety measure may be
biased by the regression-to-the-mean phenomena [5]. In addition, significant discrepancies
are found between the non-fatal road crash injury data provided by various data sources.
This problem is known as under-reporting and several studies indicate that the Police
Departments do not report an appreciable proportion of road crash injuries, whereas the
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extent of under-reporting may vary depending on the severity of the injuries or the road
user types [6,7]. Apart from the aforementioned, it can be perceived that road safety
analyses based on historical crash records are a reactive approach that forces road safety
analysts to wait for road crashes to occur in order to examine measures that could prevent
them and should rely on valid crash data, including accurate location data, which is not
always the case [8].

Therefore, over the past few years, significant efforts have been made in utilizing
Surrogate Safety Measures (SSMs) in order to address this issue [9]. SSMs include all
measures, parameters, or quantities, which do not stem directly from or rely on crash data.
Such approaches are a sustainable way of gauging road safety and may be more preferable
as they allow for road safety analyses before the physical occurrence of road crashes.
According to Tarko [10], the use of SSMs in the field of road safety aids in the detection
of road crashes’ excessive risk, the knowledge improvement of crash-leading conditions,
and the effectiveness estimation of various countermeasures. Wang et al. [9] provide a
comprehensive review of important SSMs and divide them into two key categories: (i) SSMs
and (ii) SSM-based models. The first category includes key time-based, deceleration-
based, and energy-based SSMs. These subcategories include predominant SSMs that use
predefined thresholds for traffic conflicts’ identification and are used widely across studies
in the road safety literature such as Time-to-Collision (TTC), Post Encroachment Time (PET),
Time-to-Crash/Accident (TC/TA) and Deceleration Rate to Avoid the Crash (DRAC) [11].
On the other hand, the second category aims to directly associate each traffic conflict with
either a crash or non-crash outcome, by estimating its crash probability [12,13].

Initially, data collection of SSMs was based on roadside observation techniques [14].
As it can be intuitively perceived, such approaches were not accurate as they were based
on subjective criteria [15]. In order to reduce such biases, video-based measurements
were introduced many years ago [16] and have been improving significantly since then.
Recent, technological advancements have led to more advanced techniques that reduce
human interventions and deploy computer vision and sensor techniques [17–19]. Moreover,
several simulation-based analyses have been conducted aiming to derive SSMs from traffic
simulation models [20,21]. The rapid technological development in naturalistic driver
recording has also brought about an increasing availability of data from sensors in vehicles
and smartphones that can be used to extract various SSMs such as TTC, harsh braking
events, and harsh acceleration events [22–24]. All in all, SSMs can either be an alternative
to road safety analyses or even complement analyses that are based on historical crash
records [25].

Within this framework, the aim of the present paper is to provide a review of the
scientific literature of studies exploiting SSMs in historical crash record investigations.
More specifically, this paper focuses on studies that attempt either (i) to investigate the
correlation of SSMs and historical crash records or (ii) to predict the number of expected
road crashes through SSMs and then compare them with the historical crash records.
The different types of SSMs, the manner in which they are collected, their connection with
specific road crash types, and the type of the developed statistical models are examined
and discussed. Particular emphasis is placed on the temporal periods dedicated to data
collection for both the SSMs and road crash data, as uncertainties in the length of the data
collection periods are a problem typically investigated in driver recording [26]. In order
to achieve this aim, published scientific studies that are authored in English are critically
examined. It should be mentioned that this study only includes relevant papers that
concern SSMs collected under real road environment conditions, as opposed to studies that
are based on traffic simulation and driver simulators.

During the review process, studies dealing with the use of traffic conflict techniques
for use in-road safety assessments were also identified. Arun et al. [27] focused on mapping
the concepts and methods related to surrogate safety assessment using traffic conflicts.
Their study deals with specific topics such as the concept of crash surrogacy, the definition
and identification of traffic conflicts, and the specification of the relationship between
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crashes and conflicts. In other studies, Arun et al. [28] assessed the different traffic con-
flict safety thresholds among various road environments and applications, while Zheng
et al. [29] discussed various conceptual and methodological issues related to traffic conflict
modeling. However, the current study presents novelty in different areas. Specifically, it
(i) exclusively investigates studies that use both SSMs and historical crash records, (ii) ex-
tends beyond measures with predefined thresholds for traffic conflicts’ identification to
SSMs that can be extracted from smartphone sensors and instrumented vehicles related to
harsh driving behavior events, and (iii) sheds light on the temporal periods dedicated to
data collection for both SSMs and crashes.

Following this Introduction, the paper is organized as follows. Section 2 describes the
methodological framework of the current review paper, including the Preferred Reporting
Items for Systematic Reviews and the Meta-Analyses (PRISMA) approach that was adopted.
Section 3 showcases the main review findings in terms of the different types of SSMs and
crashes, various modeling approaches, and the temporal dimension of the data used in
the examined studies. Subsequently, a discussion of overall findings and trends from the
reviewed studies and some future research directions are provided in Section 4, while
Section 5 includes the main concluding remarks of the current research.

2. Review Methodology

The current review was carried out during June 2022 and adhered to the PRISMA
guidelines [30]. The search was undertaken in the Scopus, TRID and Web of Science
databases; Figure 1 depicts the search terms and the study selection process. It should be
noted that there was no specific search restriction on the publication date of the examined
articles. Moreover, articles had to be peer-reviewed before publication and authored in
English which is the predominant written language in the global scientific literature. Em-
phasis should be placed on the fact that the present paper aims to provide a review of the
scientific literature regarding studies exploiting SSMs towards historical crash record inves-
tigations and thus includes only studies that were conducted under real road environment
conditions (as opposed to simulators).

