
Citation: Wang, K.; Wang, X.; Liu, X.

Sustainable Internet of Vehicles

System: A Task Offloading Strategy

Based on Improved Genetic

Algorithm. Sustainability 2023, 15,

7506. https://doi.org/10.3390/

su15097506

Academic Editor: Tamás Bányai

Received: 7 April 2023

Revised: 17 April 2023

Accepted: 26 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Sustainable Internet of Vehicles System: A Task Offloading
Strategy Based on Improved Genetic Algorithm
Kun Wang 1,*, Xiaofeng Wang 2 and Xuan Liu 3

1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
2 School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030032, China
3 Shanxi Electric Power Company Maintenance Branch, State Grid, Taiyuan 030000, China
* Correspondence: eekunwang@126.com

Abstract: “Smart transportation” promotes urban sustainable development. The Internet of Vehicles
(IoV) refers to a network with huge interaction, which comprises location, speed, route information,
and other information about vehicles. To address the problems that the existing task scheduling
models and strategies are mostly single and the reasonable allocation of tasks is not considered in
these strategies, leading to the low completion rate of unloading, a task offloading with improved
genetic algorithm (GA) is proposed. At first, with division in communication and calculation models,
a system utility function maximization model is objectively conducted. The problem is solved by
improved GA to obtain the scheme of optimal task offloading. As GA, in the traditional sense, inclines
to a local optimum, the model herein introduces a Halton sequence for uniform initial population
distribution. Additionally, the authors also adapt improved GA for the problem model and global
optimal solution guarantee, thus improving the rate of task completion. Finally, the proposed method
is proven through empirical study in view of scenario building. The experimental demonstration of
the proposed strategy based on the built scenario shows that the task calculation completion rate
is not less than 75%, and when the vehicle terminal is 70, the high-priority task completion rate
also reaches 90%, which can realize reasonable allocation of computing resources and ensure the
successful unloading of tasks.

Keywords: IoV; improved GA; task offloading; sustainable development; adaptive dynamic weight;
system utility function maximization

1. Introduction

“Smart transportation” promotes urban sustainable development [1]. Internet of Vehi-
cles sends the status of vehicles through sensor technology and wireless communication—
modern intelligent technology for information processing—thus realizing the smart man-
agement of traffic, as in examples such as smart traffic service information decisions and
control over vehicles [2]. IoV generates economic effects at a large scale. Improvement in
IoV would improve scenarios for new application formations, thus driving 5th-generation
mobile networks (5G) with scale effects and deployment as systems for intelligent trans-
portation development, as well as intelligent connected vehicles. Vehicles have been
endowed with more capabilities for computing, storage, sensing, and communication.
While these advancements provide users with a more realistic and convenient experience,
these data must be processed. Many new in-vehicle applications, including augmented
reality, virtual reality, appearance recognition, and pattern recognition, also increase the
scale of in-vehicle data processing exponentially. This results in higher requirements for
the transmission of data and network processing capacities. The ability to process massive
quantities of data accurately and quickly is not only related to user experience, but is also
an important guarantee of the safety of drivers and passengers. Thus, the vehicle network
has higher requirements for data transmission and processing [3]. However, the massive
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data processing capability of a mobile device’s own central processing unit (CPU) alone is
not enough to meet the latency and power consumption required by service applications.
For solving insufficiency in device computing resources, the concept of cloud computing
has been proposed and widely-used [4]. Cloud computing can maximize the elastic uti-
lization of computing resources by virtue of its efficient centralized and shared resources.
Since cloud servers are deployed in a more centralized location, stored data can be more
easily protected, and lifecycle management is simpler than for distributed systems [5]. As
cloud servers and devices are a long distance apart, and their signal bandwidth is limited,
the latency of service applications cannot be reliably guaranteed. As mobile devices and
Internet of Things (IoT) devices have grown explosively, their limitations have become
more prominent [6].

With the continuous development of the IoT and 5th-generation (5G) communication
technology, on-board mobile cloud computing (MCC) has begun to transform into mobile
edge computing (MEC) [7,8]; thus, the concept of MEC came into being. MEC emphasizes
the importance of computing resources in cloud servers being closer to the user side.
Deploying MEC servers on the mobile processing terminal facilitates the transmission and
processing of data. Task offloading is a key technology of MEC, which entails the uploading
of some or all tasks generated on the vehicle to the edge computing server or cloud server.
Vehicle task uploading to its computing edge server reduces the pressure on the vehicle’s
local computing, but also avoids the queuing delay of the elastic compute service, reduces
task energy and delay consumption, and improves the completion rate of the task. Much
research has been undertaken on task offloading in MEC; however, some problems must
still be addressed, such as vehicle mobility management, computing resource allocation,
and task offloading decision-making under limited computing resources.

