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Abstract: Earthquake activity can generate huge energy in a short period of time, bringing enormous
risks to people’s lives and property safety. This poses a great challenge to regional sustainable
development. Meanwhile, due to the complex mechanism, seismic activity is difficult to accurately
predict. Therefore, it is of great significance to explore how to reduce earthquake disaster losses
from the perspective of human society. In this study, we use vulnerability to reflect the relative
impact of earthquake disasters on different counties. The vulnerability caused by earthquakes is
calculated with the data envelopment analysis (DEA) method. We use CCR and BCC models to
further decompose vulnerability into pure technology vulnerability and scale vulnerability. This
study analyzes 69 earthquake disasters that occurred in the Chinese mainland from 2013 to 2020
and explores the influencing factors of pure technology vulnerability from both quantitative and
qualitative perspectives. Three main conclusions are drawn. First, four factors, including the added
value of the secondary industry, gross domestic product (GDP) per capita, investment density of
fixed assets and energy released by earthquakes, have a significant impact on the pure technical
vulnerability of counties caused by earthquake disasters. Second, in the samples under consideration,
the average vulnerability of the regions with an earthquake magnitude below 5.0 is higher than
that of the regions with an earthquake magnitude between 5.0 and 6.0. There are deficiencies in
organization, management and facilities in regions with a small earthquake risk. Third, through
qualitative analysis, it is shown that the seismic function of buildings affects the vulnerability of
counties facing earthquake disasters. The results of the research can provide decision makers with
new insights into earthquake prevention and disaster reduction management.

Keywords: earthquake disaster; vulnerability decomposition; DEA; county level

1. Introduction

Since the beginning of the 21st century, with extreme climate change and geological
plate movement, natural and geological disasters have occurred frequently around the
world, causing huge losses to the safety of human life and property [1,2]. Earthquake
disasters are some of the most harmful geological disasters to the development of human
society [3]. It happens very suddenly and is tremendously destructive [4]. This poses great
challenges to the sustainable development of the region. On the one hand, earthquake
disasters seriously threaten the safety of people’s lives. On the other hand, the region suffers
huge losses that require a lot of time to rebuild. According to the Emergency Database,
from 2000 to 2021, 724,055 people died of earthquakes worldwide, and 121,327,982 people
were affected by earthquakes. The total damages caused by earthquakes are as high as
USD 569.96 billion [5]. Therefore, how to reduce the adverse effects caused by earthquake
disasters is an important issue for human society.
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An important research direction is to understand the seismicity itself, such as the
mechanism of earthquake occurrence and the characteristics of seismicity [6,7]. Based on
this, earthquake prediction, earthquake early warning and other measures can be carried
out, which can win more response time for human society. However, seismicity is difficult
to accurately predict. The long-term and medium-term prediction is a statistical estimation
of the probability of earthquake occurrence, and the short-term prediction needs some
precursory phenomena with enough universality and diagnostics [8]. Taking the Tohoku-
oki earthquake of the Tohoku region of Japan on 11 March 2011, as an example, although
there were many studies on this subduction zone before the earthquake, the knowledge did
not make people aware of the potential of an M9.0 earthquake and scenarios considering
large near-trench slip in official hazard assessments at Tohoku [9].

In this study, we focus more on the mechanism of earthquake disasters affecting
human society and apply the concept of vulnerability to the research of enhancing regional
sustainable development capabilities. Vulnerability is a core concept in the fields of climate
change, disaster management, public health, development and sustainability science [10].
Adger (2006) [11] pointed out that vulnerability refers to the state of susceptibility to
harm from exposure to stresses related to environmental and social changes and a lack
of adaptability. Vulnerability reflects the degree to which socio-economic systems in
specific regions are more vulnerable to natural disasters [12]. Physical, social, economic
and environmental factors may increase the sensitivity of personnel and assets to the
hazards. There is an emerging consensus that vulnerability depends to a large extent on
the conditions and dynamics of the human environment coupling system exposed to risk.
Vulnerability analysis must be comprehensive, dealing not only with the system in question
but also with its diverse linkages [13].

The research on vulnerability related to earthquake disasters starts from the vulnerabil-
ity assessment of physical structures [14–17]. In recent years, factors characterizing regional
economic and social conditions have been added to the comprehensive vulnerability assess-
ment, which greatly enriches the vulnerability study [18–24]. Overall, there are empirical
methods, mechanical methods and hybrid methods to study vulnerability [25–27]. Our
research aims to quantify the vulnerability of the region to earthquake disasters and explore
the influencing factors, which belongs to the field of comprehensive evaluation. Due to the
complexity of vulnerability, the various quantitative evaluation methods proposed cannot
unify the selection of indicators and the setting of weights [28]. Therefore, we choose data
envelopment analysis (DEA), a non-parametric method, to calculate vulnerability in a
hybrid way.

DEA uses the production frontier to calculate the relative efficiency of decision-making
units [29,30]. It has been greatly developed recently and introduced into the field of
vulnerability quantitative analysis by scholars [12,31,32]. When a county suffers from an
earthquake disaster, it is a disaster-bearing body and a transformation system. Under
the influence of earthquake energy, personnel and property losses occur in the county.
Vulnerability reflects the ratio of output to input. The principle of the DEA model is similar
to the above process, both considering the relative relationship between input and output.

