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Abstract: In the era of rapid technological growth, we are facing increased energy consumption. The
question of using renewable energy sources is also essential for the sustainability of wireless sensor
networks and the Industrial Internet of Things, especially in scenarios where there is a need to deploy
an extensive number of sensor nodes and smart devices in industrial environments. Because of that,
this paper targets the problem of monitoring the operations of solar-powered wireless sensor nodes
applicable for a variety of Industrial IoT environments, considering their required locations in outdoor
scenarios and the efficient solar power harvesting effects. This paper proposes a distributed wireless
sensor network system architecture based on open-source hardware and open-source software
technologies to achieve that. The proposed architecture is designed for acquiring solar radiation data
and other ambient parameters (solar panel and ambient temperature, light intensity, etc.). These data
are collected primarily to define estimation techniques using nonlinear regression for predicting solar
panel voltage outputs that can be used to achieve energy-efficient operations of solar-powered sensor
nodes in outdoor Industrial IoT systems. Additionally, data can be used to analyze and monitor the
influence of multiple ambient data on the efficiency of solar panels and, thus, powering sensor nodes.
The architecture proposal considers the variety of required data and the transmission and storage of
harvested data for further processing. The proposed architecture is implemented in the small-scale
variants for evaluation and testing. The platform is further evaluated with the prototype sensor
node for collecting solar panel voltage generation data with open-source hardware and low-cost
components for designing such data acquisition nodes. The sensor node is evaluated in different
scenarios with solar and artificial light conditions for the feasibility of the proposed architecture and
justification of its usage. As a result of this research, the platform and the method for implementing
estimation techniques for sensor nodes in various sensor and IoT networks, which helps to achieve
edge intelligence, is established.

Keywords: solar radiation data; solar data harvesting; wireless sensor networks; solar-powered
sensor nodes; data acquisition; industrial IoT; solar panel efficiency

1. Introduction

The rapid development of technology and equally rapid growth of the world popula-
tion caused the problem of energy sources and their exploration [1,2]. The issue is even
raised with the development and increasing deployment of the outdoor Industrial Internet
of Things (IIoT) and smart technology systems [3,4]. As a result, the question of using
solar energy as one of the most considered and applicable renewable energy sources is
essential, especially in the IIoT and smart technology systems [5]. It is caused by the broad
implementation of sensor networks but also by the need for a large number of sensor nodes
and smart devices used in these systems.
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These factors influenced the importance of using solar-powered sensors and smart
devices and caused a variety of research related to this issue. One of the crucial aspects
of using solar energy for powering sensor nodes is the extension of the operation time of
these devices. So, to optimally utilize solar-powered sensor nodes in given situations, it is
vital to identify the most suitable locations for node deployment and, therefore, to estimate
solar panel outputs in specific locations. This helps to model sensor node operations and
create adaptive energy-saving modes depending on the estimated outputs. A variety of
approaches are used in the described process. This paper proposes an approach based on a
wireless sensor network for collecting data on solar radiation and using different types of
sensors to estimate solar panel performance, especially in outdoor IIoT scenarios.

This research considers the problem of estimating the energy supply of solar-powered
wireless sensor networks for various IIoT environments. The system proposed in this paper
is developed to collect data that can be used with nonlinear regression techniques for solar
panel output estimation. The estimated outputs can be further used for estimating optimal
energy-efficient operation modes of solar-powered sensor nodes, thus achieving efficient
solar power harvesting effects. As a solution, this paper presents the distributed wireless
sensor network system architecture based on open hardware and open-source technologies
designed to acquire solar radiation data and other ambient parameters. The acquisition of
solar radiation data and other ambient parameters (panel and ambient temperature, light
intensity, etc.) strongly depends on the design and platform efficiency of sensor nodes
deployed in this network.

The nodes are designed to collect solar radiation-related data, such as the current and
voltage generated by the solar panel and ambient data. These ambient data are collected for
further processing and analysis of the influence of ambient on the efficiency of solar panels
and solar-powered sensor nodes. The architecture also considers transmission and data
storage of collected data for further processing. The presented system is implemented in a
small-scale variant for testing and evaluation. It is implemented as a prototype of a reduced
configuration sensor node with sensors for measuring the voltage, visible and ultraviolet
(UV) light, solar panel temperature, air temperature, and humidity. To avoid long-term
testing, we tested the prototype in various scenarios with natural solar and artificial light
to prove the feasibility of such nodes in the proposed architecture and justify using open-
source hardware and low-cost components to design such data acquisition nodes.

The contribution of this paper is the proposed model for solar radiation data acqui-
sition and the approach to using these data to estimate solar panel efficiency that can be
used to model the operations of solar nodes to achieve energy efficiency and extend the
node lifecycle. The contribution can be further used to implement estimation techniques
for sensor nodes in various sensor and IoT networks, which helps achieve edge intelligence
not limited to solar data acquisition networks. The model is motivated by the goal of com-
bining the two different approaches in solar radiation estimation. These two approaches
are systems designed to monitor solar panels and other electrical systems with the use of
sensor nodes as a single device or as a part of a distributed sensor network with the projects
designed to estimate solar radiation using meteorological, GIS (Geographic Information
System), LIDAR (Light Detection and Ranging) data, terrain configuration, and satellite
imagery. These two approaches motivated the design of the sensor network for acquiring
solar radiation data for solar panel output estimation.

The model is presented with a fully equipped solar-powered sensor node, which can
be used in various sensor networks and with the architecture of the network. The model of
a reduced-equipped sensor node is also presented. The reduced model of the sensor node
is evaluated for usage in a sensor network where the collected data will be used for solar
panel outputs.

