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Abstract: With the emergence of the smart grid, the distribution network is facing various problems,
such as power limitations, voltage uncertainty, and many others. Apart from the power sector,
the growth of electric vehicles (EVs) is leading to a rising power demand. These problems can
potentially lead to blackouts. This paper presents three meta-heuristic techniques: grey wolf
optimization (GWO), whale optimization algorithm (WOA), and dandelion optimizer (DO) for
optimal allocation (sitting and sizing) of solar photovoltaic (SPV), wind turbine generation (WTG),
and electric vehicle charging stations (EVCSs). The aim of implementing these techniques is to
optimize allocation of renewable energy distributed generation (RE-DG) for reducing active power
losses, reactive power losses, and total voltage deviation, and to improve the voltage stability
index in radial distribution networks (RDNs). MATLAB 2022a was used for the simulation of
meta-heuristic techniques. The proposed techniques were implemented on IEEE 33-bus RDN for
optimal allocation of RE-DGs and EVCSs while considering seasonal variations and uncertainty
modeling. The results validate the efficiency of meta-heuristic techniques with a substantial
reduction in active power loss, reactive power loss, and an improvement in the voltage profile
with optimal allocation across all considered scenarios.

Keywords: dandelion optimizer; distribution generation; electrical vehicle charging stations; grey
wolf optimization; seasonal variations; solar photovoltaic; uncertainty modeling; whale optimization
algorithm; wind turbine generation

1. Introduction

Due to the drastic increase in power demand, voltage drop and line losses have
become a universal challenge at the distribution level [1]. Currently, nearly 75% of total
power demand is met by fossil fuels that emit greenhouse gas (GHG) emissions, which
cause global warming, decrease natural resources, and increase fuel prices in the global
market [2,3]. Therefore, the existing distribution network (DN) faces several financial,
environmental, and technical obstructions to fulfilling the load growth [4]. With the load
growth of electrical vehicles (EVs) in the radial network (RDN), energy management has
become more challenging. Renewable energy (RE)-based distributed generation (DG), such
as solar photovoltaic (SPV) and wind turbine generation (WTG) sources, are the foremost
contributors to a sustainable, technically feasible, and inexpensive method of generation
that mitigates the constraints of load growth [5]. Optimal DG allocation (ODGA) in the
DN improves the overall voltage profile, increases system reliability, and reduces network
losses [6]. An iterative linear programming algorithm was developed in [7] for decreasing
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and increasing individual loads for improving the stability of the system. The results were
validated using IEEE 9-bus and IEEE 118-bus systems.

Power generation from renewable energy sources (RES) such as SPV and WTG are
stochastic in nature; therefore, their generation profile is unlikely to match the load profile.
The large-scale EV fleets have significant impacts on the power system because electric
vehicle charging stations (EVCSs) draw considerable power from the grid.

Energy management using RES is a vital research dimension in recent years that
is targeted at optimizing the allocation of SPV-DG and WTG-DG for fulling the load
growth of Grid-to-Vehicle (G2V) demand. In recently published articles, several op-
timization techniques have been employed to solve ODGA problems in RDN. The
objectives include minimizing active power loss (RPL) [2,8–11], minimizing reactive
power loss (QPL) [2,12–14], maximizing the voltage stability index (VSI) [9,11,15–17],
and reducing the total voltage deviation (TVD) [2,9,14–21].

• In this paper, three metaheuristic techniques (GWO, WOA, and DO algorithms) for
optimal RE-DG allocation, placement of EVCSs, and optimal allocation of hybrid
RE-DGs and EVCSs for both single-objective optimization problems (SOOPs) and
multi-objective optimization problems (MOOPs) were used. The contributions of this
paper are as follows:

• Three metaheuristic techniques were used: GWO, WOA, DO.
• The optimal allocation of REG (solar and WTG) was determined considering uncer-

tainties with four seasonal impacts: spring, summer, autumn, and winter.
• The impact of optimal EVCS placements in RDNs was analyzed.
• The techniques focused on optimal RE-DG allocation problems for MOOPs, with the aim

of optimizing four objectives: RPL, QPL, and TVD minimization and VSI maximization.
• The attained objectives were evaluated with related optimization methods.
• The proficiency of the algorithms was assessed across IEEE 33-bus RDNs.

This article is arranged as follows: the literature review is reported in Section 2.
Section 3 contains the problem formulation. Uncertainty modeling of SPV, WTG, EVCSs
and load is described in Section 4. Section 5 incorporates three metaheuristic techniques:
GWO, WOA, and DO. Section 6 comprises the results and discussions. The conclusion and
numerical values are presented in Section 7.

2. Literature Review

From the objective perspective, the optimal allocation of RE-DGs is considered a multi-
dimensional problem. Various statistical methods based on mathematical expression have
been applied to integrate the RE-DG problems [22], GAMS theory [9], integrated operational
planning [23], games theoretical algorithm [24], and others presented in the reported literature.
A two-stage framework reported in [25] shows that in the first stage, the suitable location
of DG is defined based on the voltage stability (VS) and loss sensitivity factor (LSF). In the
second stage, the size of the DG is determined based on the DG location. However, it is easy to
solve the mathematical expression due to the assumption and relative nature of the problem.
The previous techniques have various problems in defining the multiple objective functions,
type of DG, and sizing of DG. The optimal RE-DG allocation problems are directed using
SOOPs and MOOPs such as power loss (PL) and the number of objectives simultaneously.

Using both SOOPs and MOOPs for optimal sitting and sizing of RE-DG, respectively,
optimization algorithms are widely implemented. For SOOPs, particle swarm optimization
(PSO) is executed for minimizing the real power losses (RPL) to optimize the sitting
and sizing of DG units [26]. Novel metaheuristic techniques have been proposed for
the optimal allocation of RE-DG units by reducing the real and reactive power losses in
radial distribution networks (RDNs). The optimization techniques incorporate the whale
optimization algorithm (WOA), sine cosine algorithm (SCA), multi-verse optimization
algorithm (MVOA) [10], stud krill herd algorithm (SKHA) [14], and sequential optimization
algorithm (SOA) [21]. For increasing the overall voltage profile and minimizing losses,
these techniques are utilized to optimally allocate the DG.
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For MOOPs, Antlion optimization (ALO), genetic algorithm (GA), and PSO [27] have
been proposed for minimizing RPL, total voltage deviation (TVD), and generation cost by
optimally allocating the DG in 33-bus RDNs. In [11], PSO is implemented for minimizing
the RPL, total cost, and the emission produced from the biogas sources considered by
optimal DG allocation in a 51-bus network. The Harris Hawk optimizer (HHO) and
PSO [28] were presented for optimal allocation of DG to reduce the RPL, TVD, and to
improve the voltage stability index along with economical parameters in 33-bus and 94-bus
Portuguese grid. To maximize the economic benefits, the Social Spider Optimizer (SSO) [29]
has been proposed for optimal sizing of RE-DGs. The improved whale optimization
algorithm (IWOA) [8] was presented for minimizing the power losses while considering
the economic constraints by optimally allocating the DG in a 33-bus RDN.