We found that most studies use the annual statistical data of earthquake disasters to
calculate the vulnerability of provincial administrative units. It is a type of calculation of
the average vulnerability level of a specific region to earthquake disasters. Different from
that, we choose the actual earthquake disaster as the decision-making unit (DMU) of the
DEA model. Moreover, the statistical data of county-level administrative units are used as
the index value. In this way, the calculated vulnerability of counties corresponds to each
earthquake disaster, and the subsequent analysis of the influencing factors is more accurate.

This paper has three main purposes. First, we measure the vulnerability of human
society in each earthquake disaster, rather than the average vulnerability of a region.
Second, the results are further decomposed into pure technology vulnerability and scale
vulnerability, which allows us to gain more insights. Third, we analyze the influencing
factors of pure technical vulnerability to earthquake disasters from both quantitative and
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qualitative perspectives. Pure technical vulnerability is selected as the explanatory variable
as it eliminates the impact of county scale, which makes the results of influencing factors
widely applicable.

The remainder of this paper is structured as follows. Section 2 introduces the methods
and the selection of model variables. In Section 3, the calculation results of vulnerability
caused by earthquake disasters are given, and a preliminary descriptive statistical analysis
is carried out. Section 4 discusses the influencing factors of pure technical vulnerability in
counties from quantitative and qualitative perspectives. Section 5 summarizes the work of
the whole article.

2. Methodology and Materials

We use DEA method to calculate the vulnerability of the county to earthquake disas-
ters. This is because the DEA method uses the relationship between output and input to
establish a model, similar to the process of converting earthquake energy into personnel
and economic losses in counties. Moreover, as a non-parametric method, DEA does not
require manual setting of indicator weight coefficients, making the calculation process
more objective.

2.1. Efficiency Decomposition Model Based on DEA

The interaction of environmental and social forces determines exposure and sensitivity.
Vulnerability is different in dissimilar locations and systems [33]. In other words, different
regions suffering from seismicity with the same parameters may produce separate disaster
losses. Therefore, in the process of calculating vulnerability, the influence of earthquake
location needs to be considered. DEA method can analyze the vulnerability caused by
earthquake disasters through setting them as DMUs and using county-level statistical data,
which is closer to the actual situation of the region.

DEA was first proposed by operational research expert Charnes et al. in 1978 [29]. The
model is named CCR model, which is taken from the initials of the last names of the three
authors. CCR model can estimate the stochastic frontier of effective production using a
set of multiple input and multiple output values. Afterward, the efficiency of each DMU
can be calculated. Different from the constant return to scale assumption contained in the
CCR model, Banker, Charnes and Cooper (1984) developed the BCC model and further
discussed the method of calculating efficiency under the assumption of variable return to
scale [30]. BCC model is shown as Equation (1), where θk is the efficiency of DMUk, x is the
input index, y is the output index, and λ is the variable coefficient. It is assumed that there
are m input variables, q output variables and n decision-making units in the model.

min θk

subject to

∑n
j=1 λjxij ≤ θkxik

∑n
j=1 λjyrj ≥ yrk

∑n
j=1 λj = 1
λ ≥ 0

i = 1, 2, . . . , m; r = 1, 2, . . . , q; k = 1, 2, . . . , n

(1)

The CCR model assumes that the scale return of production technology remains
unchanged, or all evaluated DMUs are in the optimal production scale stage. For the
technology of single input and single output, the production frontier under variable return
to scale is a curve. All points on the curve are technically effective points. However, the
productivity represented by the points is not the same. This is caused by their difference in
scales. Therefore, for DMU that is not in the optimal scale production state, the efficiency
value calculated by CCR model includes the component of scale inefficiency. BCC model
adds ∑n

j=1 λj = 1 as a constraint that makes the production scale of the projection point
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at the same level. The efficiency results of BCC model exclude the influence of scale. The
calculation relationship between the three efficiency values is shown in Equation (2).

SE =
TE

PTE
(2)

SE stands for scale efficiency, which observes the invalid sources of DMUs from the
perspective of scale. In the study of vulnerability caused by earthquake disasters, scale
efficiency measures the response of county scale to earthquakes. The higher the scale
vulnerability is, the more likely population and economic density of the county at that time
are to be converted into losses in the earthquake. Technical efficiency (TE) is calculated by
CCR model and pure technical efficiency (PTE) is the result of BCC model.

2.2. Indexes

Earthquake disaster is the result of the effect of the huge energy produced by seismic
activities on the disaster-bearing system, which usually brings great losses to human society.
The variables in the DEA model for measuring vulnerability to earthquake disasters should
be selected based on the understanding of this process. In addition, when building the
DEA model, we should pay attention to distinguishing the input–output variables of the
model and the influencing factors of the vulnerability value. Taking county vulnerability
to earthquake disasters as an example, people’s knowledge of earthquake prevention
and disaster reduction will affect people’s response measures when an earthquake occurs.
However, it is not a variable in the input and output model. We can regard it as the
attribute of disaster-bearing system because these dissimilar conditions make the system
show various vulnerabilities.