The model is partially evaluated with the efficiency and feasibility of using the low-
cost open-source hardware components for developing sensor nodes for solar panel data
acquisition. The reduced-equipped sensor node is used for this evaluation. The experiment
is not made in the long-term period. Instead, the experiment is performed under the
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simulated environment with direct solar light, reduced solar light, indoor ambient light,
and different artificial light sources at different distances from the solar panel. In addition
to standard light in the experimental room, incandescent, compact fluorescent lamps
(CFL), and light-emitting diode (LED) bulbs are used as additional light sources. The
accuracy of a low-cost voltage sensor is compared with a digital multimeter. Next, the
relation of measured values with other sensors, such as UV and visible light, and the
panel temperature is analyzed. The measurement results of using open-source hardware in
sensor networks to acquire solar panel data and to model the energy-efficient operations of
deployed solar nodes.

Considering the importance of solar power generation, the potential expansion of
solar-powered sensor networks in the future, and the significance of better managing solar-
powered sensor nodes, this system can be beneficial. The system can effectively forecast
the output of sensor-based solar panels. Thus, combined with the data analysis techniques,
it can be used to determine the most energy-efficient mode depending on the panel output
and energy supply. Additionally, the research results introduce the methodology for
implementing estimation techniques on sensor nodes in various data acquisition networks.

This paper is structured as follows. After the introduction, the related work with the
motivation, similar research, and recent achievements in the field is discussed. Section 3
presents the architecture of the sensor network for solar panel data acquisition. In Section 4,
the experiment for validating the sensor node prototype as a vital element of the presented
architecture is conducted, followed by the result analyses in Section 5. The concluding
remarks and possible further research directions are discussed at the end of the paper.

2. Related Work

There is a variety of related research that motivated the research presented in this
paper. In summary, the first group of related research are systems designed to monitor solar
panel plants and other electrical systems, current and voltage parameters, and use sensor
nodes as a single device or as a part of a distributed wireless sensor network. The second
group of related works uses meteorological data, satellite imagery, terrain configuration,
and LIDAR data to make maps and models for estimating solar radiation and potential
locations for primarily building rooftop solar panels. Our motivation was to integrate those
two approaches.

The related research group in the field of using sensor nodes for solar panel per-
formance and energy consumption monitoring is presented in Table 1 with all relevant
characteristics. The column named difference points out the difference between previous
and present works. The research presented in this paper targeted the gaps that needed to
be covered in enlisted works.

Table 1. Comparative view of solar and energy monitoring systems.

Ref. No. Dist. Connectivity Purpose Platform Key Outcomes Difference

[6] No UART bus

A low-cost solution for
real-time instrumentation of
the photovoltaic (PV) panel

characteristics such as voltage
and current power.

Arduino UNO
PLX-DAQ data

acquisition Excel
Macro

confirmation of the
effectiveness of the
developed virtual
instrumentation

system

single point of
acquisition,

no networking and
distribution

[7] No Bluetooth
HC-05

Smart voltage and current
monitoring system (SVCMS)
for monitoring a three-phase
electrical system with three
voltage and current sensors.

Arduino Nano
V3.0

Android
Smartphone

Android
smartphone

application for
monitoring the

voltage and current
measurements

single point of
acquisition,

no networking
and distribution
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Table 1. Cont.

Ref. No. Dist. Connectivity Purpose Platform Key Outcomes Difference

[8] Yes Zigbee
USB

A prototype of a low-cost
home energy management

system (HEMS). This platform
aims to monitor the energy

consumption of typical
household devices so that the

users can access the
consumption of each device
separately and, in the end,

establish a strategy that allows
them to reduce energy
consumption at home.

Arduino Uno

low-cost home
energy

management
system

single-type sensor,
short-range indoor
wireless connection

[9] No Wired
USB

Data Acquisition System
(DAS) is designed to collect
voltage and current data in
real-time at variable load

resistance during an
experimental characterization

analysis of a 3 × 3 size
photovoltaic (PV) system

under partial shading (PSC)
conditions using Analog

voltage and current sensors.

Arduino Nano
collecting voltage

and current data in
real-time

single point of
acquisition, wired
connection to PC

[10] No
HC-05

Bluetooth
module

The system for monitoring the
robotic base and its output
voltages. The measuring
system uses an Arduino
microcontroller, current

ACS712, and voltage sensor
FZ0430.

Arduino UNO
Arduino

SmartPhone

low-cost
monitoring of the

robotic base and its
output voltages

Single point of
acquisition,

short-range wireless
connection

[11] No Wi-Fi
IEEE 802.11ac

The energy consumption
characteristics monitoring for
robots with INA219 high-side

current sense amplifier to
capture power, current, and

voltage measurements.

Raspberry Pi4
model B

energy
consumption

monitoring for
robots

single point of
acquisition, mobile
wireless connection

[12] Yes LoRa/
LoRaWAN

Monitoring PV system-related
parameters (voltage, current,
power, energy, light intensity,
temperature, and humidity)

and updating this information
to the cloud. Data are sent to

the
LoRaWAN gateway and

further to The Things
Network (TTN).

Arduino UNO

cloud PV
system-related

parameters
monitoring

PC-centric acquisition
system, no PV
performance

dependency analyses,
different architecture

[13] Yes LoRa/Wi-Fi

Monitoring climatic variables
and photovoltaic generation
for Smart Grid application

(voltage, current, alternating
power, and seven

meteorological variables).

HeltecWi-Fi LoRa
32 (V2) IoT
dev-board

climatic and PV
monitoring for the

Smart Grid
application

PC-centric acquisition
system, no PV
performance

dependency analyses,
different architecture

[14] Yes

I2C, SPI,
Serial,

proprietary
NRF24L01

Supervisory Control and Data
Acquisition system for a

microgrid testbed.

Arduino UNO/
Raspberry Pi

data acquisition
system for a
microgrid

proprietary
communication, the
limited number of

wireless nodes

[15] No
USB, Wi-Fi,

3G/LTE/4G,
etc.), Ethernet

Open source, low-cost, precise,
and reliable power and

electric energy meter and
power quality analyzer for

homes in urban or rural areas.

open meter
custom build

board

low-cost, electric
energy meter and

analyzer

no network
architecture defined
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Table 1. Cont.