After the exclusion of some papers based on their titles and abstracts, a total of
52 articles were selected for full-text review. After the full-paper review, 18 studies were
excluded for not meeting the inclusion criteria (e.g., absence of historical crash data or SSMs,
separate statistical models for SSMs and road crashes, crash data available but not used in
statistical modeling, etc.) Finally, 34 articles were identified and reviewed. The literature
review findings are presented and discussed in detail in the following sections of the
present paper.
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3. Review Findings
3.1. Types of SSMs and Historical Crash Data

As already pointed out in the introductory section of this paper, SSMs can be leveraged
in road safety analyses in two ways. On one hand, they can provide an alternative to road
safety analyses when road crash data are not available as a proactive approach. On the
other hand, SSMs complement analyses based on historical crash records, which is also
the main subject of the current review paper. The key information about the SSMs and
historical crash records (types and temporal dimension), modeling approaches, the scale of
analysis, and other considered variables used in the reviewed studies are summarized in
Table A1 of Appendix A, sorted by means of collection for SSMs. It should be noted that
the column named “Temporal Ratio” of Table A1 has been calculated due to the observed
discrepancies in data collection period lengths for crashes and SSMs. The values of this
column are dimensionless numbers as they have been calculated by converting the crash
and SSMs data collection periods into the same time units.

Technological improvements during recent decades have led to the development of a
wide array of sophisticated tools that provide more rich and rapid data acquisition in terms
of various aspects of driving performance [31]. As can be observed from Table A1, during
the last five years, the use of smartphone data has also begun to gain significant ground
in studies featuring SSMs [32–39]. Exploiting smartphone sensors such as accelerometers,
digital compasses, gyroscopes, and GPS allows the extraction of various driver performance
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metrics and SSMs through an inexpensive and rapid way, even without requiring user
engagement [40].

The SSMs collected via smartphone sensors in the examined studies concern harsh
driving behavior events such as harsh braking and harsh acceleration. Harsh braking
events are generated by drivers as a reaction to various possibly dangerous situations in
order to avoid a near miss or even a road crash [24]. Moreover, harsh braking events are
a critical element for the assessment of driving risk [41], as they are innately associated
with crash occurrence probability [42]. However, harsh acceleration events are different
phenomena than harsh braking events, as they are mainly affected by drivers’ levels of
anger, frustration, and anxiety [43]. Based on previous studies, it is noted that the levels
of deceleration and acceleration that define harsh braking and harsh acceleration events
respectively may vary across different studies and transport modes [44,45]. A frequent
barrier encountered in studies exploiting harsh events is that they do not provide their
specific thresholds and calculation methods for commercial reasons [39,46,47].

As can be observed from Table A1, naturalistic driving experiments using instru-
mented vehicles are another frequently selected option for collecting SSMs. These exper-
iments are a quite similar alternative to smartphone data but much more expensive as
there are significant costs that depend on the equipment used [48] and the duration of the
experiment [49]. The majority of the SSMs collected through instrumented vehicles range in
a similar concept to the data collected by smartphones and concern harsh driving behavior
events [44,45,50–58]. Apart from these studies that focus on harsh driving behavior events,
traffic conflicts and related measures for rating their severity have also been examined in
other naturalistic driving experiments using instrumented vehicles [59,60].

The term traffic conflict denotes an observable event that would end in a road crash
unless one of the involved road users slows down, changes lane, or accelerates to avoid a
collision [61]. Based on Table A1, it is demonstrated that the collection of traffic conflict-
related SSMs under real road conditions in the majority of the examined studies is based on
video recordings [62–68]. Conflict surveys through field observations are another option
for collecting such data [69]. When real vehicle trajectories and speeds are not available,
simulation models are widely used [20,70]. However, simulation studies fall outside the
scope of the presented research and are not discussed further.

Among the different traffic conflict-related SSMs used in the reviewed studies, it can
be observed that PET, TTC, and DRAC are the most widely used. According to Gettman
and Head [20], PET is defined as the time elapsed between the encroachment’s end of the
turning vehicle and the time that the trough vehicle reaches the potential point of the crash,
while TTC corresponds to the expected time for two vehicles to collide if they maintain their
present speed and path. Various modifications of the TTC have been used in the examined
studies such as the minimum TTC (mTTC) [64,66], which corresponds to the TTC’s lowest
values obtained, and the modified TTC (MTTC) proposed by Ozbay et al. [71] that takes
into account relative position, relative speed and relative acceleration of the conflicting
vehicles [63,68]. Lastly, DRAC corresponds to the minimum deceleration rate required by
the following vehicle to come to a timely stop (or match the leading vehicle’s speed) and
hence to avoid a crash [72]. However, a frequent issue encountered in such studies and
also identified by a relevant study is that the safety thresholds of conflicts vary by traffic
environment type and the application purposes of conflict measures [27].

According to Lu et al. [73], connected vehicles are the key to the evolution of next-
generation intelligent transportation systems. In addition, they are expected to bring
multiple benefits to driving behavior monitoring tools as well [31]. Table A1 reveals that,
when utilized, connected vehicles are an additional emerging option for studies exploiting
SSMs for historical crash record investigations and can be a standardized, streamlined, and
seamless collection source of both harsh event and traffic conflict data [74–76].

Regardless of how SSMs are collected, in most of the studies reviewed, the type of
historical road safety data used is either the absolute number of total crashes or the number
of total road crashes divided by a risk exposure indicator such as the number of vehicles
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or vehicle kilometers traveled [53,58,59]. Furthermore, the severity of road crashes is not
taken into account in the majority of the studies included in Table A1. However, there are
certain studies that focus on serious or fatal road crashes [62,66]. Several studies attempt to
correlate SSMs with specific road crash types such as rear-end, angle and single-vehicle
crashes [52,56,64,76]. Other research studies focus on specific road crash characteristics such
as the weather conditions, and the time or the day of the crash, which usually correspond
to the conditions of SSM collection [33,68]. Moreover, the historical crash records of some
other studies target specific road user types such as vulnerable road users [32,57,66] and
drivers of various transport modes [38].