We investigated some studies using DEA models to measure disaster vulnerability.
Huang et al. (2013) [28] constructed input variable indicators from the perspectives of
danger of regional hazards and exposure of regional socioeconomic system. The output
variables used characterized regional natural disaster loss data. Li et al. (2015) [32] used
DEA model to measure the vulnerability of provincial units to geological disasters in China.
Input variables include disaster frequency, population density and the sum of GDP. The
output variables are the number of casualties and economic losses caused by geological
disasters. The study takes provinces as decision-making units and uses the average data
from 2004 to 2010 as variable values for calculation. Hou et al. (2016) [34] used super-
efficiency DEA model to measure social vulnerability to geological disasters. The model
takes the proportion of casualties in the total population and the proportion of economic
losses in GDP as output variables. Nine indicators are selected as input variables of DEA
model from three perspectives of population, economy and society, such as population
density, per capita GDP and medical condition.

From these studies, it can be summed up that the output variables are about earthquake
disaster loss, including casualties and economic losses. Input variables can be considered
from two perspectives. On the one hand, it should reflect the characteristics or intensity
of disasters. On the other hand, it should include the attributes of human society. Based
on the above analysis, we use the number of casualties and direct economic losses as the
output variables of the DEA model. Energy released by earthquake, population density
and GDP density are set as input variables. Variables are shown in Table 1.
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Table 1. Input–output variables of DEA model for earthquake disaster vulnerability.

Variables Code Definition and Measurement

Energy x1
Energy released by seismicity. It is obtained by the

Gutenberg–Richter empirical function
Population density x2 Average population per square kilometer

GDP density x3 Average gross domestic product per square kilometer
Number of casualties y1 Number of injured and dead people

Direct economic loss y2
Material damage caused by earthquakes and secondary

disasters

Magnitude is a commonly used parameter to describe seismic characteristics. How-
ever, magnitude does not directly indicate the energy released by seismicity. We use the
Gutenberg–Richter empirical function to convert the magnitude into the energy released
by the earthquake, so as to meet the DEA method’s requirement that different DMUs can
be added linearly on each variable. The Gutenberg–Richter empirical function is shown in
Equation (3).

lgE = 1.5 × Ms + 11.8 (3)

where E refers to the energy released by seismicity, and Ms is surface wave magnitude,
which is recorded by humans [35].

When calculating the vulnerability of counties suffering from earthquake, the indexes
shown in Table 1 are used in Equation (1). Given the values of input variable xij(i = 1, 2, . . . , m)
and output variable yrj(r = 1, 2, . . . , q), we can obtain λj(j = 1, 2, . . . , n) and θk. θk repre-
sents vulnerability.

2.3. Data Processing

This study investigates the earthquake disasters that occurred in Chinese mainland
from 2013 to 2020. According to the annual earthquake activity data released by the official
website of the China Earthquake Administration, the Chinese mainland had 99 earth-
quake disasters (including the 2015 Nepal earthquake which influenced Tibet), involving
17 provinces, autonomous regions and municipalities directly under the Central Govern-
ment. Among them, 23 earthquakes occurred in Sichuan Province, 21 in Yunnan Province
and 19 in Xinjiang Province. The three provinces accounted for 63.6% of the total number
of earthquake disasters.

Under the background of earthquake disasters, we select the county-level admin-
istrative unit corresponding to the disaster as disaster-bearing system. The announced
epicenter location of earthquake disasters can generally be accurate to county-level admin-
istrative units. In terms of its main scope of influence, it is concentrated in county-level
administrative units. As we want to measure the vulnerability caused by earthquakes,
rather than the vulnerability of the region itself, we can obtain more accurate vulnerabil-
ity results of earthquake disasters by selecting county-level administrative units as the
disaster-bearing system.

We screen the samples according to 2 considerations. The first is data integrity. The
empirical analysis part needs statistical data to support it, so samples lacking earthquake
loss data and samples unable to query county population and economic statistical informa-
tion are deleted. The second consideration is that the data are supposed to represent the
situation of counties when they suffer earthquake disasters. In this study, the statistical data
of the county in the previous year is used as the indicator value. Therefore, for counties
with two or more earthquakes in the same year, only the first earthquake disaster in the
same year is retained in the sample. In addition, since the epicenter of the Nepal earthquake
is not within the scope of Chinese mainland, and the impact of the earthquake on China is
counted by provinces, the earthquake is also removed from the sample. Finally, 69 valid
samples are obtained in this study. The sample contains 16 provinces, including Anhui,
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Gansu, Guangxi, etc. Among them, 43 earthquakes occurred in Sichuan, Xinjiang and
Yunnan, accounting for 62.3% of the total samples.

3. Results and Analysis

In this paper, the DEA method described in Section 2.1 is used to calculate the vulner-
ability of the county to earthquake disasters. The input variables of the model are energy,
population density and GDP density. The output variables of the model are the number of
casualties and direct economic loss. MaxDEA 8.0 Ultra software is used to solve the DEA
model and obtain the vulnerability values. The earthquake data are released by the official
website of the China Earthquake Administration. The statistical data on the population
and economy in counties are from the China County Statistical Yearbook from 2013 to
2020. Since the energy released by seismicity is an objective attribute of an earthquake, this
variable is set as a variable that cannot be controlled at will [36]. In addition, the change in
vulnerability can be promoted from both the other input variables and output variables.
Hence, we adopt the unguided model setting. The calculation results are shown in Table 2.