Ref. No. Dist. Connectivity Purpose Platform Key Outcomes Difference

[16] No Ethernet

Monitoring system based on
open-source hardware and
software for tracking the

temperature of the
photovoltaic generator in

an SMG.

Arduino MEGA
2560 R3

RPi model 3
ver. B

the temperature of
the photovoltaic

generator
monitoring

single point of
acquisition, wired

connectivity

[17] No
Modbus-

RTU, TCP/IP,
and Wi-Fi

PV Monitoring System for a
Water Pumping Scheme to

provide a valuable tool for the
operation, management, and

development of
these facilities.

Raspberry Pi
ADAM 4017+ PV monitoring

single point of
acquisition, wired

connectivity

[18] Yes
433 MHz RF

HopeRF
RFM69CW

Low-cost PV-module
monitoring system based on

open-source solutions for
monitoring installations at the

PV-module level, giving
detailed information regarding
PV power-plant performance
(monitoring PV module and

meteorological data)

Arduino UNO
Raspberry Pi PV monitoring no network

architecture defined

[19] Yes Wi-Fi

System for real-time cloud
monitoring of a decentralized
photovoltaic (PV) plant with
ACS712 current sensor, LM35

temperature sensor, LP02
pyranometer, and

DHT11 sensor.

Raspberry Pi
ADCES (SanUSB

board)

cloud PV
monitoring

no PV performance
dependency analyses,
different architecture

[20] Yes Wi-Fi

IoT modular system to
compose a worldwide

monitoring network focused
on meteorological and PV
modules temperature data
(PV modules temperature,

meteorological data such as
solar irradiance, ambient

temperature, relative
humidity, and wind speed)

ESP8266
ESP32

photovoltaic plants
monitoring

no PV performance
dependency analyses,
different architecture

[21] No

Modbus
TCP/IP and

OPC
communica-

tion protocols

real-time supervision and
predictive fault diagnosis of

solar panel strings

ESP8266 module,
ASC712-5A, and
FZ0430 sensors

and relay
modules

predictive diagnosis
method, based on
online detection
centered on each
solar panel of the

PV string

wired centralized
standalone system

[22] No Bluetooth
Photovoltaic tracking system
and cleaning connected to a

smart board

Arduino
Mega2560,

current sensor
and voltage

sensor

IoT-based smart
household

distribution board
to monitor the
functioning of

various appliances

Short-range
communication,

standalone system

[23] No Wi-Fi

Decentralized, low-cost
alternative Automatic Data

Acquisition Systems (ADAS)
based on the ESP32

microcontroller

ESP32, sensors
(Kipp and Zonen

CMP11, PT100,
Biotech VZS-007,

SHT20
waterproof)

Data acquisition
system for solar
thermal collector

testing

Standalone
monitoring system

The second group of research related to this one is focused on mapping, analyzing,
and estimating rooftop solar potential in urban environments. This research is conducted to
estimate the feasibility of rooftop solar panels for residential building energy consumption.
Table 2 summarizes representative research analyzed in the preparation phase of the paper.
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The table gives an overview and brief description of the methodology and source data used
for estimation.

Table 2. Comparative view of solar estimation and mapping systems.

Ref. No. Description Data Used Artificial
Intelligence

[24]
methodology for estimating the solar
potential with the generation of a 3D

structure

height data and roof types
using satellite imagery and

simulation of shadows
No

[25] determination of energy potential of
rooftop solar PVs building height model No

[26] method for selecting suitable locations
for installing solar panels

Graphic Processing Unit
(GPU)- solar radiation model

SHORTWAVE-C for
simulation of direct and

non-direct solar radiation

No

[27] a solar irradiation estimation solution for
three-dimensional (3D) cities

annual irradiations on urban
envelopes No

[28] identification of the building roofs for
estimating the city’s solar potential

U-Net of deep learning
technology in combination

with satellite maps
Deep learning

[29] 3D solar potential model

Light Detection and Ranging
(LIDAR) data rendered in the

ArcGIS platform using
CityEngine

No

[30] hybrid models for solar radiation using meteorological data
multiple linear regression,

neural network, and
random forest

[31]
artificial intelligence-based solar

radiation estimation model for green
energy utilization

Artificial Neural Networks
(ANN), Support vector

machine (SVM), Random
Forest (RF)

[32] prediction of the performance of
solar collectors experimental data collection

clustering analysis with the
Back Propagation (BP) and

Convolutional Neural
Network (CNN) models.

[33] solar radiation prediction meteorological data ANN model, and a recurrent
neural network (RNN) model

[34] mapping clear-sky surface solar
ultraviolet radiation

Chinese Ecosystem Research
Network (CERN) stations

measurements
Machine learning

[35] solar radiation estimation CAMS Radiation Service solar
radiation data

Ordinary Kriging and
distance weighting,

non-supervised competitive
ANN-Self Organizing Map

Our solution combines the experiences and goals of both groups and differs signifi-
cantly. It uses the first group of referred works as motivation and examples for designing
the data-collecting platform and the distributed sensor node network. The second group of
referred works is used only as a role model for estimating solar radiation potential. Unlike
the presented works in Table 2, our proposal used nonlinear regression to discover the
sensor that can be used to predict the solar power output with the best possible accuracy.

In addition to designing a sensor network, our work covers the design of sensor nodes
for a distributed wireless sensor network for solar panel data acquisition. The sensor
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network is built on nodes with a minimum set of components. The system is designed
to collect data that will be used further for solar panel output estimation and modeling
energy-efficient sensor nodes.