Study [12], proposes the Hybrid Nelder mead-particle swarm optimization (HNM-
PSO) to find the optimal sizing of DG deliberating the seasonal variation using MOOPs
in a 12- and 84-bus system. For optimal sizing of DG using a sequential optimization
algorithm (SOA), study [29] proposed to minimize the losses and increase the voltage
stability by considering various seasons using MOOPs. For solving the optimal RE-DG
allocation problem while considering the seasonal alterations throughout the year using
MOOPs IWOA, study [8] presented a method that improves the VSI and voltage profiles
and minimize losses in a 33-bus system. Reinforcement learning [30] has been proposed to
minimize the power losses considering the seasonal variation and uncertainty modeling of
PV using SOOPs in a 13- and 37-bus distribution network.

The stochastic flow capturing location model (SFCLM) [31] and MILP model, along
with the k++ clustering algorithm [32], has been proposed to perceive the optimal placement
of EVCSs using SOOPs to minimize the losses and cost of EV charging in the central Ohio
distribution system and 54-bus system, respectively. For optimal placement of EVCSs, the
genetic algorithm (GA) [33] has been presented to minimize the overall cost and emissions
produced by the transportation of common vehicles. A hybrid grey wolf optimizer and
particle swarm optimization (HGWOPSO) [15] was introduced for reducing the losses and
voltage deviation, and to improve the voltage stability using MOOPs by placing the EVCSs
at the optimal location in a 33-bus system. For fulfilling the EV load demand using RES, a
time-coupled linearized optimal power flow formulation [34] has been proposed to minimize
the GHG emissions in a Glasgow southside network. In [16], the African vulture optimization
algorithm (AVOA) was implemented for optimal placement of EVCSs to minimize the power
loss and voltage deviation, and to improve in voltage stability using MOOPs in a 33- and
136-bus system. The comparison of various optimization techniques used for optimal alloca-
tion of renewable DGs and EVCSs to achieve muti-objectives is presented in Table 1.

Table 1. Summary of optimization techniques used for optimal allocation of DGs and EVCSs.

Ref.
Optimization

Methods
Objectives Seasonal

Variations
Uncertainty

Modeling of RERAPL QPL TVD VSI

[35] Hybrid PV-WT system X X X X X X
[20] GOA X X X X X X
[13] PSO X X X X X X
[27] ALO X X X X X X
[32] MILP X X X X X X
[10] WOA, SCA, MVOA X X X X X X
[9] GAMS Theory X X X X X X

[31] SFCLM X X X X X X
[28] HHO and PSO X X X X X X
[15] HGWOPSO X X X X X X
[29] SSO X X X X X X
[16] AVOA X X X X X X
[12] HNM-PSO X X X X X X
[21] SOA X X X X X X
[8] IWOA X X X X X X
[P] GWO, WOA, DO X X X X X X

Note: [P]—Proposed. The symbol X shows a particular objective was not considered in that specific paper. The
symbol X shows a particular objective was considered in that specific paper.
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It can be seen from the above table that most of the research studies considered
uncertainty modeling while solving the problem of optimal renewable DG allocations
in DNs for achieving technical objectives by optimizing single and multiple objective
functions. However, in [8,12,21], seasonal variation and uncertainty modeling have been
considered to solve problem of optimal allocation for RE-DGs and EVCS placements to
achieve technical objectives.

3. Problem Formulations

In in this section, optimal renewable DG (solar and WTG) allocation (sitting and sizing)
and EV placement in a radial distribution network (RDN) is presented.

3.1. Objective Functions

The key objective of this research is to allocate RE-DG in an optimal method to reduce
the RPL and QPL, minimize the TVD, and maximize the VSI with MOOPs. In the following
subsection, mathematical calculations have been depicted.

3.1.1. Real Power Loss (RPL)

Because of the radial structure of the DN, it is crucial to minimize the RPL. The first
objective function (OF) is characterized in Equation (1):

OF1 = Min(RPL) (1)

The RPL reduction is calculated using the following Equation (2) [36]:

RPL =
Mbr

∑
j=1
|Ik|2.Rk (2)

where k represents the branch number, Mbr is the total number of branches, |Ik| is the
absolute current passing through the branch, and Rk is the resistance of the branch.

3.1.2. Reactive Power Loss (QPL)

Minimization of QPL is equally important as minimizing RPL. The second OF (OF2)
is characterized in Equation (3):

OF2 = min(QPL) (3)

The QPL reduction is calculated using the following Equation (4) [2]:

QPL =
Mbr

∑
k=1
|Ik|2Xk (4)

where k represents the branch number, Mbr is the total number of branches, |Ik| is the
absolute current passing through the branch, and Xk is the reactance of the branch.

3.1.3. Total Voltage Deviation Minimization (TVD)

With the increasing demand of the users, it has been observed that under the loading
conditions, most of the DN voltages shut down in specific areas. The minimization of TVD
helps to improve the voltage profile. The third OF is represented in Equation (5) [37,38]:

TVD =
m_bus

∑
i=1

(
Vre f −Vi

)
(5)

where Vre f is the reference voltage, which is always taken as 1.00 p.u. Therefore, the third
OF (OF3) is represented in Equation (6):

OF3 = min(TVD) (6)



Sustainability 2023, 15, 7499 5 of 32

3.1.4. Voltage Stability Index Maximization (VSI)

For ensuring the security level, like VD, VSI is also an important factor for the stable
distribution of voltage. When the uncertain voltage on any bus occurs in the distribution
network, it causes voltage instability, and the whole distribution system is defined with
VSI. VSI must be maintained at the suitable limit across all the distribution systems on each
bus for stable operation. Equation (7) shows the VSI for RDN [39]:

VSIi =
∣∣vj
∣∣2 − 4

(
Pixij −Qirij

)2 − 4
∣∣vj
∣∣2(Pirij −Qixij

)
(7)

where Pi and Qi are the real and reactive power of the load, respectively, xij is the inductive
reactance, and rij is the resistance of the line. For stable operation, VSIi must be greater
than zero. When the VSI on the bus is at its lowest value, voltage will collapse. Thus,
the VSIi must be high for improvement of voltage stability [40]. The fourth OF (OF4) is
presented as Equation (8):