Lastly, in addition to the SSMs and historical crash data, most of the examined stud-
ies in Table A1 include some supplementary variables that are mainly related to road
infrastructure and traffic. Among these variables, road length and road class prevail for
infrastructure, while traffic volume and speed prevail for traffic parameters.

3.2. Modelling Approaches

This section of the paper gives a brief overview of the various modeling approaches
implemented in the reviewed studies that are presented in Table A1 and exploit SSMs for
historical crash records. Initially, it can be observed that some studies are only limited
to different correlation methods, such as Pearson or Spearman correlation, which aim to
measure the strength of association between SSMs and road crashes [32,35,50,74]. Certainly,
correlation matrices are also included in other studies as a preliminary step before the
development of more advanced statistical models [38,54,56,57].

Generalized Linear Models (GLMs) have been implemented widely in the road safety
literature for many years, as they assume that crashes are independent, random, and
sporadic countable events [77]. Based on Table A1, it is observed that Poisson [56,65,78]
and Negative Binomial (NB) models [38,45,52,53,60,66,69] are the most common forms of
GLMs among studies exploiting SSMs for historical crash record investigations, with NB
models being more prevalent than Poisson models. The key difference between these two
GLM forms has to do with the fact that NB models relax the equal mean and variance
assumption of the Poisson model, which can account for overdispersion resulting from
unobserved heterogeneity and temporal dependency [79]. Specific research documents
among the reviewed studies have also introduced random effects to GLMs in order to
extend them to Generalized Linear Mixed Models (GLMMs) and account for unobserved
heterogeneity [44,51].

Several of the reviewed studies have also attempted to incorporate into their analyses
the effects of various road safety indicators’ spatial characteristics. Bayesian approaches
are widely used to consider the spatial correlation for modeling crash frequencies. In that
context, Li et al. [57] developed a Bayesian NB model with conditional autoregression
(CAR) prior to accounting for spatial correlation between neighboring bus stops. The re-
sults of this research indicated the necessity of considering spatial autocorrelation during
the crash frequency model process as the developed Bayesian NB-CAR model outper-
formed the Bayesian model in terms of various model evaluation metrics. In another
study, both the spatial and temporal dependence of crash observation were taken into
account in a multivariate conditional autoregressive (MVCAR) model in the full Bayesian
framework [37].

Yang et al. [76] proposed a new safety measure termed Risk Status, which was modeled
as a latent variable in a Structural Equation Model (SEM) in the Bayesian framework that
could account for both spatial autocorrelation through CAR spatial effect and unobserved
heterogeneity through road segments random parameters (i.e., SEM-CAR-RP). Overall,
SEM is a powerful multivariate tool for jointly modeling interrelationships among observed
and latent variables [80]. However, the proposed approach of SEM-CAR-RP extends the
methodological frontier of SEM applications in the field of road safety as it was found to be
superior compared to more traditional alternatives of SEMs that did not take into account
CAR spatial effect and unobserved heterogeneity. This finding demonstrates that various
fundamental methodological issues of crash data modeling such as spatial autocorrelation,
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unobserved heterogeneity, etc. need to be investigated when exploring data from new data
sources similar to those that were presented in Section 3.1. Paleti et al. [33] developed a
random parameter Generalized Ordered Response Probit (GORP) model which is a type of
model that can easily handle over or under-representation of multiple count outcomes at
the same time without demanding a hurdle or zero-inflated model. The outcomes of this
research revealed that the best-performing model was one including measurement error,
random parameter heterogeneity, and spatial dependency.

In a more straightforward approach, Li et al. [58] utilized a line-constrained clustering
method that combines DBSCAN with spatial selection functions in order to identify individual-
specific risky road segments. Latent Gaussian Models (LGMs) are a subcategory of structure
additive models, in which the dependent variable for each subject follows a distribution from
the exponential family and can introduce temporal or spatial dependence [81]. This spatial
modeling approach using the Integrated Nested Laplace Approximation (INLA) technique
has been chosen as an appropriate tool for road network screening [34,36,54]. The INLA
approach was introduced by Rue et al. [82] as a computationally efficient alternative to
Markov chain Monte Carlo methods. INLA can be combined with the Stochastic Partial
Differential Equation (SPDE) approach proposed by Lindgren et al. [83] in order to implement
spatial and spatio-temporal models for point-reference data [84].

Extreme Value Theory (EVT) is a statistical approach that enables extrapolation from
observed levels to unobserved levels [85], which is in alignment with the goal of predicting
less frequent road crashes from more frequent traffic conflicts. EVT Models are becoming
increasingly popular with substantial developments achieved recently. These models
are mainly used to estimate the number of road crashes and then compare them to the
observed historical crash records. Among studies presented in Table A1, bivariate EVT
models have been proposed and it was found that this approach generated more accurate
crash estimates than univariate models [63,64]. In a more recent study, Fu and Sayed [67]
developed a Bayesian hierarchical extreme value model, which had three layers: the data
layer, the process layer, and the prior layer. However, as also mentioned for different other
model types and highlighted by Zheng et al. [29], one important issue while developing
such models is accounting for the unobserved heterogeneity across different observation
locations. In order to deal with the issue, Fu and Sayed [68] propose a random parameters
Bayesian hierarchical extreme value modeling approach.