3. Architecture of Sensor Network for Solar Radiation Data Acquisition

The architecture of the fully equipped sensor node for solar panel data acquisition is
presented in Figure 1. The system is designed to collect solar panel and ambient data. The
solar panel data consists of solar panel current and voltage data logging. The current and
the voltage generated from the solar panel and the current and voltage used for charging
the battery are essential for monitoring. The ambient data, such as solar panel surface
temperature, air temperature and humidity, light intensity, dust, and rain detection, are
also interesting for monitoring. The purpose of monitoring ambient data is to analyze the
impact of these side factors on solar panel energy generation.
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Figure 1. The architecture of a fully equipped wireless sensor node for solar data acquisition.

In the model, all sensors are connected to the same microcontroller unit (MCU), as
shown in Figure 1. The MCU can be Arduino UNO or Arduino MEGA. In addition to
sensors, the MCU can be connected to Real Time Clock (RTC), communication module,
and SD card module for data logging and a liquid–crystal display (LCD) or organic light-
emitting diode (OLED) module optionally. The communication module depends on the
coverage of the presented network, which will be discussed in more detail in the following
part of this section.

The possible set of sensors that can be considered for the proposed sensor node is
the DHT-11 or DHT-22 sensor for air temperature and humidity, TMP36 for a solar panel
temperature, BH1750 sensor and other light sensors for light intensity measuring; UV sen-
sor; ACS712 or INA169 current sensor; MAX471 current and voltage sensor; etc. The solar
charger is Seeedstudio Li-Po Rider Pro. It is used for managing Li-Po battery 500 mAh charg-
ing and discharging. The solar panel dimensions range from 160 mm × 138 mm × 2.5 mm
to 130 mm × 87 mm × 2.5 mm, but other sizes will be taken into consideration also. The
panel’s efficiency is 16%, voltage 5.5V, 3W power, and peak current depends and ranges
from 540 mA to 270 mA. The communication module for Wi-Fi technology can be ESP8266
or ESP32. It is interesting to consider the usage of Wemos D1 R2 or NodeMCU boards with
integrated ESP8266/ESP32 modules instead of using Arduino UNO boards. The limiting
factor in using Wemos or NodeMCU boards can be the possibility of connecting only one
analog sensor.
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The proposed fully equipped sensor node should be considered part of the distributed
wireless sensor network for solar panel data acquisition, as presented in Figure 2. The
sensor network has nine elements. It is based on the smart factory sensor network prototype
shown in [36].

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 24 
 

The proposed fully equipped sensor node should be considered part of the distrib-
uted wireless sensor network for solar panel data acquisition, as presented in Figure 2. 
The sensor network has nine elements. It is based on the smart factory sensor network 
prototype shown in [36]. 

 
Figure 2. Elements of distributed wireless sensor network for solar radiation data acquisition. 

Wireless sensor nodes are the first element of the distributed sensor network (1). The 
wireless sensor network coverage defines the technology used for communication (2). The 
Wi-Fi technology and one of its variants (IEEE 802.11b/h/n/ac/ax/ad) should be considered 
if the network is designed for short or middle-range coverage. For long-range coverage (a 
few kilometers), the LoRa/LoRaWAN should be considered [37–39]. For further research, 
the investigation of using the IEEE 802.11ah should be very interesting. 

The same is with the device connecting the wireless nodes (3). When using one of the 
Wi-Fi technology variants, the access point should be used as a concentration device. 
When using LoRa/LoRaWAN technology, the LoRaWAN gateway should be used. The 
connection (4) between the server (5) and concentrating device (3) can be realized with 
Wi-Fi or wired technology but should be based on IP protocol. The server’s primary role 
(5) is collecting, storing, processing, and analyzing collected data. Collected and analyzed 
data will be available to the system users through web interfaces with live graphs, dash-
boards, and reports. The collector for the data sent from the wireless nodes is the open-
source server (6) based on messaging protocol, probably MQTT (MQ Telemetry 
Transport) [40]. Finally, data collection should be realized with the DB storage system (7), 
SQL, or NoSQL, depending on the number of nodes and required data acquisition and 
writing frequency. 

The last two elements of the system depend on the communication technology used 
for connecting nodes (1) and concentrating device (3) and concentrating device and server 
(5). Suppose the connection from the node is based on Wi-Fi technology, and the further 
connection to the server is based on Wi-Fi or Ethernet (wired) technologies. In that case, 
the messages containing collected data will be sent with the MQTT messaging protocol. 
When LoRa/LoRaWAN protocol is used for node connectivity, the conversion from LoRa 
to MQTT messages will be implemented at the LoRaWAN gateway–concentrating device 
(3). 

In this research, the authors did not test the proposed system on a full scale during 
the continuous operation of Arduino and clone devices. As the following sections explain, 
the node prototype is built as a small and laboratory-scale setup for testing purposes, as 
planned in the project’s current phase. The future phase will cover building the sensor 
node network and its full data acquisition operation. 

Estimating the efficiency of the proposed device, the authors rely on previous per-
sonal experiences such as in [36–39] and numerous external research sources where the 
Arduino UNO and its clones are proven reliable devices. The effects of high-temperature 

Figure 2. Elements of distributed wireless sensor network for solar radiation data acquisition.

Wireless sensor nodes are the first element of the distributed sensor network (1). The
wireless sensor network coverage defines the technology used for communication (2).
The Wi-Fi technology and one of its variants (IEEE 802.11b/h/n/ac/ax/ad) should be
considered if the network is designed for short or middle-range coverage. For long-range
coverage (a few kilometers), the LoRa/LoRaWAN should be considered [37–39]. For further
research, the investigation of using the IEEE 802.11ah should be very interesting.