OF4 = max(min(VSIi)) (8)

3.2. Formulation of Multi-Objective Function

Each objective is of a different nature. To integrate each objective function (SOF)
in a mathematical equation, every SOF is divided by its base value, then the weights
are incorporated. The weighted sum of the real power loss reduction, reactive power
loss reduction, total voltage deviation, and voltage stability index is expressed by multi-
objective functions. The weighted sum is easily applicable to the system, having greater
effectiveness, and is used as a starting point for the several methods for non-dominate
reasons. The sum of weighted coefficients is comprised of four SOF that are transformed in
a single OF and mathematically represented in Equation (9):

fit = min(w1 × f1 + w2 × f2 + w3 × f3 + w4 × f4)

fit = min
(

w1 × RPL
RPLbase

+ w2 × QPL
QPLbase

+ w3 × TVD
TVDbase

+ w4 × VSI−1

VSI−1
base

)
(9)

where RPLbase, QPLbase, TVDbase, and VSI−1
base are the real power loss, reactive power loss,

total voltage deviation, and voltage stability index in the base case, respectively, and
w1 + w2 + w3 + w4 are the four weights. The weight is equally divided (i.e., 1

4 or 0.25)
among each function, and every function is considered equally in these MOOPs.

3.3. System Constraints

The problem of DG allocation in the DN is the major constraint discussed below.

3.3.1. Equality Constraints

For energy management, the generation is equal to the sum of power losses as well as
the power demand. To avoid the reverse power flow generation problem, balance is vital.
Thus, these constraints are stated as:

M_DG

∑
j=1

PGen,j = Pdemand + RPL; j = 1 . . . M_DG (10)

M_DG

∑
j=1

QGen,j = Qdemand + QPL; j = 1 . . . M_DG (11)

where M_DG is the number of DGs integrated into the system, PGen is the power generated
by the DG, and Pdemand is the power needed to fulfill the load requirement.
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3.3.2. Inequality Constraints

There are two inequality constraints that must be set. Voltage limits must be set by
forcing the boundary limits. For technical constraints, size limits and the power factor (PF)
are employed on the DG.

Voltage Limits

The maximum and minimum voltage limits are presented as [41,42]:

0.95p.u ≤ Vj ≤ 1.05p.u (12)

The thermal limits are [41,42]:

Ij ,i ≤ Imax
j , i (13)

where Imax
j,i is the maximum current flowing through the branch in between the ith bus and

jth bus.

DG Capacity Limits

The minimum and maximum power of the DG units are presented below [41,43]:

Real Power limit : Pmin
Gen ≤ PGen ≤ Pmax

Gen (14)

Reactive Power limit : Qmin
Gen ≤ QGen ≤ Qmax

Gen (15)

DG Power Factor Limit

The power factor (PF) is also set in a specific range for DG units:

p.fmin
DG,j ≤ p.fDG,j ≤ p.fmax

DG,j; j = 1 . . . M_DG (16)

According to [44–46], the power factor is set in between [0.7, 1], where PF is represented as:

p.fDG,j = P2
DG,j/

√
P2

DG,j + Q2
DG,j (17)

4. Uncertainty Modeling

Four uncertainty parameters are studied in the work: solar PV, wind, and EV, sources,
including load demand. The solar PV model depends on solar irradiance; however, the
wind model depends on the wind speed. The SPV, WTG, load demand, and EV have been
modeled based on the location and seasonal hourly variation historical data considered
in the research. Historical data on solar, wind, EVs, and load demand for one year was
deliberated in this work. The yearly data was divided into four seasons (spring, summer,
winter, and autumn). The seasonal statistics were further classified into 24 h for extracting
the stochastic performance of SPV, WTG, EVs, and load demand. To consider the data of
a day from every season, four probability distribution functions (PDFs) were generated,
which collectively became 96 time periods (24 h × 4 seasons). The probabilistic model of
SPV, wind, EVs, and load demand are classified below.

4.1. Solar Modeling

The output power of the solar PV (PPV) in kWh for a specific period is presented in
Equation (18) [47]:

PPV =


Pr

(
G2

s
Gstd×Xc

)
for 0 < Gs ≤ Xc

Pr

(
Gs

Gstd

)
for Xc ≤ Gs ≤ Gstd

Pr Gstd ≤ Gs

(18)



Sustainability 2023, 15, 7499 7 of 32

where Xc is the standard irradiance point, Gs is the solar irradiance in W/m2, and Gstd is
the standard solar irradiance environment, which is 1000 W/m2.

Solar Irradiance Modeling

For generating the Beta PDF of a specific hour, solar irradiance data was defined using
Equation (19) [48,49]:

fb(gs) =

{
Γ(α+β)

Γ(α)×Γ(β)
g(α−1)

s × (1− gs)
(β−1), 0 ≤ gs ≤ 1; α, β ≥ 0

0, otherwise
(19)

where fb(gs) represents the Beta PDF of the solar irradiance, Γ represents the gamma
function, and α and β are the Beta parameters that can be obtained using Equations (20)
and (21), respectively [50,51].

α =
µ× β

1− µ
(20)

β = (1− µ)×
(

µ× (1 + µ)

σ2 − 1
)

(21)

In Equation (21), σ and µ are the standard deviation of the solar irradiance for
each period.

4.2. Wind Modeling

For the uncertainty modeling of wind, the Weibull PDF shown in Equation (22) was
utilized [50,52]:

PDFv(v) =
(

β

α

)( v
α

)(β−1)
exp
[
−
( v

α

)β
]

0 ≤ v < ∞ (22)

where α represents the scale parameters and β represents the shape parameters of the
Weibull PDF. In terms of wind speed and rated power, the output power of the wind Pwg(v)
was determined using Equation (23) [53]:

Pwg(v) =


0 f or v < vi&v > vo

Pwr

(
v−vwi

vwr−vwi

)
f or (vi ≤ v ≤ vr)

Pwr f or (vr < v ≤ vo)

(23)

where Pwr represents the rated power of the wind turbine, vwi is the cut-in speed, vwr is the
rated speed, and vwo is the cut-out speed of the wind turbine.

4.3. Electrical Vehicle Modeling
4.3.1. EVCS Model, EV Population Estimation, and Study Area

The proposed optimization techniques comprise PV and wind sources along with
EVCS with a limited number of chargers. For probabilistic seasonal distribution of the EV
demand, the first step is to determine the network system on which EVCSs are deployed.
In the next phase, charger types, charging ports, and ratings of CS are considered. EVCS is
considered as the load (G2V) in the distribution system [54].