As can be observed in Table A1, traditional modeling approaches such as linear or
logistic regression models have been used in a few studies exploiting SSMs for historical
crash record investigations, but are less preferred [39,55,59,62]. This is partly also due to
the emergence of Machine Learning (ML) and Deep Learning (DL) approaches as powerful
tools that are gaining more ground for road safety analyses due to their ability to handle
large volumes of data, their heightened predictive capabilities, and the complex, non-linear
relationships they can disclose. Indicatively, the random forest algorithm is a data-mining
tool that has been used to determine the importance of the variables and includes in
the statistical models the variables with the strongest impacts on road crashes [39,45].
Furthermore, Hu et al. [75] exploited SSMs derived from connected vehicles’ data such
as harsh braking, harsh acceleration, and wait time in order to predict the crash risk at
intersections using DL approaches. Their analyses revealed that the performance of two
black-box DL models, Multi-Layer Perceptron (MLP) and convolutional neural network
(CNN) was slightly better than the Decision Tree Model. However, in the context of the
examined studies it can be perceived that ML/DL approaches are not among the most
prevalent methods at present.

In summary, various modeling approaches have been implemented in the reviewed
studies. However, the selection of an appropriate modeling framework depends highly
on the research questions being asked, the available data, and the specific context of each
study. Specifically, the type of crash data being analyzed (e.g., count data, rates such
as crashes divided by an exposure parameter, categorical/binary data, etc.), the level
of spatial and temporal dependence, and the existence of unobserved heterogeneity are
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some factors that should be taken into consideration towards the selection of a suitable
modeling methodology. While there are many different modeling approaches available in
the literature, they should be treated as starting points for road safety practitioners, rather
than definitive guides.

3.3. Temporal Dimension

When examining Table A1, no clear pattern can be observed with regard to the time
periods of historical road crash data and SSMs collection. This is a constant topic, and
researchers have to anticipate and plan accordingly in the study design process. Therefore,
in this section, the authors attempt to shed light on this issue and identify potential hidden
patterns through the visualization of the respective data in Table A1. As already mentioned
in previous parts of the current research, there are different ways that can be used to extract
SSMs. It is observed that in studies using smartphones, instrumented vehicles, or connected
vehicles the time period for which the SSMs were collected can vary from a few days [45,51]
to several months [33,44,86]. On the other hand, SSMs collected through video recordings
or conflict surveys are collected for a few hours [62,64]. As per the aforementioned, this
discrepancy was also one of the main incentives for calculating the ‘Temporal Ratio’ column
of Table A1. The difference in time periods between the collection of historical road crash
data and SSMs is mainly attributed to the emergence of new technologies, which allow for
the rapid collection of SSMs data and the conduction of analyses with shorter time periods.
The ‘Temporal Ratio’ column could be interpreted as by how much more time is needed
to collect an equivalent sample of SSMs with road crash data. For this reason, as well as
for readability reasons, two different graphs have been produced. Specifically, Figure 2
demonstrates the time periods of historical road crash data and SSMs collected through
smartphones, instrumented vehicles, and connected vehicles, while Figure 3 presents
the respective values for the studies that used video records or conflict surveys for the
extraction of SSMs.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 20 
 

study. Specifically, the type of crash data being analyzed (e.g., count data, rates such as 
crashes divided by an exposure parameter, categorical/binary data, etc.), the level of spa-
tial and temporal dependence, and the existence of unobserved heterogeneity are some 
factors that should be taken into consideration towards the selection of a suitable model-
ing methodology. While there are many different modeling approaches available in the 
literature, they should be treated as starting points for road safety practitioners, rather 
than definitive guides. 

3.3. Temporal Dimension 
When examining Table A1, no clear pattern can be observed with regard to the time 

periods of historical road crash data and SSMs collection. This is a constant topic, and 
researchers have to anticipate and plan accordingly in the study design process. There-
fore, in this section, the authors attempt to shed light on this issue and identify potential 
hidden patterns through the visualization of the respective data in Table A1. As already 
mentioned in previous parts of the current research, there are different ways that can be 
used to extract SSMs. It is observed that in studies using smartphones, instrumented ve-
hicles, or connected vehicles the time period for which the SSMs were collected can vary 
from a few days [45,51] to several months [33,44,86]. On the other hand, SSMs collected 
through video recordings or conflict surveys are collected for a few hours [62,64]. As per 
the aforementioned, this discrepancy was also one of the main incentives for calculating 
the ‘Temporal Ratio’ column of Table A1. The difference in time periods between the col-
lection of historical road crash data and SSMs is mainly attributed to the emergence of 
new technologies, which allow for the rapid collection of SSMs data and the conduction 
of analyses with shorter time periods. The ‘Temporal Ratio’ column could be interpreted 
as by how much more time is needed to collect an equivalent sample of SSMs with road 
crash data. For this reason, as well as for readability reasons, two different graphs have 
been produced. Specifically, Figure 2 demonstrates the time periods of historical road 
crash data and SSMs collected through smartphones, instrumented vehicles, and con-
nected vehicles, while Figure 3 presents the respective values for the studies that used 
video records or conflict surveys for the extraction of SSMs. 

 
Figure 2. Time periods of historical road crash data and SSMs collected through smartphones, in-
strumented vehicles, and connected vehicles [32–39,44,45,50–60,74–76,78,86]. Figure 2. Time periods of historical road crash data and SSMs collected through smartphones,
instrumented vehicles, and connected vehicles [32–39,44,45,50–60,74–76,78,86].



Sustainability 2023, 15, 7580 9 of 19Sustainability 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 
Figure 3. Time periods of historical road crash data and SSMs collected through video records and 
conflict surveys [62–69]. 

Based on Figures 2 and 3, a general trend that can be observed is that among all the 
examined studies the time period of road crash data is always greater than or equal to the 
time period of collection of SSMs, as expected from the increased usability that SSMs pro-
vide. Furthermore, regardless of the manner in which SSMs are collected, it is observed 
that in the majority of the examined studies (21 out of 34), historical road crash data used 
correspond to periods of three to six years. 