Vulnerability value is the relative efficiency of each disaster-bearing system to convert
seismic energy, population density and economic density into casualties and direct eco-
nomic losses. From the dual programming of the CCR model or the BCC model, it can be
determined that the objective function is to obtain the maximum efficiency of the DMU.
In the context of vulnerability, we calculate the most unfavorable vulnerability value for
the disaster-bearing system. Table 2 decomposes the sources of vulnerability into scale
vulnerability and pure technology vulnerability. The scale vulnerability values present
the difference in vulnerability caused by the scales of counties under the assumption of
variable scale return. The pure technology vulnerability values reflect the vulnerability
difference caused by technology, management, organization and other factors.

Earthquake magnitude is an important parameter to reflect the energy released by
seismic activity. We divided the samples into three groups according to the magnitude
level and expected to get more detailed findings. In the sample, there are 19 earthquake
disasters of M ≤ 5.0, 34 earthquake disasters of 5.0 < M ≤ 6.0, and 16 earthquake disasters
of M > 6.0. Earthquake disasters with 5.0 < M ≤ 6.0 account for 49.3% of the total samples.
Table 3 shows the average value of vulnerability and input–output variables corresponding
to the earthquake disasters at the magnitude level of each group.

It can be found from Table 3 that earthquake disaster groups with different magnitude
levels show different characteristics of pure technical vulnerability and scale vulnerability.
From the perspective of average value, the group of earthquakes with 5.0 < M ≤ 6.0 has
the lowest level of pure technology vulnerability and scale vulnerability. This shows that
counties suffering from earthquakes with 5.0 < M ≤ 6.0 can generally better cope with
earthquake disasters. From the perspective of input variables, the scale of these counties
is at a medium level. In the other two groups, the counties suffering from earthquake
disasters with M > 6.0 have the highest level of scale vulnerability, while those suffering
from earthquake disasters with M ≤ 5.0 have the highest level of pure technical vulnerability.
The scale vulnerability is mainly related to the comparison between the input quantities
of DMUs. As the average population and economic density of counties suffering from
earthquakes with M > 6.0 are the lowest, their scale vulnerability is mainly affected by the
energy released by the earthquake. Although the counties suffering from earthquakes with
M ≤ 5.0 has the lowest loss, their overall pure technical vulnerability level is the highest.
The results show that compared with other counties, the loss conversion level of counties
suffering from earthquakes below M5.0 is higher. If the counties do not improve their
ability of earthquake prevention and disaster reduction as soon as possible, unnecessary
human and economic losses will be caused.
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Table 2. Calculation results of earthquake disaster vulnerability.

Date Epicenter Location PTV SV Date Epicenter Location PTV SV Date Epicenter Location PTV SV

26 June 2020 Yutian, Xinjiang 0.128 0.161 11 May 2017 Kuershi, Xinjiang 1.000 1.000 14 March 2015 Yingquan, Anhui 1.000 1.000
18 May 2020 Qiaojia, Yunnan 1.000 1.000 27 March 2017 Yangbi, Yunnan 0.336 0.011 1 March 2015 Cangyuan, Yunnan 0.265 0.924
1 April 2020 Shiqu, Sichuan 0.253 0.194 27 December 2016 Rongchang, Chongqing 0.085 0.001 22 February 2015 Shawan, Xinjiang 0.956 0.003

19 January 2020 Jiashi, Xinjiang 0.026 0.987 20 December 2016 Qiemo, Xinjiang 1.000 0.196 14 January 2015 Jinkouhe, Sichuan 1.000 0.908
16 January 2020 Kuche, Xinjiang 0.008 0.053 14 December 2016 Ruoqiang, Xinjiang 1.000 0.039 10 January 2015 Atushi, Xinjiang 0.307 0.003

26 December 2019 Yingcheng, Hubei 0.058 0.001 8 December 2016 Hutubi, Xinjiang 0.136 0.731 7 October 2014 Jinggu, Yunnan 0.164 0.796
18 December 2019 Zizhong, Sichuan 0.052 0.026 25 November 2016 Aketao, Xinjiang 0.128 0.737 25 October 2014 Wencheng, Zhejiang 1.000 1.000
25 November 2019 Jingxi, Guangxi 0.005 0.055 17 October 2016 Zaduo, Qinghai 0.478 0.420 1 October 2014 Yuexi, Sichuan 0.579 0.004

28 October 2019 Xiahe, Gansu 0.046 0.089 23 September 2016 Litang, Sichuan 0.335 0.022 3 August 2014 Ludian, Yunnan 1.000 1.000
16 September 2019 Ganzhou, Gansu 0.004 0.007 11 August 2016 Dianjiang, Chongqing 0.361 0.397 5 April 2014 Yongshan, Yunnan 0.505 0.806
8 September 2019 Weiyuan, Sichuan 0.421 0.870 31 July 2016 Cangwu, Guangxi 0.013 0.099 12 February 2014 Yutian, Xinjiang 1.000 1.000