The current MEC offloading strategies are all concentrated on small mobile terminals,
which have limited energy consumption, slow movement, and often do not span the
service scope of a single MEC in a short time. However, in the IoV scenario, the vehicle
terminal moves quickly and interacts with multiple MEC servers in a short time. As such,
determining the appropriate MEC server on which the vehicle terminal should offload
the task to enable the fastest solution to the computing task is a topic worth studying.
The multiservice of the IoV is not considered in calculation offloading. According to the
application requirements of standard 3GPP, the delay of a small number of services is
500 ms, and the delay limit of 1 s is only approximate. However, these services are vehicle
safety services, which are closely related to personal safety, and should therefore have
higher processing priority. Thus, the various services of the IoV have different performance
requirements with respect to communication. For example, the delay standards and
reliability requirements of onboard safe services are different. Thus, an offloading strategy
should meet the delay requirements of multiple IoV services, and the computing tasks of
higher priority should be handled first. Based on improved GA, a task offloading method is
proposed. Experiments showed that the vehicle computing resource utilization, in terminal
end and MEC, are improved by optimizing GA allocation. Major innovations of this paper
are as follows: Using a division between communication and calculation models, a system
utility function maximization model is objectively conducted. The problem is solved by
improved GA to obtain the scheme of optimal task offloading, thus reducing computing
task unloading to the MEC server which has heavy loading, and increasing light-loaded
MEC server-based computing task unloading, achieving balance in loading effects.

The Section 2 is about existing task scheduling models and strategies; the Section 3
establishes the system with which actual complex road conditions are modeled; the
Section 4 introduces the strategy of task offloading with an improved GA; the Section 5
details the experiment designed to verify the performance of the strategy proposed by the
paper; and the Section 6 presents the conclusions of this paper.
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2. Related Works

At present, some research on MEC has been performed in various countries, and
the task offloading problem of edge computing has been a primary concern of scholars.
Research has mostly started by focusing on the task offloading problems: the computation
of task offloading optimization, the joint optimization of multiple resources, or the mobility
of edge computing [9]. Among these objectives, the goal of optimization mainly entails
reducing the overall delay of tasks and energy consumption, and optimizing overall benefit
by combining the delay and energy consumption [10]. For example, in [11], based on
reinforcement learning computing, they implemented a task offloading strategy in the IoV
edge computing architecture. The vehicle network model was constructed through collected
data to ensure that the vehicle network task offloading was rational. For user cost function
minimization, they used a double-layer deep Q-network for solving real-time changes in
network state due to the movement of users. However, the processing efficiency of task
offloading needs to be improved. Wang et al. (2020) [12] proposed a task offloading method
with guidance from meta-reinforcement learning. The offloading strategy of a custom
sequence-to-sequence neural network was combined to gradient update and samples at
small amounts to quickly adapt to new environments, which effectively improved the
processing efficiency of computing tasks.

Resource optimization has primarily been achieved for computing resources, transmis-
sion resources, and caching. For example, [13] designed a new network architecture after
in-depth research on vehicle self-organizing network architecture in the vehicle network
and the typical application of vehicle networking. The architecture featured greater data
throughput, lower latency, higher security, and massive connectivity. This method achieved
optimal resource occupation; however, the objective of optimization was not sufficiently
considered. Xue et al. (2021) [14] proposed a vehicle-assisted MEC, which meant that
on-board computing tasks could be offloaded to MEC servers and vehicle edge nodes.
By establishing a differentiated pricing model and dynamic incentive model based on
different resource states, the optimal offloading strategy and pricing scheme were obtained.
The combination of gradient-based iterative algorithms for resource allocation effectively
improved rationality with regard to resources of computing, but it showed insufficiency
for objective function optimization of computing task offloading. By optimizing particle
swarm, Dai et al. (2020) [15] proposed a strategy of offloading data computing tasks for
mobile medical applications. The proposed algorithm was evaluated against the local
computation method as a baseline method through extensive simulations, and the results
showed that the proposed task assignment scheme had good feasibility and achieved
high completion efficiency. However, its handling of multi-target mobile computing task
offloading needed to be improved.