The same is with the device connecting the wireless nodes (3). When using one of
the Wi-Fi technology variants, the access point should be used as a concentration device.
When using LoRa/LoRaWAN technology, the LoRaWAN gateway should be used. The
connection (4) between the server (5) and concentrating device (3) can be realized with
Wi-Fi or wired technology but should be based on IP protocol. The server’s primary role (5)
is collecting, storing, processing, and analyzing collected data. Collected and analyzed data
will be available to the system users through web interfaces with live graphs, dashboards,
and reports. The collector for the data sent from the wireless nodes is the open-source
server (6) based on messaging protocol, probably MQTT (MQ Telemetry Transport) [40].
Finally, data collection should be realized with the DB storage system (7), SQL, or NoSQL,
depending on the number of nodes and required data acquisition and writing frequency.

The last two elements of the system depend on the communication technology used
for connecting nodes (1) and concentrating device (3) and concentrating device and
server (5). Suppose the connection from the node is based on Wi-Fi technology, and the
further connection to the server is based on Wi-Fi or Ethernet (wired) technologies. In that
case, the messages containing collected data will be sent with the MQTT messaging proto-
col. When LoRa/LoRaWAN protocol is used for node connectivity, the conversion from
LoRa to MQTT messages will be implemented at the LoRaWAN gateway–concentrating
device (3).

In this research, the authors did not test the proposed system on a full scale during
the continuous operation of Arduino and clone devices. As the following sections explain,
the node prototype is built as a small and laboratory-scale setup for testing purposes, as
planned in the project’s current phase. The future phase will cover building the sensor
node network and its full data acquisition operation.

Estimating the efficiency of the proposed device, the authors rely on previous personal
experiences such as in [36–39] and numerous external research sources where the Arduino
UNO and its clones are proven reliable devices. The effects of high-temperature exposure
of sensor nodes will be examined in the project’s future phases, relying on previous
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experiences. Possible measures for reducing heat and dust exposure will be used in
designing protective cases for sensor nodes in further research.

The lack of experimentation with the continuous operation of Arduino boards in the
open environment under direct exposure to sunlight and temperature is the major problem
of this research in the current phase. However, this will be explored in many details in
the future, primarily with the design of protective cases and node temperature monitoring
with thermal cameras or temperature sensors.

4. Experiment

This section presents an experimental platform to examine the efficiency of using open-
source, low-cost, and prototyping components to develop a solar panel data acquisition
network. The platform’s photo is shown in Figure 3. The platform is built upon the
prototyped node from the previous chapter (Figure 1).
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The architecture of the testing platform is developed as a reduced model presented in
Figure 1, shown in Figure 3. The platform is designed to measure the accuracy of a low-cost
voltage sensor for solar panel performance monitoring. After justifying its accuracy, the
relation of other measurement values with the panel voltage output is analyzed. The
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voltage sensor was chosen for this experiment as the single sensor that can simultaneously
measure and analyze solar radiation and solar panel efficiency.

The testing platform (Figure 3) is based on low-cost open-source hardware (OSHW)
components. Open-source hardware allows rapid assembly, development, and configura-
tion of sensor devices. The value of a sensor device built with open-source components is
given in Table 3, which is below 50 EUR. Instead of Node MCU, Wemos D1 or Arduino
and its clones with integrated or connected Wi-Fi modules can also be considered. If some
components are changed, the price will be close to the presented one. The level of prices
can depend on a region or the current offer of the market, but it can be similar.

Table 3. The price of the components of the sensor node.

No. Item Price (EUR)

1 Voltage sensor ~2.50

2 NodeMCU v3 ~5.00

3 Solar panel 137 × 81 cm ~8.00

4 Solar charger ~11.00

5 Li-Po 3.7 battery 4000 mAh ~11.00

6 UV sensor ~8.00

7 BH 1750 ~2.00

8 Case ~2.00

Total ~49.50

The central part of the platform is a PC (Personal Computer) with the Windows
operating system. PC logs the data collected with a sensor node and digital multimeter. A
Digital multimeter is used to make control measurements and validate the voltage sensor’s
accuracy. The MCU used in the testing platform is Arduino UNO (1). Arduino UNO is
connected to the sensor shield (2). Arduino sends data to the PC via Universal Serial Bus
(USB). It is programmed to read the data from the voltage sensor and send data to the PC
via USB. PC reads the data sent to the COM port and logs it in comma-separated values
(CSV) file using putty terminal software.

The control measurement is made with a digital multimeter (DMM) connected to a
PC via USB. The data are sent to a PC, where the open-source digital multimeter reader
program UltraDMM is used to visualize and log the data. Both devices are connected
in parallel with the solar panel. The other components of the platform are (Figure 3):
(3) DHT-22 sensor for air temperature and humidity, (4) TMP36 sensor for solar panel
temperature, (5) light BH1750 sensor for light intensity, (6) UV sensors, (7) voltage sensor,
(8) solar panel: 130 mm × 87 mm × 2.5 mm (efficiency 16%, 5.5V, 3W, peak current 270 mA),
and (9) pyranometer. The pyranometer is not integral to this open-source platform and is
only used for control measurements.

The testing phase should be before the project’s continuation and the sensor network’s
development and deployment to prove its ability and efficiency and justify its usage. To
measure the solar panel performance under different conditions in the shortest period
possible, the experiment uses natural sunlight in combination with artificial light sources
in indoor space. Three light bulbs are used: incandescent, compact fluorescent light (CFL),
and LED. Additionally, the indoor ambient light is used (Figure 4). As described before, the
response of the solar panel, the voltage change, is measured in parallel with the Arduino
platform voltage sensor and digital multimeter.
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The methodology of usage of the platform in the research is depicted in Figure 5,
where the algorithm of the research methodology is presented. The algorithm shows
seven steps. The steps are as follows: (1) design of the platform with the definition of
the components and building of the platform, (2) data acquisition of the solar radiation-
related data and logging to the PC, (3) parsing of collected values and (4) data processing
performed at PC with the usage of Python and/or GNU Octave, (5) creation of reports and
comparison of data processing outputs, (6) evaluation of the accuracy of estimation and
deciding if the evaluation results are acceptable, and in the case, if they are not acceptable
triggering re-design of the platform, and in the case if results are acceptable, forwarding
to (7) implementation of the estimation techniques to the firmware of sensor nodes. The
algorithm of the research flow is presented in Figure 5.
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5. Results

In this section are described the results of the experiments. The results are acquired
with the experiment conducted in two phases. The experiment’s first phase evaluates
the voltage sensor’s accuracy. The first phase is divided into two subphases. The second
experiment is driven to find the relation between voltage and other measured values, such
as panel temperature, air temperature and humidity, UV, and sunlight intensity.