Only five of the examined studies, use exactly the same time periods of historical 
crash data and SSMs. These studies exploit smartphones [33,37,39] and instrumented ve-
hicles [55,78] for the extraction of SSMs. It can be observed that they are concentrated in 
the low spectrum of the Y-axis of Figure 2 as the crash data that they include in their 
analyses do not exceed one year. The highest ratio of road crash data time period to the 
time period of SSMs corresponds to the studies presented in the upper left part of Figure 
2 [34,36,45,51]. In particular, in these studies, the road crash data time period is calculated 
to be between 191 and 365 times longer (mean: 239, st.dev: 84.4) than the SSM time peri-
ods. The vast majority of the studies presented in Figure 2 are concentrated in the middle 
level of the Y-axis and towards the left side of the X-axis. In these studies, the time period 
of road crashes is estimated to be between 12 and 130 times longer (mean: 50, st.dev: 36.3) 
than that of the SSMs. In addition, there are also some studies located in the central and 
upper right part of Figure 2 for which the time period of road crashes is 4–9 times longer 
than that of SSMs (mean: 7, st.dev: 2.3) [38,44,52,59,86]. 

Lastly, the comparison between Figure 2 and Figure 3 reveals that the ratio of road 
crash data time period to the time period of SSMs is much higher in the studies that collect 
SSMs through video records or conflict surveys compared to the other studies. This is due 
to the fact that the collection of SSMs through video recordings or conflict surveys requires 
only a few hours and the historical crash records correspond to time periods of at least 
three years, lending further credence to the utility of SSMs due to their rapid data collec-
tion. 

4. Discussion 
4.1. Overall Findings and Trends from Reviewed Studies 

SSMs are steadily gaining ground in the road safety literature as they are a sustaina-
ble way of gauging road safety and allow the conduction of analyses without necessarily 

Figure 3. Time periods of historical road crash data and SSMs collected through video records and
conflict surveys [62–69].

Based on Figures 2 and 3, a general trend that can be observed is that among all the
examined studies the time period of road crash data is always greater than or equal to
the time period of collection of SSMs, as expected from the increased usability that SSMs
provide. Furthermore, regardless of the manner in which SSMs are collected, it is observed
that in the majority of the examined studies (21 out of 34), historical road crash data used
correspond to periods of three to six years.

Only five of the examined studies, use exactly the same time periods of historical
crash data and SSMs. These studies exploit smartphones [33,37,39] and instrumented
vehicles [55,78] for the extraction of SSMs. It can be observed that they are concentrated
in the low spectrum of the Y-axis of Figure 2 as the crash data that they include in their
analyses do not exceed one year. The highest ratio of road crash data time period to
the time period of SSMs corresponds to the studies presented in the upper left part of
Figure 2 [34,36,45,51]. In particular, in these studies, the road crash data time period is
calculated to be between 191 and 365 times longer (mean: 239, st.dev: 84.4) than the SSM
time periods. The vast majority of the studies presented in Figure 2 are concentrated in the
middle level of the Y-axis and towards the left side of the X-axis. In these studies, the time
period of road crashes is estimated to be between 12 and 130 times longer (mean: 50, st.dev:
36.3) than that of the SSMs. In addition, there are also some studies located in the central
and upper right part of Figure 2 for which the time period of road crashes is 4–9 times
longer than that of SSMs (mean: 7, st.dev: 2.3) [38,44,52,59,86].

Lastly, the comparison between Figures 2 and 3 reveals that the ratio of road crash
data time period to the time period of SSMs is much higher in the studies that collect SSMs
through video records or conflict surveys compared to the other studies. This is due to the
fact that the collection of SSMs through video recordings or conflict surveys requires only
a few hours and the historical crash records correspond to time periods of at least three
years, lending further credence to the utility of SSMs due to their rapid data collection.

4. Discussion
4.1. Overall Findings and Trends from Reviewed Studies

SSMs are steadily gaining ground in the road safety literature as they are a sustainable
way of gauging road safety and allow the conduction of analyses without necessarily
requiring historical road crash records. Moreover, the rapid and continuous progress in the
field of technology makes it increasingly easier to collect such indicators. However, SSMs
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can also be combined with data from historical road crash records in order to complement
and provide additional information to relevant road safety analyses. The present research
focused on studies that exploit real-condition SSMs for historical crash record investigations.

The examination of the studies in the framework of this research has revealed some
noteworthy conclusions for road safety analyses that combine SSMs and historical crash
data. It appears that the technological development in recent years has significantly
contributed to making smartphones a key choice for collecting SSMs [32–39]. The indi-
cators collected through smartphones’ sensors can be quite similar to those collected by
instrumented vehicles [52,54,56]. However, the cost of collecting SSMs via smartphones is
significantly lower compared to that of instrumented vehicles. A fact that is also reflected
by the increase in the use of smartphones in the relevant studies during the last five years.

The majority of SSMs collected through either smartphones or instrumented ve-
hicles involve harsh driving behavior events. Through these studies, it becomes clear
that the most commonly exploited harsh driving behavior events such as harsh braking
and harsh acceleration events are positively correlated with various types of road crash
counts [34,36,37,51–53,55–57] and road crash risk [39]. As this relationship is verified by
several studies, it can be deduced that harsh events could be used as dependent variables
in statistical models as a proactive approach that does not require the collection of historical
road crash data. Another approach used to collect SSMs is based on traffic conflicts. As for
real road conditions, the collection of relevant indicators is mainly carried out through the
analyses of video recordings [62–68]. As with the SSMs collected through smartphones or
instrumented vehicles, the reviewed studies based on traffic conflict indicators aimed either
to investigate the relationship between the produced SSMs and historical crash counts or to
predict the number of road crashes and then compare it with the observed crash counts.