The mobility of users in MEC also represents a hot topic in current research. For ex-
ample, in [16], vehicle computing task offloading was defined as a fatal problem with
multi-armed bandit and online algorithms, which were newly used for realizing the
decision-making of node selection distribution. With the edge nodes of context information,
infinite exploration space was converted into a finite exploration space, and simulation
results verified its effectiveness. Wang et al. (2020) [17] proposed a joint task offloading and
transfer strategy in reinforcement-learning-based MEC networks for maximum system gain.
Considering the time-varying computing tasks and resource conditions, the Markov deci-
sion process was used to solve the mixed integer nonlinear programming problem, which
effectively improved MEC computing task offloading efficiency. Li et al. (2021) [18] studied
a UAV-assisted multi-task MEC network considering the requirements of time-sensitive
tasks. In addition to satisfying different task requirements, they effectively reduced the
energy consumption of IoT devices in total. With MEC, Li et al. (2021) proposed a control
framework for the SDN IoV with three layers [19]. Then, a strategy of controlled place-
ment was used for obtaining the controller’s optimal location through Louvain algorithm,
within the index of load balance and buffer size. Liwang et al. (2022) [20] used a resource
trading approach with novel futures for Internet of Vehicles (EC-IoV), with capability
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for edge computing through use of a forward contract for promoting negotiations with
resource trading between an MEC server (seller) and a vehicle (buyer) in a given future
term. However, in the IoV scenario, the vehicle terminal moves quickly and interacts
with multiple MEC servers in a short period. Thus, determining the appropriate MEC
server on which the vehicle terminal should offload the task to enable the fastest solution
to the computing task is a topic worth studying. To accelerate execution of tasks with
an MEC server, Nguyen et al. (2021) [21] suggested a scheme of task computing through
collaboration with intentional encouragement from an MEC server with rich resources
nearby, thus participating in this scheme. Results of their study found that the scheme
had positive effects on data redundancy migration. In [22], regarding these issues, the
technology of blockchain was used to ensure reliable data transmission and interaction. By
taking vehicle task computation offloading decision with optimization into consideration,
decisions were cached, as were the nodes of offloaded consensus quantity. Thus, there
was a decrease in interval, size of block, energy consumption, and computation overheads.
Using a decentralized framework for MEC, Anwar et al. (2022) [23] proposed a dynamic
path with shortest distance based on a matrix, and an algorithm with the function of dy-
namic multipath searching was selected through a boundary discovery with autonomous
network with necessary connections to node block benchmarks. The experimental results
found network QoS efficiency was better than the centralized method. The above methods
demonstrated the sufficient consideration of mobility, but task processing delay and energy
consumption represent areas that still need to be strengthened.

As most IoV task scheduling models and strategies have this problem, which is simple,
rate of offloading completion is low for reasonable task allocation. Thus, improved GA-
based task offloading for the IoV is proposed.

3. System Model
3.1. Network Topology

Figure 1 shows the MEC system. Roadside units (RSUs) are uniformly deployed
beside the road, and an MEC server-equipped RSU is used to process the tasks of vehicles
on the road; there are no differences among the RSUs. Meanwhile, indivisible computing
task consideration is si =

{
Di, Ci, Tmax

i
}

, where Di is the current task data size i, Ci is the
number of CPU revolutions of task i, and Tmax

i shows the maximum tolerable task delay
for task i. Computing a task to its edge server can be achieved through localization or
uploading; thus, all vehicles are maintained within the same level of driving by default.
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Figure 1. IoV architecture based on multi-edge computing. Figure 1. IoV architecture based on multi-edge computing.

The goal of the system is the co-optimization of delay and energy consumption. With
certain system optimizations, delay and energy consumption optimization will oppose
each other. The pursuit of low energy consumption will result in high latency, while the
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pursuit of low latency will inevitably result in greater energy consumption. Thus, overhead
ψi is designed, which considers the delay and energy consumption in a unified manner,
and the calculation is as follows:

ψi = λiTi + (1− λi)Ei (1)

In the formula, Ti and Ei represent the current task-based delay and energy consump-
tion; and λi is the weight factor, λi ∈ [0, 1]. The size of the weight factor is vital to optimize
the offloading scheme. When the value of λi is large, it greatly affects system delay; other-
wise, it will affect energy consumption greatly. For solving this, an adaptive weight λi is
designed, which can dynamically adjust weight delay and energy consumption according
to the situation of the task itself (Ci and Tmax

i ). If Ci of the current task is large and Tmax
i is

small, then the weight of the task’s delay will be greater. The solution process of adaptive
weight is as follows:

λ∗i = ξ
Ci

∑N
i=1 Ci

+ (1− ξ)
∑N

i=1 Tmax
i

Tmax
i

(2)

where ξ is the weighting factor, 0 < ξ < 1. The principle to be followed for the selection
of ξ: the value of the task that is sensitive to the delay should be reduced, so ξ = 0.5 is
taken. Finally, the obtained weights are normalized:

λi =
λ∗i −min(λ∗)

max(λ∗)−min(λ∗)
(3)

For offloading computing, there are four possible scenarios: (1) during task offloading
computing, no base station handover; (2) base station handover during computing task
upload; (3) base station handover during computing task processing; and (4) base station
is switched during computing task result return. The computational tasks considered in
this paper are indivisible. Thus, for the second scenario, when some computing tasks are
uploaded to the base where a handover occurs, some data offloading for original base is
invalid, and the computing tasks need to be re-uploaded. For the third and fourth scenarios,
processing of computing task is achieved from the edge computing server located in original
base station, and through base station data linkage, the computing task results are migrated
to a new station, which is responsible for the results transmission of computing task to
the vehicles. As data quantity in the computing task results is extremely small, the data
migration delay can be ignored.