From the perspective of the power system, EVs are taken as:

i. Ordinary loads that absorb continuous power while charging, known as the grid to a
vehicle (G2V).

ii. Storage devices such as batteries are charged (G2V) and then discharged (V2G) based
on the system requirement.

The power demand of the IEEE 33-node network and institutional load (EV) [55] is
shown in Table 2.
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Table 2. IEEE 33-node network and Institutional Load (EV) power demand.

Power Demand Active Power (kW) Reactive Power (kVAR) Apparent Power (kVA)

IEEE 33 node network 3715 2300 4369.35
Institutional Load (EV) 3231.19 2289.56 3960.133

Two types of EVs, i.e., Nissan Leaf 2018 and MG ZS EV with 220 km traveling range
were considered in this work. The Nissan Leaf 2018 and MG ZS EV have 36 kWh and
42.5 kWh of battery capacity, respectively. For charging these two types of EVs, two types of
EV chargers are needed. These two types of chargers are level 2 and level 3, with 19.2 kW and
50 kW ratings, respectively. These chargers are considered in Table 3.

Table 3. EV models with EV specifications and EV charger type.

EV Model EV Specifications

Charging Type

Level 2 (19.2 kW) Level 3 (50 kW)

Charging Time No. of EVs Charging Time No. of EVs

Nissan Leaf 2018 40 kWh, 220 km 2 h 5 m 16 48 m 34

MG ZS EV 44.5 kWh, 220 km 2 h 19 m 18 53 m 32

Total number of EVs 34 66

4.3.2. EVCS Characteristics

A total of five EVCSs were optimally placed in the existing network to serve 100 EVs.
Both level 2 and level 3 chargers were used with different numbers of charging points (CPs),
as shown in Table 4 [56]. Two of the five EVCSs were level 2 chargers, while the other three
were level 3 chargers.

Table 4. Rating of charging ports and electric vehicle charging stations.

Charger Rating of CP (kW) No CP per EVCS Rating of EVCS (kW) No of EVCS Total Rating (kW)

Level 2 19.2 15 288 2 576
Level 3 50 10 500 3 1500

Total no of EVCSs and power demand 5 2076

4.4. Load Modeling

The load has a variable nature; the power demand changes every hour. For modeling
of the load, a normal PDF is applied to each bus. The normal PDF of uncertain load demand
is extracted using Equation (24) [47]:

fn(l) =
1

σl
√

2π
× exp

[
−
(

1− µl

2σ2
l

)]
(24)

where fn(l) represents the normal PDF of the load demand, l is the limit of the normal
PDF, µl is the mean, and σ1 represents the standard deviation of the load demand for
each period.

5. Methodology

In the following section, three meta-heuristic techniques, Grey Wolf Optimization
(GWO), Whale Optimization Algorithm (WOA) and Dandelion Optimizer (DO), have been
presented. These techniques are used for attaining multi-objectives, i.e., RPL, QPL, TVD,
and VSI considering seasonal variations and uncertainty modeling.
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5.1. Grey Wolf Optimization (GWO)

Grey wolves are the apex predators, also known as top predators (top of the food
chain). They live in packs of 8 to 12, and each pack is led by a male and a female known as
alphas who were responsible for making decisions such as hunting, sleeping places, etc.
The female alpha wolf is called “Luna”, and she is responsible for maintaining discipline
and strengthening the pack. Beta wolves are the assistants of alpha wolves. When alpha
wolves become old or pass away, beta wolves play the role of alpha and strengthen the
group. Position allocation, hunting, and discipline of the pack are the main inspirations of
GWO [57]. The grey wolf technique comprises three leader wolves named α, β, and γ that
help other wolves adopt their best positions for attacking prey.

The GWO algorithm’s mathematical model is explained below.

5.1.1. Encircling

When wolves find their prey, they pursue, harass, and encircling it [57] in a network
that can be developed as shown in Equations (25) and (26):

→
X =

∣∣∣∣→C ×→XP(k)−
→
X(k)

∣∣∣∣ (25)

→
X(k + 1) =

→
XP(k)−

→
A×

→
D (26)

where
→
XP represents the location of the prey,

→
X locates the position vector of a grey wolf,

and k shows the current iteration. In [58],
→
C and

→
A are the coefficient vectors given in

Equations (27) and (28), and r is a random vector.
→
A = 2

→
a ×→r 1 −

→
a (k) (27)

→
C = 2×→r 2 (28)

When the iterations are complete, the vector amounts decrease from 2 to 0 and are
represented by

→
r 1 and

→
r 2 in Equation (29):

→
a (k) = 2− (2× k)/Maxiter (29)

5.1.2. Chasing the Prey

According to their good knowledge and decision-making strategies, α, β, and γ

wolves search for their prey. The alpha wolf leads the pack and takes them toward their
target before initiating the hunt. Upon reaching their optimum positions, they tighten their
positions, and α, β, and γ wolves continue updating their positions. Therefore, the three
best solutions are involved in selecting the elite search agents. The hunting technique of
grey wolves is described in Equations (30)–(32):

→
Dα =

∣∣∣∣→Cα ×
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→Cβ ×
→
Xβ −

→
X
∣∣∣∣

→
Dγ =

∣∣∣∣→Cγ ×
→
Xγ −

→
X
∣∣∣∣

(30)

where
→
C1,

→
C2, and

→
C3 are decided by Equations (27) and (28).

→
X1 =

→
Xα −

→
Aα ×

(→
Dα

)
→
X2 =

→
Xβ −

→
Aβ ×

(→
Dβ

)
→
X3 =

→
Xγ −

→
Aγ ×

(→
Dγ

) (31)
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→
X(k + 1) =

→
X1 +

→
X2 +

→
X3

3
(32)

5.1.3. Attacking

When the wolves’ prey is trapped within the pack, the wolves attack it. In mathemati-
cal form, as wolves approach their prey

→
a (k) starts decreasing. In this model,

→
a (k) varies

within the range of 2 to 0, as described in Equation (29) [1]. This varying range shows the
location of prey and the best place for the hunters (α, β, and γ). In each iteration, the α,
β, and γ wolves optimize and update their places in steps including searching, encircling,
chasing, and attacking. Through continuous iterations, the α wolf achieves an optimum
place before attacking the prey.

5.1.4. Searching for Prey

To search for prey, a pack of wolves takes directions from the α, β, and γ wolves,
diverging in different directions and then converging to attack. The α, β and γ wolves
decide to attack a specific prey according to their best position and knowledge. While in
search of prey, the wolves mathematically diverge at any random values between 1 and –1.