Regarding the type of statistical analyses used in studies that combine SSMs and histor-
ical road crash data, GLMs including their various modifications dominate. There are also
several studies that choose more specialized approaches to take into account unobserved
heterogeneity and spatial dependence as they are among the most prevalent methodolog-
ical issues typically faced when dealing with crash data modeling. Another common
approach chosen by the reviewed studies concerns the different variants of EVT. Finally, it
can be observed that ML techniques are not often used in the reviewed studies. Overall,
the research questions, data type, and specific contextual factors of each study are critical
to the choice of the respectively developed modeling framework.

Finally, a key finding of the present research that could be also highlighted as its most
significant contribution relates to the time periods for which both the historical road crash
data and the SSMs are collected. Until recently, it was not clear if there was any particular
pattern. This research sheds light on this topic by revealing that in most studies that collect
SSMs via smartphones and instrumented or connected vehicles, road crash data correspond
on average to time periods that are 50 times longer than the collection periods of the SSMs.
In cases of collection of the alternative indicators through video recordings, the time period
of crash data is significantly higher than the respective period of collection of SSMs.

4.2. Future Research Directions

This section outlines research directions that do not appear to be sufficiently inves-
tigated from the present literature of studies exploiting SSMs for historical crash record
investigations and can form meaningful upcoming research endeavors. An important
aspect of road safety analyses is the level of injury severity of road crashes. However, it is
observed that in the majority of the studies, severity has not been adequately investigated as
they mainly exploit the total number of all injury road crashes without taking into account
the different severity levels. However, there are a small number of studies that focus on
serious or fatal road crashes [62,65]. The inclusion of the level of injury severity in similar
studies would be highly interesting for the quantification and the comparative assessment
of the relationship between SSMs and different crash severity levels. Injury severity estima-
tion using SSMs is also highlighted as a critical research need by Arun et al. [28]. In that
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direction, a few recent research studies have attempted to estimate crashes by severity level
using different SSMs [87–89].

Furthermore, most of the reviewed studies focus on road crashes involving all road
users without separating them. However, there are some specific types of road users such
as pedestrians, pedal cyclists, and motorcyclists that are considered vulnerable road users
(VRUs), as they are prone to injury in any vehicular collision, primarily because there is
little or no external protective device that could absorb the impact of a road crash [90].
It is estimated that VRUs account for more than half of all road fatalities globally [1].
Moreover, the noteworthy increase in the use of new micromobility transport modes such
as e-scooters in many cities around the globe has raised particular concerns for the safety
of these emerging types of VRUs [91]. Therefore, more research is needed on the manner
in which various SSMs could be exploited to enhance the safety of VRUs. Towards this
direction, Ali et al. developed a Bayesian Generalized EVT model in order to estimate
real-time pedestrian crash risks at signalized intersections using Artificial Intelligence
(AI)-based video analytics [92].

Regarding the spatial scale of the analyses, it appears that the examined studies fo-
cus on the microscopic level as they mainly investigate road segments and intersections.
Another promising research direction would be the application of analyses at a more macro-
scopic level such as regional areas (cities, metropolitan areas, local administrative units,
etc.). In such cases, apart from different SSMs and road crash rates, various demographic,
socioeconomic, and traffic exposure factors of the examined areas could be taken into
consideration in the analyses. However, it is important to note that as the size of the exam-
ined area increases, capturing unobserved heterogeneity becomes more challenging [93].
Apart from demographic and socioeconomic factors, key road safety performance indica-
tors reflecting the safety of road users (seatbelt and helmet use, speeding, driving under
the influence of alcohol, distraction), infrastructure, vehicles, and post-crash response in
the examined regional areas could be also taken into account.

Over the last years, ML models have been proven to be very efficient prediction tools,
making them also particularly popular in road safety analyses. ML and DL approaches have
come to challenge the hitherto dominance of traditional modeling approaches by being
implemented alongside or instead of them. Based on the results of the present literature
review research, it appears that these approaches have not found frequent application in
studies that exploit SSMs for historical crash record investigations. This could be attributed
to the major challenge of interpreting the results generated by the respective algorithms
accurately. However, this issue could be tackled by using model agnostic methods such
as the SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic
Explanations (LIME) that would explain the interpretation of the model regardless of the
model type. Furthermore, hybrid modeling approaches integrating both statistical and ML
techniques could be considered in future research studies, as this framework represents a
methodological advancement in traffic conflict-based crash estimation models [94].

Lastly, the aforementioned future research directions can all be further augmented
by the constant improvements in the technological field such as the further exploitation
of smartphone data that can provide a vast amount of driving big data under real road
conditions and connected vehicles that can be used for a more connected traffic envi-
ronment. The rollout of fifth-generation networks (5G) provides a unique opportunity
for creating and exploiting innovative solutions to improve communication between all
transport system components and reduce road crash casualties. The application of 5G in
traffic environments could be a game changer over the next years as it enhances direct
communication capabilities with very low latency such as Vehicle-to-Vehicle (V2V), Vehicle-
to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) [95]. This framework could assist
in the collection of a wealth of real-time data that can be also used for the extraction of
various SSMs that could be integrated into traditional road safety analysis.
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5. Conclusions

The main indicator used both to identify road safety problems and to evaluate the
effectiveness of interventions is historical road crash data. However, a typically long time
period, measuring in spans of years, is required to gather an adequate sample of road crash
data that could lead to reliable road safety assessments. As a consequence, noteworthy
efforts have been made in addressing this issue by creating sustainable metrics for assessing
road safety such as SSMs, which are not based on historical road crash records. In the
road safety literature, SSMs are either an alternative to road safety analyses or complement
analyses based on historical crash records.