3.2. Communication Model

The wireless link data upload rate Vup in the IoV is calculated as follows:

Vup = Bup log2

(
1 +

Pid−δ
1 h2

N0

)
(4)

where Bup shows the width of upload channel band, d−δ
1 shows the loss of path for vehicle

and RSU, Pi represents vehicle power, d1 shows the gap between the vehicle and RSU,
δ refers to loss of path, h represents upload link factor with channel fading, and N0 refers
to power of white Gaussian noise.

Vehicle speed in this scenario is constantly unidirectional, represented by Qi which,
as displayed through vi (vehicle mobility), facilitates the distance dl from vehicle to RSU
coverage area center along with time; thus, variation law is as shown:

dl(t) =

√
d2

∆ +
( z

2
− vit

)2
(5)
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where d∆ shows how far driving level of vehicle is from RSU, and z represents RSU
coverage, which refers to the distance from the vehicle to the RSU coverage area center. To
make the issue simple, rate of upload on average, Vup, shows the rate of data transmission
of vehicle offloading computing tasks to the MEC server during the offloading process
of the IoV, and tstay represents the time from the initial position of the vehicle to when it
leaves the coverage of the RSUs:

Vup =

∫ tstay
0 Vup(t)dt

tstay
(6)

3.3. Computational Model

The processing of computing tasks is divided into two parts: transmission and calcula-
tion of data. By taking task i, which performs local computing, only its computing delay is
taken into consideration, rather than transmission delay. Calculation of delay in local task
procession tloc is as follows:

Ti = tloc = gi/ f loc (7)

where f loc is vehicle terminal computing capability, and gi represents the calculation
amount of task i.

For tasks that need to be offloaded, there are two cases: local server offloading and
other server offloading. MEC servers where direct vehicle communication is within the
link of wireless scope are defined as local servers. Within current coverage area, the vehicle
offloads its tasks of computing to the MEC server. When results are calculated by the server,
they are returned to the vehicle immediately. The total delay that constitutes a computing
task is mainly composed of two parts: computing task upload delay and MEC server
processing delay, the latter of which considers offloads to the MEC server, computing delay,
and transmission delay. tmec

ij represents the processing delay of offloading task i to server j,
emec

ij represents computing resource allocation through server j to task i, and vij shows how
far it is from the vehicle to which the computing task belongs and server j. The wireless
transfer rate is calculated as follows:

tmec
ij = gi

emec
ij

, ttrans
ij = Di

vij

Ti = tmec
ij + ttrans

ij
(8)

The above equations assume vehicle terminal has offloaded computing tasks to other
MEC servers for being processed in the current range. MEC servers are connected by
wired links such as optical fibers, and it is assumed that computing tasks’ average latency
transmission with wired link l is tw. Here, calculation of the delay for task processing is
as follows:

tij =
gi

emec
ij

+ ttrans
ij + 2τtw (9)

where τ represents the number of wired link hops made by computing tasks to be offloaded
to MEC servers in other ranges.

To guarantee the completion of task without interruption in the limited time, the
computing task is required to be completed in advance of the vehicle leaving the MEC cell
scope [24]. Therefore, with offloaded local server, this satisfies the criteria below: tstay

i = zi/vi
gi

emec
ij

+ ttrans
ij ≤ min

[
tmax, tstay

i

] (10)

where zi represents the distance from the vehicle of the MEC server within its coverage area.
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If other servers are offloaded, the following should be satisfied:

gi
emec

ij
+ ttrans

ij + 2τtw ≤ min
[
tmax, tstay

i

]
(11)

Thus, required computing resources for task computing completion are deduced:

emec
ij ≥

gi

min
[
tmax
i ,tstay

i

]
−ttrans

ij

emec
ij ≥

gi

min
[
tmax
i ,tstay

i

]
−ttrans

ij −2τtw

(12)

The total computing resources Ej requested by all offload tasks for computing to the
mecj are as shown:

Ej = ∑N
i=1 ∑xi=j emec

ij (13)

3.4. Problem Definition

When determining the priority of computing tasks, three factors are primarily consid-
ered: data quantity for computing task, the computing resources occupied by messages, and
the requirement for the delay deadline. The deadline is more important than the amount
of message data and the computing resources occupied by messages, and the computing
resources occupied by messages are more important than the amount of message data.
Thus, in the AHP model, at the highest weight, requirement for deadline has divisions in
priority. Firstly, the factors at the same level are compared in pairs, and the AHP matrix
A =