5.1. Results of the Voltage Sensor Measurements

The first subphase of the first experiment is conducted with sunlight only. First, the
testing platform is exposed to direct sunlight. The transparent plexiglass is placed over
the testing platform in the next subphase. The amount of sunlight is reduced by gradually
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covering the plexiglass with colored semi-transparent foils, as shown in Figure 6. This
step-by-step covering is performed because the authors wanted to test the voltage sensor
response with different sunlight intensities, avoiding testing in mid or long-term periods.
By adding semi-transparent foils, the authors simulated the reduction of sunlight and
different sunlight intensities. At the final stage of the testing process, the solar panel is
covered with a non-transparent cover.
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Figure 6. Solar panel voltage measurement with semi-transparent folios.

The effects achieved in this phase can be seen in Figure 7, with the graduate decreasing
solar panel voltage. The figure shows the comparison of sensor and digital multimeter
results. The voltage sensor offers good capabilities because both measurements were
similar, with a slight difference. The lowest values in Figure 7 are for the test cases when a
non-transparent cover is used. Even in this case, there is a distance between the solar panel
and the cover, and the solar panel generated voltage.
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Next, the test continued with indoor ambient light and artificial light sources. This
testing phase aimed to monitor the voltage sensor response when exposed to different
light sources. The testing platform is exposed to indoor ambient light and an additional
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three light bulb sources to achieve that goal. Three bulbs are used: incandescent, compact
fluorescent light (CFL), and light-emitting diode (LED). The bulbs are mounted to the
bulb holder with an adjustable bulb height. The bulb height gradually changed as it was
measured at six different distances (35, 30, 25, 20, 15, and 10 cm) from the solar panel. The
seventh test phase is with the bulb turned off. The platform with the adjustable bulb holder
is presented in Figure 8.
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Figure 9 shows that three light sources have different values gradually. The first part
of the graph is with the results of incandescent light. When the light bulb is positioned at
35 cm, the values are around 5 V, with 30 cm height values around 5.2 V, and up to 6 V
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when the bulb is 10 cm from the solar panel. When the bulb is off, the measured values are
around 3.2 V.

The next part of the graph shows results with the exact distances for CFL and LED
bulbs, respectively.

Further, the comparative results of measurements for three bulbs separately are shown.
Figures 10–12 show the comparative results for incandescent, CFL, and LED bulbs, respectively.
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Figure 10 compares DMM and voltage sensor measurements with the incandescent
bulb used to simulate the light source. Similar measurement values are visualized. The
visualization of the measurements clearly shows the voltage sensor’s accuracy, confirming
its justification for usage in the measurements platform.

Figures 11 and 12 similarly compare DMM and voltage sensor measurements with the
CFL and LED bulbs that simulate the light source. As in the previous case, the similarity
of the measured results is obvious. The visualization again confirms the accuracy of the
voltage sensor without dependence on the light source. With these results, the justification
of the measurement platform is additionally confirmed.

The summarization of the results for all four light sources is given in Table 4. The table
shows the measured values in volts between the sensor and the digital multimeter. The
difference is presented with the Root Mean Square Error (RMSE).

Table 4. The comparison of measurement results with solar light and with incandescent, CFL, and
LED bulbs.

Light Source Sensor Avg. [V] DMM Avg. [V] RMSE

Solar radiation 5.260759494 5.408278481 0.173889
Incandescent bulb 5.290892857 5.423053571 0.145102242

CFL bulb 4.311111111 4.431962264 0.113867351
LED bulb 4.401126761 4.510450704 0.115953123

The test proved the accuracy of the voltage sensor, justifying its usage in the proposed
architecture. The difference in sensor and DMM measured values ranges from 0.11 to
0.17 V. In addition to its accuracy, the platform shows satisfying behavior during the test
period. The platform was stable and easy to set up and handle.

The measurement results and the platform performance experiment can be consid-
ered successful.

5.2. The Relation of the Other Sensor Values to the Voltage Sensor Measurements

The experimental platform for the second phase was configured to measure the UV and
sunlight intensity values, the solar panel temperature value, and the air temperature and
humidity values. The specification and description of the sensors and their R2 (coefficient
of determination) to output voltage are given in Table 5. The coefficient of determination
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R2 will be used for estimation formula accuracy. Python is used for fitting the data and
calculating the R2. The data in the table show that the UV sensor has the greatest influence
on the solar panel output voltage. The second best R2 is with the visible light sensor. The
reason why the UV sensor has a greater relation compared to the visible light sensor might
be that the UV sensor uses 10-bit values in the range of 0–1023 to measure UV light intensity,
while the BH1750 sensor is optimized for measuring light in lux units with 16-bit values
ranging from 0–65535.

Table 5. The configuration of the experimental platform and sensor specification.

Parameter Sensor Description R2

Visible light int. I2C BH1750 16-bit ADC for measuring lux 0.94
UV intensity Analog 10-bit ADC value range 0–1023 0.97

Panel temperature Analog TMP36 10-bit ADC value converted in ◦C 0.70
Air temperature Digital DHT-11 Value in ◦C 0.60

Humidity Digital DHT-11 Value in humidity % N/A

Because the UV light and BH1750FVI sensors have the highest R2 values, further
fitting is made with solar panel output voltage. The fitting is made with Python using
exponential fitting, logarithmic, and power functions. The fitting results of the UV sensor
are shown in Tables 6 and 7 for the BH1750 sensor, respectively.