This paper has provided a review of the current literature on studies that exploit
SSMs for historical crash record investigations. Particular focus has been placed on the
different types of SSMs that are correlated with road crashes, their means of collection, the
different modeling approaches used in the reviewed studies, and the temporal dimension
of the collection period of both SSMs and road crashes. It was determined that constant
technological advancements have highlighted smartphones as a rapidly emerging option
for collecting SSMs under real road conditions. Moreover, a noteworthy novel conclusion
of the current paper is that in the majority of studies that collect SSMs via smartphones
and instrumented or connected vehicles, road crash data correspond on average to time
periods that are 50 times longer than the collection periods of the SSMs. In all cases, the
time period of road crash data is always greater than or equal to the respective period of
SSM collection. Regarding the modeling approaches followed in the examined studies, it is
highlighted that different fundamental methodological issues of crash data modeling such
as spatial autocorrelation and unobserved heterogeneity should be taken into account in
the selected statistical models.

For further research, there are some factors that need to be examined further such as
the relationship between SSMs and road crashes with different levels of injury severity and
different types of road users. It is also argued that the rapid improvements in the field
of technology can further assist in the collection of a wealth of driving behavior data and
related SSMs through the exploitation of smartphones and connected vehicles. Finally, other
research directions have also been provided, such as the implementation of interpretable ML
algorithms for investigating the relationship between SSMs and road crashes.
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Appendix A

Table A1. Studies exploiting SSMs in historical crash record investigations.

Reference
Surrogate Safety Measures Other Variables Historical Crash Data Temporal Ratio

(Crashes Period/ SSMs
Period)

Modelling Approach Scale of Analysis
Type Sample Collection Period Infrastructure Traffic Other Period Type

Khorram
et al. [38] harsh braking 176 bus drivers smartphone 4

months length deceleration
driver age

and
experience

3 years Bus driver
at-fault 9 Pearson correlation,

GLM (NB)
2 routes (13 km, 10

km)

Paleti et al.
[33]

harsh braking,
harsh acceleration

11 drivers, 228 trips,
58 h of driving (4–6

pm)
smartphone 1 year interchange,

surface

traffic volume, mean
speed, SD

acceleration
- 1 year 4–6 pm

weekdays 1

random parameters
Generalized Ordered

Response Probit
(GORP)

513 freeway
segments

Stipancic
et al. [34] harsh braking ~22,000 trips, >4000

drivers smartphone 21
days length, class

congestion, mean
speed, speed

variation
- 11 years Total 191 INLA Full Bayesian

Latent Gaussian Model
1000 links and
intersections

Stipancic
et al. [35]

harsh braking,
harsh acceleration

~22,000 trips, >4000
drivers smartphone 21

days class - - 5 years Total 87

Spearman correlation
and pairwise

Kolmogorov-Smirnov
test

20,586 links and
10,721

intersections

Stipancic
et al. [36] harsh braking ~22,000 trips, >4000

drivers smartphone 21
days length, class

congestion, mean
speed, speed

variation
- 11 years Total 191

INLA Full Bayesian
Latent Gaussian Model,
Fractional Multinomial

Logit

4623 links and
4429 intersections

Strauss
et al. [32] harsh braking over 10,000 trips,

~1000 cyclists smartphone 137
days - traffic volume - 6 years Cyclists 16

empirical Bayes (EB)
estimates—Spearman

correlation

13,279
intersections and
19,837 segments

(aggregated also at
corridors level)

Yang et al.
[37]

harsh braking,
harsh acceleration 10,512 events smartphone 6

months

bus and
subway
stations,

intersections,
length

traffic volume, truck
flow, speeding

distraction,
land use,

population,
unemploy-

ment, income,
housing,

commuting

6 months Total 1

MVCAR, UCAR,
two-sample

Kolmogorov-Smirnov
test, Wilcoxon

signed-rank test

282 census tracts

Guo
et al. [39]

Harsh: braking,
acceleration, turn,
merge into lane

-
in-vehicle
navigation
software

2
months -

traffic volume,
congestion, mean

speed, speed
variation

- 2 months Total 1 Random Forest,
Logistic regression

40 freeway
segments

Ambros
et al. [52]

harsh braking,
harsh acceleration

1172 company
vehicles

instrumented
vehicle

8
months

curve length
and radius

traffic volume,
acceleration - 6 years Single-

vehicle 9 GLM (NB) 30 rural curves

Boonsiripant
et al. [86]

stop frequency,
variation of stops,

90th percentile
count of stops

36,724 trips, 408
drivers

instrumented
vehicle 1 year speed limits

traffic volume, speed
variation, V85, V95,

V5, acceleration
- 4 years

Daytime,
clear weather,
motor vehicle

4 Regression tree and
GLM 61 urban corridors

Desai et al.
[55] harsh braking 196,215 events instrumented

vehicle
2

months length - - 2 months Injury and
PDO 1 Linear regression

23 construction
work zones (150

miles)
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Table A1. Cont.