3 January 2019 Gong, Sichuan 0.001 0.084 18 May 2016 Yunlong, Yunnan 1.000 0.003 16 December 2013 Badong, Hubei 0.044 0.020
16 December 2018 Xingwen, Sichuan 0.002 0.452 11 May 2016 Dingqing, Tibet 1.000 0.964 1 December 2013 Keping, Xinjiang 0.256 0.027
31 October 2018 Xichang, Sichuan 0.001 0.099 12 March 2016 Yanhu, Shanxi 1.000 0.960 23 November 2013 Qianguo, Jilin 0.320 0.060
11 October 2018 Zigui, Hubei 0.840 0.000 11 February 2016 Xinyuan, Xinjiang 0.293 0.003 31 August 2013 Shangri-la, Yunan 0.216 0.508

8 September 2018 Mojiang, Yunnan 0.024 0.964 21 January 2016 Menyuan, Qinghai 0.049 0.989 12 August 2013 Zuogong, Tibet 1.000 1.000
4 September 2018 Jiashi, Xinjiang 0.022 0.460 14 January 2016 Luntai, Xinjiang 0.050 0.084 22 July 2013 Min, Gansu 1.000 0.906

6 May 2018 Chengduo, Qinghai 0.390 0.099 30 October 2015 Changning, Yunnan 0.454 0.006 22 April 2013 Keerqin, Inner Mongolia 0.017 0.872
18 November 2017 Milin, Tibet 0.611 0.894 3 July 2015 Pishan, Xinjiang 1.000 1.000 20 April 2013 Lushan, Sichuan 1.000 1.000
30 September 2017 Qingchuan, Sichuan 0.016 0.033 22 May 2015 Rushan, Shandong 0.354 0.775 29 March 2013 Changji, Xinjiang 0.004 0.078

9 August 2017 Jinghe, Xinjiang 0.416 0.710 15 April 2015 Alashan, Inner Mongolia 0.202 0.802 11 March 2013 Atushi, Xinjiang 0.105 0.018
8 August 2017 Jiuzhaigou, Sichuan 0.758 0.797 15 April 2015 Lintao, Gansu 1.000 1.000 3 March 2013 Eryuan, Yunnan 0.021 0.740
16 June 2017 Zigui, Hubei 1.000 0.000 30 March 2015 Jianhe, Guizhou 0.014 0.607 18 January 2013 Baiyu, Sichuan 0.205 0.117
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Table 3. Average value of vulnerability and input–output variables grouped by magnitude level.

Index and Variable M ≤ 5.0 5.0 < M ≤ 6.0 M > 6.0

Pure technical vulnerability 0.676 0.224 0.556
Scale vulnerability 0.374 0.336 0.821

Energy 11.876 129.704 9401.304
Population density 257.186 102.355 44.359

GDP density 8997.495 3430.398 679.127
Number of casualties 5.368 14.294 1306.750
Direct economic loss 5800.789 42,805.329 899,471.938

4. Discussion

The vulnerability of counties is varied, caused by different earthquake disasters,
which is related to the characteristics of earthquake disasters and counties. Therefore, it is
necessary to discuss the main influencing factors of vulnerability. In addition, we noticed
that the average level of pure technical vulnerability caused by earthquake disasters with
M ≤ 5.0 is higher than that of the group with M > 6.0. This phenomenon is also discussed
from the perspective of the seismic performance of buildings.

4.1. Influencing Factors of Vulnerability Caused by Earthquakes

There are few studies that directly study the influencing factors of earthquake disaster
vulnerability. When selecting the influencing factors, we refer to the relevant research on
the vulnerability index system. De Ruiter et al. (2017) [37] classified vulnerability indicators
as physical indicators and social indicators. Physical indicators are directly related to the
characteristics of the exposed assets. Social indicators include demography, consciousness,
social economics and institutional factors. Li et al. (2015) [32] calculated the quantitative
value of geological disaster vulnerability in various provinces of China. The authors
selected six variables from three perspectives: natural factors, economic development
factors and human control factors. Considering the availability of data, in the quantitative
analysis part, this study focuses on exploring the impact of socio-economic factors on
the vulnerability of counties to earthquake disasters. Considering that the vulnerability
of counties caused by different levels of earthquake disasters is obviously different, this
section will also discuss whether there is a significant relationship between the energy
released by earthquakes and the vulnerability caused by them. Eight factors are finally
selected for the analysis, as shown in Table 4.

Table 4. Definition and measurement of potential influencing factors.

Variables Definition and Measurement

Added value of primary industry The results of the production activities of the primary industry conducted by all
permanent resident units in the region within one year at market prices.

Added value of secondary industry The results of the production activities of the secondary industry conducted by all
permanent resident units in the region within one year at market prices.

Added value of tertiary industry The results of the production activities of the tertiary industry conducted by all
permanent resident units in the region within one year at market prices.

Per capita GDP Per capita GDP in counties.
Investment density in fixed assets Fixed asset investment per square kilometer.

Urbanization rate The proportion of local non-agricultural population in the permanent population.