(
ajk

)
n×n

is constructed:

ajk =

{
1

akj
= n, n = {1, 2, · · · , 9}, j 6= k

1, j = k
(14)

When computing the vector of comparison matrix weights, the most common summa-
tion method is used. The calculation formula corresponding to the weight is shown:

U j
k =

∑n
j=1 ajk

∑n
j=1 ∑n

k=1 akj
(15)

Then, the composition matrix ∆ corresponding to the weights of all the messages is
as follows:

∆ =


u1

1u2
1u3

1

u1
2u2

2u3
2

...
u1

ku2
ku3

k

 (16)

Next, the eigenvalues corresponding to the weights are obtained according to the
layer-side analysis matrix, which is represented by Λ; that is, Λ = [γ1, γ2, γ3]

T , where,
by definition:

γb =
1
b

b

∑
j=1

∑b
j=1 ajk

∑b
k=1 ajkuk

(17)

where b represents the number of influencing factors involved in the process of
making decisions.
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Finally, the priority v of each computing task is obtained, and each element in v
represents the priority of computing tasks, which is calculated as follows:

v = ∆Λ =


u1

1u2
1u3

1

u1
2u2

2u3
2

...
u1

ku2
ku3

k

 · [γ1, γ2, γ3]
T =


∑3

b=1 ub
1γb

∑3
b=1 ub

2γb
...

∑3
b=1 ub

kγb

 (18)

The purpose of this solution is to prioritize the processing of computing tasks of higher
priority while increasing the number of completed computing tasks. Thus, the system
utility function P is defined as follows:

P = ∑N
i=1 vk/ϑ (19)

where ϑ represents the total weight value of the computing task.
In this scheme, the range of priority weight v of a task is equally divided into five

parts. The computing task whose v value belongs to the largest range is defined as the
v computing task with the highest priority and weight, where Rv represents the extreme
difference in the v values of each computing task, and v is used to represent the vehicle
safety computing task.

The final computational model is as follows:

max(P)
s.t.C1 : yi ∈ {0, 1}, ∀i ∈ N

C2 : ej ≤ Ej, j = {1, 2, · · · , J}
(20)

C1 represents the offloading decision; 0 represents local computing; 1 represents the offload
value of MEC for computing; C2 represents the computing resources required which do
not exceed the computing resources that can be provided.

4. Task Offloading Strategy Based on Improved GA
4.1. GA Selection

In solving complex problems, algorithms are often used to reduce problem difficulty.
Algorithms are mainly divided into traditional algorithms and artificial intelligence algo-
rithms [25]. Traditional optimization algorithms deal with relatively simple problems, such
as certain linear programming problems. Their structures are simple, clear, and easy to
solve. Intelligent optimization algorithms can deal with a variety of difficult problems.
So long as the parameters of the problem meet the input requirements of the intelligent
algorithm, the problem can be solved. In general, intelligent algorithms can deal with more
types of problems, and are more general with respect to problem solving.

The theory of GA surrounds an intelligent algorithm derived from natural selection
and genetics in biology. This algorithm first generates a population of a fixed size, and
then crosses and mutates the population by setting a genetic operator similar to those of
biological genetics. General individuals are eliminated via the fitness function, and the
most common individual is finally selected as the solution to the problem. The solution
flow of the GA is shown in Figure 2.

Compared with traditional algorithms, GA has a faster convergence speed, and the
population is randomly generated, meaning that precision is greater. The algorithm is
simple and easy to implement, and it can obtain multiple approximate solutions at the same
time. Although the GA is superior to traditional algorithms with respect to solving complex
problems, the GA also has certain shortcomings [26,27]. The algorithm is difficult to
design and needs to be encoded and decoded. Moreover, the selection of genetic operators
randomly affects the results, and the parallel mechanism is not effectively utilized.
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4.2. GA Improvement

Standard GAs tend to fall into local optimal solutions during the solution process. After
multiple iterations, the characteristics of the population remain basically unchanged, and
different populations are generated only through crossover and mutation operations. Thus,
an improved GA based on adaptive change of the genetic operator is designed in this study.
The adaptive GA is based on the basic GA, and realizes the balance between randomness
and searching through adaptive adjustment of the genetic operator. Specifically, when the
individual values in the population are relatively concentrated and the diversity is poor, the
mutation probability and crossover probability are increased. When the population fitness
is scattered and the diversity is high, the mutation probability and crossover probability are
appropriately reduced. The improved algorithm is divided into two parts, micro and macro:

(1) Microscopic genetic strategy: From the perspective of algorithm parameter setting, the
setting of the genetic operator and population size (and its influence on the solution
result) are discussed;

(2) Macro genetic strategy: This primarily originates from the process of the GA, and in-
volves the optimization of the algorithm process or the introduction of other intelligent
algorithms to improve the ability of legacy algorithms to solve the objective function.