Table 6. The fitting results for the UV sensor.

Function RMSE R R2

Linear 0.352247 0.680971 0.463721
Exponential 0.132521 0.983125 0.966534
Logarithmic 0.326726 0.892513 0.79658

Power 0.352247 0.874081 0.764017

Table 7. The fitting results for the BH1750 sensor.

Function RMSE R R2

Linear 31.46735 0.412497 0.1702
Exponential 0.177258 0.969601 0.940126
Logarithmic 0.494349 0.730967 0.534312

Power 0.513439 0.705927 0.498332

Again, the UV sensor has better fitting results than the BH1750 sensor. For both
sensors, the exponential fitting function gives the best results. Three fitting functions that
can be used for estimating panel output voltage based on UV sensor measurements are
calculated by Python script as follows:

Exponential function

Vexp = −199.498·e−15.07·UV + 5.531 (1)

Logarithmic function

Vlog = 0.37·log(UV) + 4.747 (2)

Power function
Vpow = 4.776·UV0.067 (3)

The estimated values of output voltage calculated on the measured values of the UV
sensor are given for all three functions and compared to measured voltage results and
visualized (Figure 13). As in Table 6, the fitting with the exponential function provides the
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best results. Two other functions (logarithmic and power) give similar results, with much
lower accuracy than the exponential function.
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All three functions’ fitting curves are compared to the measured output voltage values
and visualized in Figure 14. Again, as shown in Table 7, the fitting with exponential
functions gives the best results. Again, two other functions (logarithmic and power)
provide similar results, with much lower accuracy than the exponential function. The
similarity of measured values with those estimated with the exponential function is visible
in Figures 13 and 14, and the values almost overlap.
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5.3. The Summary of the Paper’s Contribution

The benefits of the proposed and existing work are multiple. This paper contributes
to the distributed wireless sensor network system architecture based on open-source
hardware and open-source software technologies. The proposed architecture is designed
for acquiring solar radiation data and other ambient parameters. The data are collected
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to define nonlinear regression estimation techniques for predicting solar panel voltage
outputs and, in addition, to analyze and monitor the influence of multiple ambient data
on the efficiency of solar panels. The proposed architecture is implemented at a partial
scale. It is not implemented as a fully developed wireless sensor network with many sensor
nodes deployed in the city area or some part of the city for long-term exploration. The
proposed architecture is implemented with a prototype sensor node designed to be part
of the network, as planned in this research phase. The same sensor node is evaluated for
collecting solar panel voltage generation data with open-source hardware and low-cost
components. The sensor node is evaluated in different scenarios with solar and artificial
light conditions for the feasibility of the proposed architecture and justification of its
usage. The collected data are used for creating of nonlinear regression model for voltage
output estimation.

The benefits of the paper’s contribution are as follows. This approach opens a way of
introducing estimation techniques for sensor nodes in sensor networks. This can be useful
in implementing estimation techniques in edge devices in solar data acquisition networks.
Thus, we can use the sensor networks designed for usage other than solar radiation
data acquisition, such as air pollution monitoring, and weather and meteorological data
networks to use their sensors to predict solar radiation data. This will allow using non-
specially designed wireless sensor networks for solar data estimation and solar radiation
mapping, planning optimal deployment of solar-powered sensor nodes, and solar-powered
sensor node efficient energy management.

Additionally, the model of estimating the solar panel performance and capacity based
on the presented approach can be used to manage the energy-efficient solar-powered sensor
nodes. The model for their management is an ongoing phase of the project, but it is out of
the focus of this paper.

The results of this research apply to any industrial Wireless Sensor Network and
the Internet of Things with solar-powered sensor nodes. This means that any outdoor
deployed sensor network can use the results of this research. Those networks can be
utilized in various scenarios, such as environmental monitoring, smart agriculture, the
construction industry, and the smart grid [41].

Additionally, the same platform and methodology can be used in developing solar
radiation estimation techniques using AI in edge computing, as seen in numerous exam-
ples [42–44]. This implementation of AI is planned as future work, and it will be based on
the Python programming language and Scikit-learn [45] and Keras [46] packages.

The limitation of the study is, as mentioned before, its short evaluation period. Because
of the project plan and current progress, the critical issue was to avoid long-term testing.
Therefore, the prototype is tested with natural solar and artificial light in various scenarios.

6. Conclusions

The vital issue of designing efficient solar-powered sensor networks is addressed in
this paper. A proposal for the solution to the problem is given with the architecture of
the solar radiation data acquisition sensor nodes and network. The architecture of the
sensor network and sensor nodes are presented and described with their main features. The
proposed system collects solar radiation data and builds a model to estimate solar panel
outputs accurately. The proposed platform collects data to analyze solar radiation and the
influence of ambient data on solar panel performance. The collected data were used to
create nonlinear regression models to estimate solar panel behavior. The created nonlinear
regression models could be implemented on edge devices in complex sensor networks.

This paper proposes solar energy research and a teaching platform by combining
the two approaches in solar panel research. One approach is solar radiation estimation
based on various techniques using terrain, rooftop configuration, LIDAR, and other data.
The different approach is the usage of Arduino-based open-source hardware components
for building platforms for monitoring various solar-powered systems. The research pro-
poses a low-cost, accurate platform for estimating solar radiation by combining these
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two approaches. The key paper’s contributions are a platform for data acquisition and a
method for implementing estimation techniques for sensor nodes in various sensor and
IoT networks, which helps achieve edge intelligence not limited to solar data acquisition
networks. This system can significantly improve the process of developing systems with
efficient solar powering of the sensor nodes. It can offer optimal operation settings of sensor
nodes in various Industrial IoT. The small-scale prototype of the system was implemented,
relying on the authors’ previous experience in designing a smart factory system using
open-source hardware.