Junior high school enrollment rate The proportion of junior middle school graduates who continue to study in
ordinary high schools or secondary vocational schools.

Energy released by earthquake The energy corresponds to the magnitude of the earthquake, which is obtained by
the Gutenberg–Richter empirical function.

Relevant statistical data were obtained from the official websites of the China Earth-
quake Administration and the National Bureau of Statistics and the China county statistical
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yearbook. Before entering the regression model, we standardized the data. The formula is
shown in Equation (4).

xs =
x − xmin

xmax − xmin
(4)

where x is the original data of the variable, xs is the standardized data, xmin is the mini-
mum value of the variable in all samples, and xmax is the maximum value of the variable
in all samples.

Since the vulnerability value is in the range of 0–1, we use a Tobit regression model
to test the relationship between potential influencing factors and vulnerability. Here, the
explained variable uses pure technical vulnerability to reduce the impact of county-scale
heterogeneity. In this way, the county influencing factors passing the test are not affected
by the regional scale, which has more universal practical significance. Based on the analysis
of vulnerability-influencing factors, we establish the regression equation according to
Equation (5).

pure technical vulnerability = α + β1 × value primary + β2 ×
value secondary + β3 × value tertiary + β4 × per capital GDP+

β5 × investment density in fixed assets + β6 × urbanization rate+
β7 × enrollment rate + β8 × energy + ε

(5)

We use Stata 17.0 to test the equation, and the results are shown in Table 5.

Table 5. Model test results of regression equation.

Variable Coefficient Std. Err. t p > |t|

Added value of primary industry −0.019 0.365 −0.05 0.958
Added value of secondary industry −1.578 ** 0.620 −2.55 0.013

Added value of tertiary industry 0.219 0.550 0.40 0.691
Per capita GDP 1.412 ** 0.648 2.18 0.033

Investment density in fixed assets 0.854 * 0.440 1.94 0.057
Urbanization rate −0.229 0.276 −0.83 0.410

Junior high school enrollment rate −0.241 0.256 −0.94 0.349
Energy released by earthquake 1.207 * 0.652 1.850 0.069

Constant 0.617 *** 0.191 3.22 0.002
* p < 0.10, ** p < 0.05, *** p < 0.01. (Two-tailed test).

From Table 5, we can derive that the added value of the secondary industry variable is
significant at the level of 0.05, and the coefficient is negative (−1.578, p = 0.013). This shows
that increasing the added value of the secondary industry in the county is conducive to
reducing the vulnerability of counties to earthquake disasters. The variable of per capita
GDP has a positive impact (1.412, p = 0.033) on the vulnerability of counties caused by
earthquake disasters. In other words, under other conditions unchanged, the higher the per
capita GDP, the greater the pure technical vulnerability to earthquake disasters in counties.
The impact of investment density in fixed assets on vulnerability to earthquake disasters in
counties is statistically significant, and the impact is also positive (0.854, p = 0.057). These
three variables are related to economic development. Another variable that has a significant
impact on vulnerability is the energy released by earthquakes (1.207, p = 0.069). It gives
evidence of the earthquake characteristics.

The added value of the secondary industry can reflect the structure of economic
development. The secondary industry includes mining, manufacturing, power, heat, gas
and water production and supply, and construction. Li et al. (2015) [32] found that the
industrial growth rate is the most significant factor affecting vulnerability to regional
geological disasters, and industrial development can reduce vulnerability to geological
disasters. This is consistent with the conclusion that an increase in the added value of
the secondary industry can reduce the vulnerability of a county to earthquake disasters.
The main reason is that the development of the secondary industry can promote the
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upgrading of infrastructure, housing and other buildings. On the one hand, the enterprises
related to the secondary industry tend to have a large scale and are subject to more strict
seismic fortification supervision. On the other hand, the continuous development of the
construction industry can also contribute to the practical application of seismic technology
in construction engineering.

Per capita GDP is an important indicator of regional economic development and
people’s living standards. Huang et al. (2013) [28] found that there is a significant negative
correlation between per capita GDP and regional natural disaster vulnerability. That is, an
increase in per capita GDP will reduce vulnerability to regional natural disasters. However,
Li et al. (2015) [32] concluded that the per capita GDP is positively related to vulnerability
to regional geological disasters. The results of this study also show that, under other
conditions unchanged, the growth of per capita GDP will enhance the vulnerability caused
by earthquake disasters in counties. For different kinds of vulnerability, the growth of per
capita GDP has brought about the impact of strengthening or weakening. This shows that
the relationship between per capita GDP and vulnerability is affected by disaster types. In
addition, Toya and Skidmore (2007) [38] pointed out that an increase in income enhanced
people’s demand for security. Higher incomes enable people to invest in more expensive
preventive measures to deal with natural disasters. In this study, with the growth of per
capita GDP, the vulnerability caused by earthquake disasters becomes higher. This proves
that there is an inadaptability between the level of earthquake disaster prevention and the
economic development in counties.