The selection of the GA genetic operator has a great influence on the convergence
accuracy and speed of the GA. Genetic operators in traditional GAs give a fixed value.
When the mutation probability is too large, the population diversity increases. However,
this model makes it easy to fall into a local optimum, wherein the overall optimum solution
cannot be obtained. When the mutation rate is too low, the diversity of the population
decreases and no new individuals are produced. For different optimization objectives,
if the value of the mutation operator is determined through repeated experiments, the
process is complicated and difficult to operate. In order to retain the most individuals in the
population and ensure that new individuals can be introduced, it is necessary to improve
the mutation probability in the traditional GA.

In the late stages of algorithm iteration, difference in the population is small, and
the competitiveness of excellent individuals becomes obviously insufficient, making it
easy for the algorithm to eliminate the optimal individual and fall into a local optimum.
The genetic operators in the GA, including crossover and mutation probability, have a
great influence on the problem results, which is embodied by the diversity of a population
and the search for the overall optimal solution. Thus, when setting the parameters of
the GA, the probability of crossover and mutation should not be too large or too small.
This paper therefore designs an adaptive adjustment based on the probability of crossover
and mutation.
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4.3. Solving Steps of Improved GA

The first step of the GA is to generate the initial population, which is required in order
to obtain information on the target. The use of Halton sequences can make the individual
differences between populations smaller, which cancels randomness to reduce population
differences. In this paper, the Halton sequence is used to generate the initial population
with less difference. The Halton sequence is introduced to randomly generate 100 points.
In comparing this with the initial population generated by a standard GA, the difference
in the initial number of Halton sequences generated was small. It was also more uniform
with respect to the axis distribution number, which greatly improves the quality of the
initial population and provides a good foundation for the subsequent optimization of
the algorithm.

For the design of the fitness function, considering that the goal of GA optimization is
to maximize utility function, utility function in the problem is used as the fitness function
to evaluate an individual’s pros and cons. The constraints in the optimization problem are
guaranteed during the initialization and selection operations.

Regarding the chromosome encoding method, a combination of binary encoding and
floating-point encoding is used. The binary coding method adopts a 0/1 coding method,
and 0/1 on each bit can represent an information state. Thus, if the binary string is long
enough, it can cover all the state information. Binary encoding is easier to operate, but an
inevitable mapping error will occur between the continuous and discrete values. Due to
precision requirements, the length of string cannot be too short. However, longer strings
will complicate the decoding process and cause the dramatic expansion of the search
space. Floating-point encoding represents individual characteristics through a floating-
point number, which is very helpful for representing numbers with a larger range. Thus,
combined with the optimization objective function, a combination of binary encoding and
floating-point encoding is used to find the optimal allocation strategy. Binary encoding
is used to encode offloading strategies, and floating-point encoding is used to calculate
the resource allocation strategy. The chromosome code of each individual can therefore be
expressed as follows:

Lmec
i = [L1, · · · , Li, · · · , LN ] (21)

where Li = [yi, ei]
T is the combination of the user i offloading strategy and computing

resource allocation strategy. If yi = 0, then Li = [0, 0]T .
For selection operators, the random tournament selection method is a good choice

because of its low computational complexity and good individual selectivity. Two individ-
uals are randomly selected each time, and the better individual is kept until the number
of selected individuals reaches the initial population size. If the best individual is ignored
in the selection operation, the selected next-generation individuals are sorted to find the
individual with the worst fitness value and replace it with the best individual. In order to
increase the individual richness of population, the feasible solutions are selected first, and
then the infeasible solutions near the constraint boundary are selected because, after the
next iteration, infeasible solutions near the boundary will likely become feasible.

For the design of the crossover operator, due to the different encoding methods of
offloading decision set Y and the computing resource allocation strategy set F, they are
operated independently with probability Pc. For set X, this section uses the uniform
crossover operator, which can speed up convergence and prevent trapping in local extrema.
For the method of reorganization used in the set, the expression of the intersection operator
is as below: {

φi(child1) = (1− ε)φi(parent1) + εφi(parent2)
φi(child2) = εφi(parent2) + (1− ε)φi(parent2)

(22)

where ε is a random variable whose value range is between 0 and 1; and φi is the computing
resource allocation strategy of the server.
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Finally, regarding mutation operations, the operations on sets Y and F are also different.
The 0/1 replacement for each yi is performed with probability Pm; under these constraints,
a random variable is randomly added or subtracted to each φi. The probability is also Pm.