When
∣∣∣∣→A∣∣∣∣ > 1, the wolves are forced to diverge to find the prey, and when

∣∣∣∣→A∣∣∣∣ < 1, they

converge to attack the prey [59].

5.2. Whale Optimization Algorithm (WOA)

In 2016, Mirajalili and Lewis introduced a novel swarm-based metaheuristic algo-
rithm called the whale optimization algorithm (WOA). The process of this approach is
discussed below.

5.2.1. Inspiration

The whale is one of the largest creatures found on the earth, including seven different
species of mammals: killer, minke, sei, blue, finback, right, and humpback. The highly intel-
ligent, emotional nature and hunting behavior of humpback whales is the basic inspiration
of the WOA [8]. Humpback whales hunt their prey by producing bubbles. There are two
strategies for producing bubbles: one is a rising spiral, and the other is double rings. In
the rising spiral, the whale dives down approximately 12 m, then spirals to make bubbles
around its prey as it moves upward. In the double ring technique, the whale produces
recording loops.

The WOA algorithm’s mathematical model is explained below.

5.2.2. Encircling Prey

When a whale finds the position of its prey (krill), it approaches the prey using the
best and most concise path. The mathematical model of the WOA algorithm also works
on the basis of this strategy. The WOA finds the optimal search agents and continually
updates the spot of best search agents. This strategy is demonstrated as follows in
Equations (33) and (34) [60,61]:

→
D =

∣∣∣∣→C × →X∗(t)−→X(t)
∣∣∣∣ (33)

→
X(t + 1) =

→
X∗(t)−

→
A×

→
D (34)

where t represents the existing iteration,
→
A and

→
D are the vector coefficients,

→
X∗ represents

the position vector, and
→
X is the location vector.
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→
A and

→
C are calculated using Equations (35) and (36):

→
A = 2

→
a ×→r −→a (35)

→
C = 2×→r (36)

where
→
r is the random vector varying in between [0, 1] and

→
a represents a linear vector

that decreases from 0–2 during iterations.

5.2.3. Rising Bubble Method

Humpback whales attack their prey using the bubble net attacking method that is
mathematically explained in Equation (37) [8,60]. A humpback whale dives and rotates
in a spiralling, arbitrary path around its prey and assumes an optimum position to attack
while producing bubbles.

→
X(t + 1) =


→
X∗(t)−

→
A×

→
D i f p < 0.5

→
D́× ebl × Cos(2πl) +

→
X∗(t) i f p > 0.5

 (37)

5.2.4. Seeking Prey

Each humpback whale,
→
A searches for its prey according to their opposition at their

present location. The search agent
→
A randomly updates its position after every iteration

until reaching the optimum position to attack the prey. The mathematical model is shown
in Equations (38) and (39):

→
D =

∣∣∣∣→C × →
Xrand −

→
X
∣∣∣∣ (38)

→
X(t + 1) =

→
Xrand −

→
A×

→
D (39)

5.3. Dandelion Optimizer (DO)

The dandelion is a plant scientifically known as Herba taraxaci. It is primarily found
in open areas, grassy plots, woodlands, and on alpine slopes, mostly in North America
and the Himalayas. Their height is usually between 20 to 24 cm, and their structure is
inflorescences in nature. Dandelion seeds are composed of thousands of crested or crown
hairs [62]. For seed propagation, the dandelion seeds rely on the wind. This crested hair
and structure allows the wind to blow the seed for breeding at a new location.

5.3.1. Inspiration

The dandelion optimizer is a swarm intelligence, bio-inspired optimization technique.
DO is known for its growth rate and increasing iterative population. Each of the dandelion
seeds is a candidate responsible for the population’s growth in a new place. This candidate
technique is stated in mathematical form as shown in Equation (40):

population =

 x1
1 · · · xDim

1
...

. . .
...

x1
pop · · · xDim

pop

 (40)

where pop is the population size and Dim represents the dimension of the variable.
When the seed of a dandelion lands and starts to sprout, it is considered to be in the

optimal position which is represented as Xelite written in Equation (41) [62]. Xi is the ith
individual seed.

Xelite = X( f ind( fbest == f (Xi))) (41)
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5.3.2. Rising Stage

Factors such as wind, air humidity, weather, and seasons play an essential role in
carrying a dandelion seed to a certain height and blowing it away. Summer and winter
seasons affect the height and flourishing position of the seeds. In summers, the wind speed
is higher; therefore, the seeds fly for a longer period compared to winters. This is why the
seeds are scattered in summers. In mathematical form, summer and winter are represented
by Equations (42) and (43), respectively [62]:

Xt+1 = Xt + α× vx × vy × lnY× (Xs − Xt) (42)

Xt+1 = Xt × k (43)

where lnY is lognormal distribution and k is the dynamic wave carried out using Equations
(44) and (45), respectively.

ln Y =

{
1

y
√

2π
exp
[
− 1

2σ2 (lny)2
]

y ≥ 0

0 y < 0
(44)

q = 1
T2−2T+1 t2 − 2

T2−2T+1 t + 1 + 1
T2−2T+1 t

k = 1− rand()× q (45)

5.3.3. Descending Stage

After ascending and flying with the wind, the dandelion seeds begin to descend in a
specific trajectory. The movement trajectory is known as Brownian motion (βt). After rising,
βt determines the new location of the seed through iterative updates. The mathematical
expression for the descending stage is shown in Equation (46):

Xt+1 = Xt − α× βt × (Xmeant − α× βt × Xt) (46)

where Xmean_t is the average position, which is mathematically determined using Equation (47):

Xmean_t =
1

pop

pop

∑
i=1

Xi (47)

5.3.4. Landing Stage

Based on the season, the landing of the dandelion seed is decided during the rising
stage. Gradually, the algorithm starts converging towards the global optima through the
iteration process. After the seed lands, it starts to grow, which is considered the most
optimal position. The behavior of landing is expressed mathematically in Equation (48):

Xt+1 = Xelite + levy(λ)× α× (Xelite − Xt × δ) (48)

where levy(λ) represents the function of levy flight, which is calculated using Equation (49):

levy(λ) = s× ω× σ

|t|
1
β

(49)

where ω and t are random variables varying between [0, 1], β is a random variable varying
between [0, 2], and s is a fixed constant: 0.01.