The energy released by the earthquake represents the strength of seismic activity. The
stronger the earthquake activity, the more destructive energy the disaster-bearing body
will suffer. According to the results in Table 5, when suffering from more intense seismic
activity, the county often shows higher vulnerability. Xinjiang Uygur Autonomous Region
is an earthquake-prone area. In 2018 and 2020, earthquakes of a magnitude of 5.5 and
6.4 occurred in Jiashi County. From the statistical data, the added value of the secondary
industry, per capita GDP and investment density in fixed assets of Jiashi County corre-
sponding to the two earthquakes are relatively close. Their pure technical vulnerabilities
are 0.022 and 0.026. This reflects that vulnerability caused by high-magnitude earthquakes
is stronger. To some extent, the characteristics of seismic activity affect the vulnerability of
human society.

4.2. Effect of Seismic Function of Buildings on Vulnerability Caused by Earthquakes

The social system of the county has an important impact on its vulnerability to earth-
quakes. In addition, the seismic capacity of infrastructure in counties also plays an impor-
tant role in vulnerability. The improvement of the seismic performance of buildings can
minimize the physical damage caused by earthquakes [39]. However, the actual seismic
performance of buildings is affected by many factors, such as technology, structure, materi-
als and building years. It is also difficult to obtain accurate quantitative description data of
buildings in counties. Therefore, we use specific earthquake disaster cases to qualitatively
analyze the relationship between the seismic performance of buildings and the earthquake
disaster vulnerability in counties.

The analysis of Table 3 makes us note that the earthquake disaster group with the
lowest magnitude of M ≤ 5.0 has the largest average pure technical vulnerability. Among
the 19 earthquake disasters, the pure technical vulnerability caused by 9 earthquakes
reached 1.000, accounting for nearly 50%. The earthquakes are generally distributed in
low-risk areas such as Zhejiang Province, Anhui Province and Hubei Province. This shows
that compared with other regions, under the same input level, the output of these regions
is on the higher side. Generally speaking, the probability of serious earthquake disasters in
areas with low earthquake risk is relatively lower, and from the perspective of the impact
factors of pure technical vulnerability, the lower the magnitude of the earthquake, the
smaller the vulnerability of the county should be. However, the anomalies in the results
further remind us of the importance of continuously enhancing the ability of human society
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to cope with earthquake disasters. We should not relax our vigilance in areas with low
earthquake risk. We selected three representative earthquake disasters for analysis, and the
relevant data are shown in Table 6.

Table 6. Representative cases of earthquake disasters with M ≤ 5.0.

Date Epicenter Magnitude x1 x2 x3

18 May 2020 Qiaojia, Yunnan 5 19.953 172.563 2830.313
14 March 2015 Yingquan, Anhui 4.3 1.778 911.076 17,736.225

25 October 2014 Wenchen, Zhejiang 4.2 1.259 306.110 4534.416

In the three earthquake disasters mentioned in Table 6, most houses in Qiaojia County
are built on hillsides or river valleys due to topographic factors, which makes them more
vulnerable to geological secondary disasters caused by earthquakes. Zhang et al. (2020) [40]
found that the earthquake damage index of houses in Qiaojia County is higher than that
of other regions in Yunnan. The Yingquan M4.3 earthquake was more destructive than
any previous earthquake of the same magnitude in the region. One important reason is
that the focal point was relatively shallow, and the other direct reason is the damage to
buildings caused by the earthquake [41]. The earthquake caused the “Roman columns”
(nonstructural building components) used for decoration on the second floor of the rural
residence to fall to varying degrees, which had an adverse impact on the safety of the
residents’ lives and property [42]. On 25 October 2014, Wencheng County experienced an
M4.2 earthquake, which was also the largest earthquake in the series of earthquake swarm
activities since 12 September. The epicenter of the earthquake was in a mountainous area
where the seismic fortification was weak. The houses in the disaster area cannot withstand
continuous earthquakes and suffer relatively serious losses. The above analysis shows that
the poor seismic performance of buildings is an important reason for high vulnerability in
the case of earthquakes with low magnitude.

Among the earthquake disasters with higher magnitude, we noticed that the mag-
nitude and maximum intensity of the Lushan earthquake in 2013 and the Jiuzhaigou
earthquake in 2017 of Sichuan Province were the same, but there were significant differ-
ences in vulnerability, as shown in Table 7.

Table 7. Representative cases of earthquake disasters with M ≤ 5.0.

Date Epicenter Magnitude x1 x2 x3 y1 y2 PTV SV

20 April 2013 Lushan, Sichuan 7.0 19,952.623 88.682 1857.786 13,215 6,651,370 1.000 1.000
8 August 2017 Jiuzhaigou, Sichuan 7.0 19,952.623 15.361 493.740 573 804,300 0.758 0.797