Through the above analysis and design of each genetic step in the improved GA,
the task offloading process based on the improved GA can be obtained, and its specific
description is shown in Algorithm 1.

Algorithm 1. Pseudo-code of task offloading based on improved GA

Input
Nu, K, Pc, Pm, T

Begin
1. Initialization: Under the constraint of the optimization problem, initialize the population in a
random way, and the number of individuals is K.
2. Calculate the fitness value of the individual, select the largest individual as Lbest, and its fitness
value is Qbest.
3. Set the number of iterations T.
4. For t = 1:T do

Two individuals are randomly selected, and the crossover operation is carried out with
probability Pc. The methods of uniform crossover and recombination are adopted for
y and f, respectively.

Select individuals from parents and offspring with probability Pm for mutation operation.
Calculate the fitness value of each new individual and divide it into feasible individuals and
infeasible individuals.
The method of random tournament is used to select the best individual.

5. Compare the optimal individual L′best of iteration t with the historical optimal individual Lbest.
If L′best is better than Lbest, let Lbest = L′best and update Qbest.
6. End For
7. Output: Lbest, Qbest
End

The time complexity of the task offloading algorithm based on the GA depends on the
time complexity of the selection operation, crossover operation, and mutation operation.
The time complexity of the selected operation is O(Niter × Np × Nts). The time complexity
of the crossover operation and mutation operation is O(Niter × Np). Thus, the overall time
complexity of the algorithm is O(Niter × Np × Nts).

5. Experiment and Analysis

In the experiment, the coverage of each MEC server was set to 100 m~120 m, the
number of vehicle terminals was 10~70, and each vehicle offloaded 5~15 concurrent com-
puting tasks. All the vehicles were randomly assigned a speed between 50 km/h and
100 km/h and drove at a constant speed, and the initial positions of the vehicles were
randomly-distributed on the road. The detailed simulation parameters of the edge car
networking system are shown in Table 1.

Table 1. Simulation parameters of edge vehicle networking system.

Parameters Value

Average waiting delay of wired link/ms 5~20
Task upload rate/(kb/s) 1000

MEC computing power/(cycles/s) 5 × 107~9 × 107

Computing capacity of vehicle terminal/(cycles/s) 5 × 106
Vertical distance from community center to road/m 10~40

The computing task parameters and the simulation parameters of the improved GA
are shown in Table 2.
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Table 2. Simulation parameters of computing tasks and improved GA.

Parameters Value

Task time limit/ms 250~600
Task calculation amount/(cycles/bit) 20~80

Task data size/KB 50~120
Population number 50

Mutation probability 0.8
Crossover probability 0.1

Maximum number of iterations 200

5.1. Convergence Performance of Algorithms for Different Computation Tasks

In order to demonstrate the convergence of the improved GA, it was compared with
the traditional GA, the results of which are illustrated in Figure 3.
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Figure 3 shows that the proposed improved GA executed more tasks within the same
number of iterations, and when the number of iterations exceeded 85, the number of
computation tasks tended to converge to 3440 Mbit.

5.2. Relationship between the Number of Offloading Tasks and the Total Number of Network Tasks

In order to observe the advantages of the proposed strategy more intuitively, three
schemes were set up for comparison: Local offoad, all computing tasks are processed
locally; Tocal offoad, all computing tasks are offloaded to MEC servers for processing;
Proposed strategy, according to the proposed method, all tasks are first classified and
sorted, and then the tasks are offloaded to different devices for processing. The relationship
between the number of tasks offloaded to the MEC server and the total number of tasks is
shown in Figure 4.

As can be observed from Figure 4, ‘Local offoad’ places all the tasks locally in the
vehicle for processing, so there is no task offloading; hat is, the number of offloaded
tasks is 0. ‘Tocal offoad’ offloads all the tasks to the MEC server for processing. When
the number of tasks is greater than 24, the computing resources of the MEC server are
exhausted, and the remaining tasks can only be selected for processing. ‘Proposed strategy’
adopts the proposed strategy to offload tasks, and 20 computing tasks are selected to be
offloaded to MEC servers for processing. A total of 10 computing tasks are selected to
be processed locally in the vehicle, and the rational allocation of tasks greatly improves
resource utilization efficiency.
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5.3. Influence of Load Imbalance on Task Completion Rate

When the number of fixed on-board terminals is 45 and the total computing resources
of M MEC servers are 6 × 108 cycles/s, the effect of an uneven load of MEC servers on the
task completion rate is as shown in Figure 5. The MEC server load unevenness factor Θ is
calculated as follows:

Θ = lg

(
1

1000000M

M

∑
i=1

(
Ei − E

)2
)