The experimental results show that the system can be effectively used as a tool for
data collection valid for estimating the output of sensor node-based solar panels. Thus,
it can be used to determine the most suitable locations for positioning sensor nodes in
various outdoor locations for Industrial IoT and other WSN, IoT, and smart city applications.
Additionally, by estimating solar panel outputs, the model of the sensor node operations
can be changed dynamically. Thus, during its operation, the sensor node can change its
power-saving modes from full operation to modem-sleep, light-sleep, or deep-sleep modes.

The summarization of our work is as follows. This paper contributes to the proposed
sensor network model for solar panel data acquisition with the models of its essential
elements, such as fully-equipped and reduced-equipped sensor nodes. The model is
evaluated to assess the efficiency and feasibility of using low-cost open-source hardware
components to acquire solar panel data and estimate solar panel outputs. To avoid long-
term tests, the experiment is performed under the simulated environment with direct solar
light, reduced solar light, indoor ambient light, and different artificial light sources at
different distances from the solar panel.

The evaluated sensor nodes can be used in future research for solar radiation mapping
of micro-locations in urban scenarios. The solution can be used further in engineering
education for building a lab for teaching IT students the development of solar-powered
sensor nodes and for laboratory experiments with the solar-powered sensor node design.
These features will be further explored in the future phases of this project. The other further
steps in this research will be to build and validate the full-scale sensor network. The third
effort in further research can be made with the collection of ambient and solar radiation
data and the usage of collected data for further data analysis of ambient parameters’ impact
on solar panel efficiency. Together with data collection, new estimation models using
different machine-learning techniques will be built. These new models will be evaluated
for implementing artificial intelligence and machine learning in edge devices and, therefore,
edge computing. This research direction can be extensive with the possible implementation
of various AI techniques, using Python programming language and packages such as
Scikit-learn and Keras and their adaptation to the Arduino platform.
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Abbreviations

ADAS Automatic Data Acquisition Systems
AI Artificial Intelligence
ANN Artificial Neural Networks
BP Back Propagation
CFL Compact Fluorescent Light
CNN Convolutional Neural Network
COM Communication port
CSV Comma-Separated Values
DB Database
DMM Digital Multi Meter
GIS Geographic Information System
GPU Graphic Processing Unit
I2C Inter-Integrated Circuit; pronounced as “eye-squared-C”), also I2C or IIC
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IP Internet Protocol
LCD Liquid Crystal Display
LED Light-Emitting Diode
LIDAR LIght Detection And Ranging
MCU Micro Controller Unit
ML Machine Learning
MQTT MQ Telemetry Transport
NoSQL non-SQL/non-relational
OLED Organic Light Emitting Diode
OSHW Open-Source Hardware
PC Personal Computer
PV Photovoltaic
RF Random Forest
RMSE Root-mean-square error
RNN Recurrent Neural Network
RTC Real-Time Clock
SD Secure Digital
SQL Structured Query Language
SVM Support Vector Machine
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
UV Ultraviolet
Wi-Fi Wireless Fidelity
WSN Wireless Sensor Networks

Notations

Vexp Voltage calculated with an exponential function.
Vlog Voltage calculated with a logarithmic function.
Vpow Voltage estimated with a power function.
UV Analog value 0–1023 of the UV sensor read
R2 or r2 (R-square), the coefficient of determination
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40. Dobrilović, D.; Petrović, D.; Malić, M. Usability of open-source hardware based platform for indoor positioning systems. J. Eng.
Manag. Compet. 2018, 8, 113–120. [CrossRef]

41. Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet
of Things and its Applications in Industry 4.0: State of The Art. Comput. Commun. 2021, 166, 125–139. [CrossRef]

42. Iftikhar, S.; Gill, S.S.; Song, C.; Xu, M.; Aslanpour, M.S.; Toosi, A.N.; Du, J.; Wu, H.; Ghosh, S.; Chowdhury, D.; et al. AI-based fog
and edge computing: A systematic review, taxonomy and future directions. Internet Things 2023, 21, 100674. [CrossRef]

43. Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things
(IoT). Inf. Syst. 2022, 107, 101840. [CrossRef]

44. Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al. AI for
next generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [CrossRef]

45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

46. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 21 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs71215877
https://doi.org/10.1016/j.renene.2020.02.050
https://doi.org/10.1016/j.apenergy.2019.04.113
https://doi.org/10.3390/en12183457
https://doi.org/10.1016/j.jclepro.2020.121489
https://doi.org/10.1016/j.seta.2022.102060
https://doi.org/10.1016/j.egyr.2022.03.013
https://doi.org/10.1016/j.renene.2020.04.042
https://doi.org/10.1016/j.atmosenv.2022.119219
https://doi.org/10.1016/j.ifacol.2020.12.1092
https://doi.org/10.3390/app11062850
https://doi.org/10.5937/jemc1701055D
https://doi.org/10.1007/s11276-021-02586-2
https://doi.org/10.1109/GCAIoT51063.2020.9345843
https://doi.org/10.5937/jemc1802113D
https://doi.org/10.1016/j.comcom.2020.11.016
https://doi.org/10.1016/j.iot.2022.100674
https://doi.org/10.1016/j.is.2021.101840
https://doi.org/10.1016/j.iot.2022.100514
https://keras.io

	Introduction 
	Related Work 
	Architecture of Sensor Network for Solar Radiation Data Acquisition 
	Experiment 
	Results 
	Results of the Voltage Sensor Measurements 
	The Relation of the Other Sensor Values to the Voltage Sensor Measurements 
	The Summary of the Paper’s Contribution 

	Conclusions 
	References