In these two earthquake disasters, the occurrence time of the Lushan earthquake and
the Jiuzhaigou earthquake is 8:02 and 21:19, respectively. When the earthquake occurred,
the local people were generally living in houses. From this, we can know that the seismic
performance of buildings, especially residential buildings, is a critical factor in the two
earthquakes. All the affected areas of the Lushan earthquake and the Jiuzhaigou earthquake
are situated in the old earthquake area of the Wenchuan earthquake of 2008. Since then,
various seismic measures have been taken for new public and rural residential buildings.
This has played a very important role in protecting people’s lives and property safety [43].
According to the site conditions in the disaster area, the houses built by farmers were
more damaged in the Lushan earthquake due to unreasonable structure or failure to take
corresponding seismic measures meeting the requirements. In the Jiuzhaigou earthquake,
the most densely populated area was the scenic spot. The houses rebuilt in the scenic
area have good seismic performance and are only slightly damaged, effectively protecting
people’s lives and property. Therefore, enhancing the seismic performance of buildings
helps to reduce their vulnerability to large earthquakes.
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The seismic design standards of Chinese buildings are related to the local seismic
fortification intensity. This indicator comprehensively considers the seismic environment,
the importance of the construction project, the allowable risk level, the safety objectives
to be achieved and the economic affordability. It can be said that buildings that meet the
seismic fortification standards can better cope with the local earthquake disasters that may
occur. However, in the above case analysis, it can be found that some buildings in the
low-risk areas of earthquake disasters, as well as rural residential buildings, have not been
designed and constructed in strict accordance with the seismic fortification standards. This
has led to the fact that the actual seismic performance of the building cannot meet the
requirements and has caused hidden dangers to people’s lives and health and property
safety. Therefore, the government should pay more attention to the implementation of
standards in addition to the formulation of standards, such as strengthening the supervision
of architectural design and construction manufacturing.

5. Conclusions

Earthquake disasters have brought great losses to human society. In this study, the
DEA method is used to measure the vulnerability caused by earthquake disasters, and
the variable of energy released by earthquakes is included in the input variables. More-
over, we use the statistical data of county-level units to calculate vulnerability, different
from previous studies using provincial statistical data. This approach has the following
advantages: On the one hand, using the DEA method to calculate vulnerability does not
require setting the weights of various variables, which can avoid the impact of subjectivity
on results. On the other hand, compared to the DEA models in the existing literature
on seismic vulnerability, we introduce the energy released by earthquakes into the input
variables. Then, we explore the influencing factors of vulnerability caused by earthquake
disasters from the quantitative and qualitative perspectives, deepening the understanding
of vulnerability. We selected 69 earthquake disasters in the Chinese mainland from 2013 to
2020 as samples for empirical research. The main findings are as follows:

(1) Four variables, including the added value of the secondary industry, per capita
GDP, investment density in fixed assets and energy released by earthquakes, have a
significant impact on pure technology vulnerability caused by earthquake disasters.
If other conditions remain unchanged, increasing the added value of the secondary
industry can reduce local vulnerability to earthquake disasters, while the growth of per
capita GDP and investment density in fixed assets will increase vulnerability. With the
rise in earthquake magnitude, the vulnerability caused by it will also become bigger.

(2) When suffering from an earthquake with M ≤ 5.0, some counties show a relatively
high pure technical vulnerability. That is, there are deficiencies in organization, man-
agement and facilities. The areas with low earthquake risk show greater vulnerability
when encountering earthquakes. Compared with regions with higher earthquake
risk, they have lost their advantages of natural conditions and do not match the local
socio-economic development level.

(3) Through the qualitative analysis of earthquake disaster cases, it can be inferred that
the seismic function of buildings is related to vulnerability caused by earthquakes.
Buildings that fully meet the seismic fortification standards play an important role in
reducing earthquake disaster losses. However, buildings with problems in the seismic
fortification design and construction will bring hidden dangers to people’s lives and
property safety.

Based on the above findings, some new enlightenment can be brought to the work of
earthquake prevention and disaster reduction. First, all regions can appropriately expand
the added value of the secondary industry according to the local situation. From the
research results, increasing the per capita GDP and fixed asset investment density will
increase vulnerability to earthquake disasters, which indicates that the adaptability of the
work of earthquake disaster prevention and economic development should be further
enhanced. Second, counties show higher levels of vulnerability when suffering from
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earthquakes of M ≤ 5.0 than 5.0 < M ≤ 6.0. This reflects the insufficient attention paid to
counties with a low risk of earthquake disasters. It is necessary to attach importance to
and strengthen the work of earthquake prevention and disaster reduction in low-risk areas.
Third, for provinces with frequent earthquakes, the seismic fortification of buildings should
be further strengthened with high-quality standards. At the same time, attention should be
paid to the implementation of standards in the design and construction stages of buildings
in areas with low seismic risk, so as to avoid small earthquakes causing major disasters.

Earthquakes are inevitable. Reducing regional vulnerability to earthquake disasters
can make the regional loss smaller. Only in this way can regions continuously enhance their
sustainable development capabilities. In this study, the DEA method is used to accurately
assess the vulnerability of counties to earthquake disasters, which is conducive to finding
deficiencies and making targeted improvements.

This research extends the calculation methods of vulnerability caused by earthquake
disasters, including the energy released by earthquakes as an important variable. Based on
the analysis of the vulnerability results and earthquake disaster cases, the important role of
building seismic function is further elaborated. In addition, the work of this research proves
that regional vulnerability to natural disasters is related to their types, which can inspire the
vulnerability research of various fields. However, due to the limitation of data collection,
only eight potential influencing factors were tested. Further research is needed to determine
the impact of regional natural condition factors on vulnerability caused by earthquakes.
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