(23)

where E is the mean value of the computing resources used by the servers.
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It can be seen from Figure 5 that the overall offloading strategy cannot guarantee the
completion rate of computing tasks due to the deepening of uneven load of the MEC server,
and the completion rate is less than 70%. When the proposed strategy uses improved genetic
algorithm to iteratively optimize the decision-making scheme, it reduces the offloading of
computing tasks to the heavily-loaded MEC server. The offloading of computing tasks is
added to the MEC server with light load to achieve the effect of load balancing. Compared
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with other strategies, this strategy is less affected by the uneven load of MEC servers. When
the load unevenness is 8, its task completion rate is close to 80%. The full offloading strategy
can only offload computing tasks to an MEC server in the current range. Therefore, when
the load is extremely uneven, the MEC server with scarce computing resources can only
process a small part of computing tasks, and the processing of a large number of computing
tasks fails. Because the total computing resources of the MEC server is a fixed value, it
increases with the increase of computing tasks. All offloading policies are more affected by
an uneven load on the MEC server.

5.4. Completion Rate of Computing Tasks under Different Offloading Schemes

The task completion rates corresponding to the four offloading strategies are shown in
Figure 6, where the number of vehicles increases gradually.

It can be observed from Figure 6 that, as the number of vehicles per unit time continues
to increase, the task completion rate under all four unloading strategies decreases. When
there are few computing tasks generated by vehicles, the proposed strategy and the strate-
gies in ((Wang K, et al. (2020)); (Xue J, et al. (2021)); (Wang D, et al. (2020))) [11,14,17] can
effectively offload computing tasks. However, with the increase in the number of comput-
ing tasks per unit time, the strategy in ((Wang D, et al. (2020)); (Xue J, et al. (2021))) [14,17]
gradually becomes less effective than the strategy in (Wang K, et al. (2020)) [11]. This
is because the computing resources of a single MEC server are roughly the same as the
computing resources of 10 in-vehicle terminals, and the increasing number of vehicles
causes the local computing power to gradually exceed MEC. These two strategies cause a
large number of computing task processing failures because too many computing tasks are
offloaded to the MEC server.
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5.5. Completion Quantity of Vehicle-Mounted Safety Computing Tasks with Different
Offloading Schemes

Figure 7 shows the number of completed on-board safety computing tasks with
different offloading schemes.
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As can be observed from Figure 7, when the number of on-board terminals is 70, the
completion rate of high-priority tasks is close to 90%. In addition, the average delay of
the proposed strategy increases slowly. When the number of on-board terminals is 70, the
average delay is about 21.2 ms. When the proposed strategy uses the improved GA to
iteratively optimize the decision-making scheme, it reduces the offloading of computing
tasks to the heavily-loaded MEC server. The offloading of computing tasks is added to
the MEC server with a light load to achieve the effect of load balancing. Compared with
other strategies, this strategy is less affected by uneven MEC server load. The strategy in
(Xue J, et al. (2021)) [14] performs at about the same level as the proposed strategy with
fewer vehicles. Because the number of vehicles is small at this time and the generated
computing tasks are insufficient, the MEC server can process all the offloaded computing
tasks. The strategy in ((Wang K, et al. (2020)); (Wang D, et al. (2020))) [11,17] can utilize
the computing resources of the vehicle terminal itself and the computing resources of the
MEC server to offload tasks. Thus, some in-vehicle safety computing tasks are processed
by local computing.

6. Conclusions

In recent years, the IoV has attracted widespread attention, and various applications
have gradually emerged, improving road safety, traffic efficiency, and driving comfort.
However, the efficient processing of massive quantities of data has become a difficult prob-
lem with respect to the IoV. To solve this problem, this paper proposed a task offloading
strategy based on an improved GA for the IoV. An adaptive dynamic weight calculation
method is proposed which transforms the optimization of task delay and energy consump-
tion into the optimization of task overhead. A communication model and calculation model
are constructed, and task priority is divided via the tomographic analysis method. Then, the
GA is improved via the adaptive adjustment of the genetic operator, and it is subsequently
used to solve the objective function of maximizing the system utility function, so as to
obtain the optimal task offloading scheme. Compared with other strategies, this strategy is
less affected by uneven loads of the MEC servers. In order to obtain the maximum system
utility function value, the proposed strategy offloads vehicle-mounted safety computing
tasks to the lightly-loaded MEC server during the offloading process. It retains some other
computing tasks locally for processing; thus, the proposed strategy can successfully handle
more in-vehicle safety computing tasks.
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MEC services are not free. Thus, in subsequent research, we will combine the service
capabilities, service costs, and task characteristics of MEC to formulate an offloading
strategy that can interact with tasks in a timely manner and reduce tariffs.
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