The process of optimal allocation of renewable energy resources and placement of electric
vehicle charging stations is presented in Figure 1.Figure 2 illustrates the process of optimal
allocation of renewable energy resources, including solar photovoltaic and wind turbine
generation and electric vehicle charging stations, to achieve multiple objectives simultaneously
using different metaheuristic optimization techniques considering seasonal variations.
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Figure 1. Flow Chart for multiple RE-DG allocations and EVCS placements using GWO, WOA, and
DO algorithms.
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Figure 2. Flow Chart for multiple SPV and EVCS allocations and wind and EVCS allocations using
GWO, WOA, and DO algorithms.
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6. Simulation Results and Discussions

In this section, three metaheuristic algorithms (GWO, WOA, and DO) were employed
on an IEEE 33-bus DN. For GWO, WOA, and DO, the size of population for wolves,
whales, and seeds were set to 50, respectively. The stopping criterion was defined by the
maximum number of iterations, set at 150. The control parameters of all three algorithms
are presented in Table 5. The allocation of RE-based single and multiple DGs was achieved
to reduce RPL, QPL, and TVD, and to maximize VSI, which were assessed for the MOOP. To
verify the effectiveness of the employed algorithms, the results were compared with other
optimization techniques. These three algorithms were coded and simulated in MATLAB
2022a and run-on system HP EliteBook 840 G2 Intel Core i5 with 8GB RAM.

Table 5. Control parameter settings.

Algorithms Parameters

GWO Population = 50, max-iter = 150, power factor = 0.9, DG-size (MVA) = 0–2000
WOA Population = 50, max-iter = 150, power factor = 0.9, DG-size (MVA) = 0–2000

DO Population = 50, max-iter = 150, power factor = 0.9, DG-size (MVA) = 0–2000

The following scenarios were examined in the 33-bus network by Integrating SPV,
WTG, and EVCSs at a 0.9 lagging power factor for multiple DGs.

6.1. IEEE 33-Bus Test System

For analysis of optimization techniques, the IEEE 33-bus system was considered. For
the overall description of the 33-bus RDN, line and load data were considered. The single
line diagram of the 33-bus RDN is shown in Figure 3. The base values of the 33-bus RDN
were kV = 12.66 and MVA = 100.
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Figure 3. Single-line diagram of IEEE for the 33-bus RDS.

The curves of solar radiation, wind speed, and load demand are shown in Figures 4–6,
respectively. These profiles change throughout the year; therefore, the average profiles for
the four seasons, i.e., spring, summer, autumn, and winter were taken and scaled into 24 h
periods. The first 24-h period represents spring, the 24–48th hour represents summer, the
48–72nd hour represents autumn, and the 72–96th hour represents winter.
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6.1.1. Multi-Objective Assessment of the 33-Bus RDN

MOOP was applied to the 33-bus RDN to find the optimal allocation of RE-DGs and
the optimal placement of the EVCSs. The optimal allocation of RE-DGs helps to reduce
the RPL, QPL, and TVD, and to improve the VSI of the 33-bus system. The power flow
results show that the baseline value of RPL was 210.05 kW, the QL was 142.44, the TVD
was 0.1328, and the VSI was 0.6697 p.u.

6.1.2. RE-DGs and EVCSs Allocation for the 33-Bus RDN

Table 6 presents the various case scenarios that were adopted for the analysis of
the muti-objectives involved in this paper using meta-heuristic techniques for optimal
allocation of RE-DGs and EVCSs in the 33-bus RDN.

Table 6. Different scenarios adopted for analysis.

Scenarios SPV WTG EVCSs

Scenario 1 X X X
Scenario 2 X X X
Scenario 3 X X X
Scenario 4 X X X
Scenario 5 X X X

X and X represents the consideration of specific RE-based DG in particular scenario.

6.1.3. Scenario 1: Only SPV

The optimal solar DG allocation at 0.9 PF is presented in Table 7. In the table, the
multiple SPV DG locations were 14, 25, and 32 using GWO, the multiple SPV DG locations
were 12, 24, and 31 using WOA, and the multiple SPV DG locations were 14, 24, and
30 using DO. The table shows that the RPL obtained from the muti-objective GWO was
65.5066 p.u., the WOA was 56.8897 p.u., and the DO was 61.5987 p.u. The optimal allo-
cation of SPV DGs reduced the RPL by 72.913% from the baseline WOA, which was less
than the results of the other two techniques shown in the table. The QPL obtained from
the muti-objective GWO was 45.8701 p.u., the WOA was 38.7945 p.u., and the DO was
45.1846 p.u. The optimal allocation of SPV DGs reduced the QPL by 72.764% from the
baseline using WOA, which was less than the results of the other two techniques shown in
the table. The TVD achieved from the multi-objective GWO was 0.003824, the WOA was
0.002839, and the DO was 0.004336. The voltage deviation of WOA was better than GWO
and DO. The voltage stability of WOA was 0.94655, which was better than GWO and DO
which were 0.92513 and 0.92127, respectively.

Table 7. Optimal allocation of SPV DGs for the 33-bus network based on multi-objective consideration
of various optimization techniques.

Methods Location P (MW) Q (MVAR) RPL (kW)
(%)

QPL (kVAR)
(%) TVD (p.u) VSI (p.u)

Base case - - - 210.05 142.44 0.1328 0.6697
GWO [P] 14, 25, 32 0.688, 0.793, 1.306 0.246, 0.334, 0.503 65.5066 (68.813%) 45.8701

(67.797%) 0.003824 0.92513

WOA [P] 12, 24, 31 0.816, 0.952, 1.085 0.297 0.303, 0.398 56.8897 (72.913%) 38.7945
(72.764%) 0.002839 0.94655

DO [P] 14, 24, 30 0.809, 0.833, 1.072 0.213, 0.253, 0.477 61.5987 (70.674%) 45.1846
(68.278%) 0.004336 0.92127

[P]—Proposed.