Reference
Surrogate Safety Measures Other Variables Historical Crash Data Temporal Ratio

(Crashes Period/
SSMs Period)

Modelling Approach Scale of Analysis
Type Sample Collection Period Infrastructure Traffic Other Period Type

Guo
et al. [78] near crash 100 cars, 2 million

veh-miles, 43,000 h
instrumented

vehicle 1 year - - - 1 year Total 1 GLM (Poisson)
Northern

Virginia/Metro
Washington, DC

He
et al. [60]

TTC, MTTC,
DRAC, brake

duration
100 vehicles instrumented

vehicle
2

months length mean speed

mean trip
duration,

extreme trip
index

5 years Rear-end
mid-block 30 GLM (NB) 2772 links

Hunter
et al. [56] harsh braking 10,000 events instrumented

vehicle
1

months - traffic volume - 4.5 years Rear-end 55

Spearman, Pearson and
Kendall Cor.,

Sensitivity Analysis,
GLM (Poisson)

8 intersections

Kamla et al.
[44] harsh braking 8000 trucks, 195,297

harsh braking events
instrumented

vehicle
2

years

width,
inscribed

circle
diameter

traffic volume, truck
traffic - 11 years Total 6

GLM (NB)
random/fixed-

parameters
70 roundabouts

Kim
et al. [50] harsh braking

20 vehicles, 150 k
seconds of data, 224

trips
instrumented

vehicle
3

months
internal TMC,

recurrent
bottleneck

speed, acceleration,
deceleration - 4 years Rear-end

/veh-km 16 Correlation, Spatial
distribution using GIS

60 segments
(63-mile freeway)

Li
et al. [57]

harsh braking,
harsh acceleration

300 buses, 6.7 million
GPS records

instrumented
vehicle

3
months - - number of

buses 10 years Pedestrian
and bicycle 41

Spearman correlation,
Bayesian NB, Bayesian

NB-CAR
200 m and 100 m

buffer circles

Li
et al. [58] harsh braking 16 participants instrumented

vehicle
2

weeks length traffic volume - 3 years Total/veh-
miles 78

Line-constrained
clustering method

(combines DBSCAN
with spatial selection

functions)

156 quarter mile
segments of two

highways

Lu
et al. [59] conflicts/vehicles 50 taxies, 2.25 million

km traveled
instrumented

vehicle
6

months - - - 3 years Total/vehicles 6 Linear regression city, country

Mousavi
et al. [53] harsh braking 31 participants instrumented

vehicle
2

weeks curvature traffic volume - 5 years Total/traffic
volume 130 GLM (NB)

31 + 21 quarter
mile segments of

two highways

Pande et al.
[51] harsh braking 33 drivers instrumented

vehicle
10

days

curve (y/n),
auxiliary

lane (y/n)
traffic volume - 10 years Total 365

GLM (NB)
random/fixed-

parameters
39 freeway
segments

Park et al.
[45]

Harsh:
acceleration,

braking, start, stop,
lane change,
overtaking,

turning, U-turn

all commercial
vehicles in Korea

instrumented
vehicle

1
week length speeding city 4 years Total 209 Random Forest, GLM

(NB)
38 segments in 4

cities

Stipancic
et al. [54] harsh braking ~1.5 million trips instrumented

vehicle
30

days length, class
congestion, mean

speed, speed
variation

- 5–11 years Total 61 INLA Full Bayesian
Latent Gaussian Model 123,792 links

Hu
et al. [75]

harsh braking,
harsh acceleration,

wait-time
90 vehicles connected

vehicle
1

month
approaches,
traffic light -

traffic
volume,
speed,

acceleration,
deceleration

5 years Total 61

Multi-layer perceptron
(MLP), Convolutional

Neural Network
(CNN), Decision Tree

774 intersections
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Table A1. Cont.

Reference
Surrogate Safety Measures Other Variables Historical Crash Data Temporal Ratio

(Crashes Period/
SSMs Period)

Modelling Approach Scale of Analysis
Type Sample Collection Period Infrastructure Traffic Other Period Type

Xie
et al. [74]

TTC, DRAC,
TTCD

90 vehicles, 15.7
million GPS points

connected
vehicle

1
month - traffic volume - 1 year

Rear-
end/traffic

volume
12 Pearson correlation 75 highway

segments

Yang et al.
[76]

TTC, DRAC,
TTCD

2.7 million trajectory
points

connected
vehicle

1
month

class, speed
limit, lanes traffic volume GPS points 1 year Rear-end 12 SEM-CAR-RP 220 road segments

Alhajyaseen
[62]

kinetic energy,
PET - video records 3 h - - - 6 years Severe 17,520

Sensitivity Analysis,
Exponential

Relationships

5 urban
intersections

Fu and
Sayed [67] DRAC 2202 events video records 15 h - - - 3 years Rear-end,

daytime 1752 Bayesian hierarchical
extreme value model

4 signalized
intersections

Fu and
Sayed [68]

TTC, MTTC, PET,
DRAC 7998 conflicts video records 24 h -

traffic volume, shock
wave area, platoon

ration
- 3 years

Rear-end,
daytime,

good weather
1095

Random Parameters
Bayesian hierarchical
extreme value model

4 signalized
intersections

Johnsson
et al. [66] mTTC, PET - video records 24 h - traffic volume country 7 years

Between
cyclists and

motor
vehicles

2555 GLM (NB) 9 signalized
intersections

Mukherjee
and

Mitra [65]
PET 187,174 crossing

behaviors video records 6 h

pavement
marking,

night
visibility

street light

traffic volume,
pedestrian traffic,

overtaking tendency,
speed

land use,
zebra cross.
following,
cross/wait
time, cross
difficulty,

population,
attraction

zone,
residential

area

6 years Fatal
Pedestrian 8760 GLM (NB), GLM

(Poisson)
110 intersections
and 54 midblock

segments

Wang et al.
[64]

TA, PET, mTTC,
MaxD - video records

(UAV)
4 h ×

10
inters.

- - - 5 years Angle,
Rear-end 1095 Bivariate extreme value

model
10 urban

signalized
intersections

Zheng et al.
[63]

TTC, MTTC, PET,
DRAC - video records

2 h ×
4

inters.
- - - 3 years Rear-end,

daytime 3285 Bivariate extreme value
model

4 signalized
intersections

El-
Basyouny

and
Sayed [69]

TTC - conflict
survey

8 h ×
2 days

class, right
turn traffic volume - 3 years Total 1643

Two-phase model:
Lognormal

(conflicts)—GLM (NB)
(crashes)

51 signalized
intersections
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