Loss Profiles of SPV DGs

In Figures 7 and 8, the active and reactive power losses were simultaneously consid-
ered for SPV DGs using GWO, WOA, and DO.
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Voltage Profiles of 33-Bus RDN for SPV DGs

When the TVD and VSI were considered as the muti-objective function, the optimal
allocation of WTG DGs improved the voltage profile of the 33-bus system. Figures 9–11
show the effect of SPV DGs for GWO, WOA, and DO, respectively, for the MOOPs.
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6.1.4. Scenario 2: Only WTG

The optimal wind DG allocation at 0.9 PF is presented in Table 8. In the table, the
multiple WTG DG locations were 13, 24, and 30 using GWO, the multiple WTG DG
locations were 13, 24, and 30 using WOA, and the multiple WTG DG locations were 13, 24,
and 30 using DO. The table shows that the RPL obtained from the muti-objective GWO was
49.4825 p.u., the WOA was 54.0478 p.u., and the DO was 54.083 p.u. The optimal allocation
of WTG DGs reduced the RPL by 76.44% from the baseline GWO, which was lower than
the results obtained using the other two techniques shown in the table. The QPL obtained
from the muti-objective GWO was 34.7879 p.u., the WOA was 40.4329 p.u., and the DO
was 36.823 p.u. The optimal allocation of WTG DGs reduced the QPL by 75.577% from the
baseline using GWO, which was less than the results of the other two techniques shown in
the table. The TVD achieved from the multi-objective GWO was 0.004624, the WOA was
0.009322, and the DO was 0.005671. The voltage deviation of GWO was better than WOA
and DO. The voltage stability of DO was 0.97896, which was better than the GWO and
WOA values of 0.89905 and 0.84611, respectively. Figures 12 and 13 show the active and
reactive power losses, which were simultaneously considered for WTG DGs using GWO,
WOA, and DO.

Table 8. Optimal allocation of WTG DGs for the 33-bus network based on multi-objective considera-
tion of various optimization techniques.

Methods Location P (MW) Q (MVAR) RPL (kW)
(%)

QPL (kVAR)
(%) TVD (p.u) VSI (p.u)

Base Case - - - 210.05 142.44 0.1328 0.6697
GWO [P] 13, 24, 30 0.772, 0.922, 1.348 0.258, 0.324, 0.584 49.4825 (76.44%) 34.7879

(75.577%) 0.004624 0.89905

WOA [P] 13, 24, 30 0.765, 0.880, 1.452 0.372, 0.381, 0.643 54.0478 (74.269%) 40.4329
(71.614%) 0.009322 0.84611

DO [P] 13, 24, 30 0.853, 1.006, 1.266 0.425, 0.457, 0.510 54.083
(74.252%)

36.823
(74.148%) 0.005671 0.97896

[P]—Proposed.
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Voltage Profiles of 33-Bus RDN for WTG DGs

When the TVD and VSI were considered as the muti-objective function, the optimal
allocation of WTG DGs improved the voltage profile of the 33-bus network. Figures 14–16
show the effect of WTG DGs for GWO, WOA, and DO for the MOOPs.
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6.1.5. Scenario 3: Only EVCSs

EVCSs draw power from the existing 33-bus system to charge the EVs, so they behave
as the load on the RDN. These EVCSs charge the vehicles, which is why they act as a
grid-to-vehicle (G2V). The optimal EVCS placement at 0.9 PF is presented in Table 9. In
the table, the multiple EVCS locations were 4, 12, 13, 22, and 25 using GWO, the multiple
EVCS locations were 2, 3, 4, 9, and 13 using WOA, and the multiple EVCS locations were 6,
12, 17, 22, and 25 using DO. The table shows that the RPL obtained from the muti-objective
GWO was 267.1758 p.u., the WOA was 262.1438 p.u., and the DO was 280.4705 p.u. In all
cases, the real power was more than the baseline real power, but the WOA technique drew
less power from the system compared to the other techniques listed in Table 10 to charge
the EVs. The QPL obtained from the muti-objective GWO was 181.1311 p.u., the WOA was
177.1492 p.u., and the DO was 189.8264 p.u. Similar to the active power results, the reactive
power in the WOA case was less than those obtained by GWO and DO. Figures 17 and 18
active and reactive power losses that were simultaneously considered for EVCSs executing
GWO, WOA, and DO algorithms.
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Table 9. Optimal placement of EVCSs for the 33-bus network based on single-objective consideration of various optimization techniques.

Methods Location P (MW) Q (MVAR) RPL (kW)
(%)

QPL (kVAR)
(%) TVD (p.u) VSI (p.u)

Base Case - - - 210.05 142.44 0.1328 0.6697

GWO [P] 4, 12, 13, 22, 25 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82 267.1758
(27.187%)

181.1311
(27.166%) - -

WOA [P] 2, 3, 4, 9, 13 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82 262.1438
(24.792%)

177.1492
(24.371%) - -

DO [P] 6, 12, 17, 22, 25 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82 280.4705
(33.516%)

189.8264
(33.271%) - -

[P]—Proposed.

Table 10. Optimal allocation of SPV DGs and EVCSs for the 33-bus network based on muti-objective consideration of various optimization techniques.

Methods SPV and EVCSs Location P (MW) Q (MVAR) RPL (kW)
(%)

QPL (kVAR)
(%) TVD (p.u) VSI (p.u)

Base Case - - - 210.05 142.44 0.1328 0.6697
GWO [P] SPV 9, 23, 29 0.725, 0.939, 1.159 0.281, 0.292, 0.491 79.4624

(62.170%)
62.3089

(56.256%) 0.005726 0.94724EVCSs 4, 12, 13, 22, 25 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82
WOA [P] SPV 8, 22, 29 0.690, 0.973, 1.099 0.231, 0.392, 0.495 54.0478

(74.269%)
40.4329

(71.614%) 0.009322 0.84611EVCSs 2, 3, 4, 9, 13 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82
DO [P] SPV 13, 22, 29 0.768, 0.977, 1.330 0.331, 0.391, 0.571 63.8158

(69.619%)
45.4183

(68.114%) 0.005419 0.94821EVCSs 6, 12, 17, 22, 25 1.332, 0.546, 1.497, 0.546, 1.299 0.841, 0.345, 0.945, 0.345, 0.82

[P]—Proposed.
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Figure 18. Reactive power losses of EVCSs for GWO, WOA, and DO.

6.1.6. Scenario 4: SPV-DGs and EVCSs

Optimal solar DG and EVCS allocations at 0.9 PF are presented in Table 10. In the
table, the multiple solar DG locations were 9, 23, and 29, and the EVCS locations were 4,
12, 13, 22, and 25 using GWO. The multiple solar DG locations were 8, 22, and 29, and
the EVCS locations were 2, 3, 4, 9, and 13 using WOA. The multiple solar DG locations
were 13, 22, and 29, and the EVCS locations were 6, 12, 17, 22, and 25 using DO. The
table shows that the RPL obtained from the muti-objective GWO was 79.4624 p.u., the
WOA was 63.8158 p.u., and the DO was 82.7109 p.u. The RPL was reduced by 69.619%
compared to its baseline using WOA, which was less than the results of the other two
techniques listed in the table. The QPL obtained from the muti-objective GWO was
62.3089 p.u., the WOA was 45.4183 p.u., and the DO was 58.9258 p.u. The QPL was
reduced by 68.114% compared to its baseline by applying WOA, which was less than
the results of the other two techniques listed in the table. The TVD achieved from the
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multi-objective GWO was 0.005726, the WOA was 0.005419, and the DO was 0.007747. The
voltage deviation of WOA was better than the other two optimization techniques. The
voltage stability of WOA was 0.94821, which was better than GWO and DO, which were
0.94724 and 0.89273, respectively. Figures 19 and 20 show the active and reactive power
losses, which were considered simultaneously for SPV DGs and EVCSs using GWO, WOA,
and DO.
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Figure 19. Active power losses of SPV and EVCSs for GWO, WOA, and DO.
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Figure 20. Reactive power losses of SPV and EVCSs for GWO, WOA, and DO.

Voltage Profiles of the 33-Bus RDN with SPV-DGs and EVCSs

When the TVD and VSI were considered as the muti-objective function, the optimal
allocation of the WTG DGs improved the voltage profile of the 33-bus system. Figures 21–23
show the effect of the WTG DGs for GWO, WOA, and DO, respectively, for the MOOPs.



Sustainability 2023, 15, 7499 26 of 32

Due to the involvement of EVCSs in these profiles, a slight drop in voltage was observed
compared to scenario 1.
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6.1.7. Scenario 5: WTG-DGs and EVCSs

The optimal solar DG and EVCS allocations at 0.9 PF are presented in Table 11. In
table, the multiple solar DG locations were 6, 14, and 28, and the EVCS locations were 4,
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12, 13, 22, and 25 using GWO. The multiple solar DG locations were 11, 18, and 29, and
the EVCS locations were 2, 3, 4, 9, and 13 using WOA. The multiple solar DG locations
were 9, 20, and 2, and the EVCS locations were 6, 12, 17, 22, and 25 using DO. The table
shows that the RPL obtained from the muti-objective GWO was 76.4404 p.u., the WOA was
89.6694 p.u., and the DO was 90.207 p.u. The RPL was reduced by 63.608% compared to its
baseline by applying GWO, which was less than the results of the other two techniques
listed in the table. The QPL obtained from the muti-objective GWO was 57.8867 p.u., the
WOA was 69.5078 p.u., and the DO was 65.3175 p.u.

Table 11. Optimal allocation of WTG DGs and EVCSs for the 33-bus network based on muti-objective
consideration of various optimization techniques.

Methods SPV and
EVCSs Location P (MW) Q (MVAR)

RPL
(kW)
(%)

QPL
(kVAR)

(%)
TVD
(p.u)

VSI
(p.u)

Base Case - - - 210.05 142.44 0.1328 0.6697
GWO [P] WTG 6, 14, 28 0.604, 1.015, 1.324 0.235, 0.344, 0.507 76.4404

(63.608%)
57.8867

(59.361%) 0.009827 0.92341
EVCSs 4, 12, 13, 22, 25 1.332, 0.546, 1.497,

0.546, 1.299
0.841, 0.345, 0.945,

0.345, 0.82
WOA [P] WTG 11, 18, 29 0.577, 1.167, 1.173 0.166, 0.248, 0.543 89.6694

(57.310%)
69.5078

(51.202%) 0.005515 0.92139
EVCSs 2, 3, 4, 9, 13 1.332, 0.546, 1.497,

0.546, 1.299
0.841, 0.345, 0.945,

0.345, 0.82
DO [P] WTG 9, 20, 28 0.746, 0.912, 0.951 0.228, 0.418, 0.426 90.207

(57.055%)
65.3175

(54.144%) 0.02631 0.79254
EVCSs 6, 12, 17, 22, 25 1.332, 0.546, 1.497,

0.546, 1.299
0.841, 0.345, 0.945,

0.345, 0.82

[P]—Proposed.

The QPL was reduced by 59.361% compared to its baseline by applying GWO, which
was less than the results of the other two techniques listed in the table. The TVD achieved
from multi-objective GWO was 0.009827, the WOA was 0.005515, and the DO was 0.02631.
The voltage deviation of WOA was better than the other two optimization techniques. The
voltage stability of GWO was 0.92341, which was better than the WOA and DO, which
produced results of 0.92139 and 0.79254, respectively. In Figures 24 and 25, the active and
reactive power losses were considered simultaneously for WTG DGs and EVCSs for GWO,
WOA, and DO.
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Figure 24. Active power losses of WTG and EVCSs for GWO, WOA, and DO.
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Voltage Profiles of the 33-Bus RDN for WTG, DGs, and EVCSs

When the TVD and VSI were considered as the muti-objective function for optimal
allocation of WTG, DGs improved the voltage profile of the 33-bus network. Figures 26–28
show the effect of WTG DGs for GWO, WOA, and DO, respectively, for the MOOPs. Due to
the involvement of EVCSs in these profiles, a slight drop in voltage was observed compared
to scenario 2.
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7. Conclusions

In this paper, three metaheuristic techniques have been proposed to optimally allocate
EVCSs and RE-DGs, incorporating single and multiple objective functions, respectively.
The objective functions include total voltage deviation, active power losses, reactive power
losses, and voltage stability index. The multi-objective function comprises the objective
functions by exploiting weights. These metaheuristic techniques (GWO, WOA, and DO)
present effective solutions for optimal allocation of RE-DGs and EVCSs in RDNs. The
proposed metaheuristic techniques are implemented and evaluated across 33 bus radial
distribution networks. Uncertainty modeling and seasonal variations were also considered
in this study. MATLAB 2022a was used to simulate the meta-heuristic techniques and to
evaluate the results. The obtained results were presented in various scenarios for SPV, WTG,
and EVCSs. These scenarios demonstrated a significant reduction in active and reactive
power losses, minimum voltage deviation, and an enhanced voltage stability index. For
only SPV allocation, the RPL and QPL were reduced by 72.913% and 72.764% from their
baselines, respectively, using the WOA technique, which was then compared to the other
two techniques. The RPL and QPL were reduced by almost 76.44% and 75.577% from their
baselines, respectively, in scenario 2 using the GWO technique. The RPL and QPL values
for scenario 2 using the other two techniques were inferior to the results obtained using
the GWO technique. Placement of EVCSs in RDN gained power from the grid; therefore,
the RPL and QPL values increased from their respective baselines. SPV-DGs and EVCSs
allocation the RPL and QPL was reduced by 69.619% and 68.114% from their respective
baselines using the WOA technique, which was compared to the other two techniques.
WTG-DGs and EVCSs allocation of the RPL and QPL was reduced by 63.608% and 59.361%
from their respective baselines using the GWO technique, which was compared to the other
two techniques.
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