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Abstract: The processes of land use and cover change (LUCC) are highly diverse and complex, being
heavily influenced by natural factors, economic factors, and other related factors. These changes
have a significant impact on ecological environments and landscapes, and serve as a reflection of
human activity, limited by natural factors. As a result, LUCC has been widely studied across multiple
scientific disciplines. In particular, considerable progress has been made with regard to traditional
methods of analyzing land use structures, which focus on the overall differences in the land use
structure in each spatiotemporal snapshot. However, these methods have overlooked the continuity
in the evolution of each land use unit between different snapshots, impeding the development
of a comprehensive model for the spatiotemporal evolution of land use processes. In this work,
land use change process (LUCP)—constructed using multiple land use data points from different
points in time—was employed as the basis to develop a method to measure the spatiotemporal
distance between irregular land patches in evolution sequences based on LUCP. Furthermore, the
spatiotemporal distribution model was analyzed using Monte Carlo simulation and measurements
of the shortest spatiotemporal distance of LUCP. This work employs land use data for Huainan
in China, a typical coal resource city, from 2008 to 2017 for an empirical study. A typical kind of
spatiotemporal evolution of LUCP (evolution from farmland to grassland within any two years) is
evaluated. Taking into account the shape of land use units, the spatiotemporal distances between
irregular evolutionary sequences are measured using buffer-based superposition. The results show
that the expected mean nearest neighbor distance for the irregularly evolving sequence of land use
units is 0.085 in the completely random CSR model, whereas the mean nearest neighbor distance is
0.037 in the real observation model. These results indicate that such LUCPs have generally shown a
spatiotemporal aggregation pattern over the past 10 years. However, since the z-score is 1.03, which is
in the range of−1.65 to 1.65, this aggregation pattern is not statistically significant. These experiments
demonstrate the validity of using the method proposed herein to study similar problems. The results
of this work provide valuable insight into the spatiotemporal evolution process of land use units,
which could be instrumental in exploring the potential spatiotemporal model of LUCP evolution.

Keywords: land use change process (LUCP); shortest distance; spatiotemporal buffer; Monte Carlo
simulation; significance evaluation; spatiotemporal aggregation

1. Introduction

Land use and cover change (LUCC) has received considerable attention in the context
of global change research [1,2]. Global warming and frequent extreme weather events are
believed to have intricate connections with LUCC [3,4]. Even abnormal behavior of wild
animals and abnormal transmission of viruses are thought to be linked with temporal and
spatial changes in land use [5,6]. Therefore, research on land use changes has always been
of interest to researchers in related fields.
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The evolution process of LUCC is very complex, and it exhibits certain patterns in time
and space [7,8]. The study of temporal and spatial evolution patterns of LUCC is of great
significance to the detection of abnormal behaviors in the process of land use as well as in the
identification of temporal and spatial changes in the process of land use. Furthermore, the
regular patterns revealed by these results can provide a basis for targeted land use policies [9,10].

The temporal and spatial distribution patterns of land use change processes (LUCPs)
are often not completely random. Land use changes generally exhibit certain spatial and
temporal aggregation patterns. For example, during the process of urbanization, cultivated
land in the suburbs of a city demonstrates a rapid transformation to the construction land
type within a short period. These patterns are usually hidden in multi-temporal LUCC
data sets. In such data sets, LUCPs can be regarded as sets of polygons and time-stamps
(i.e., <Polygon, Time-stamps>) that consist of land use units in different periods. Therefore,
the study of spatial and temporal aggregation patterns of LUCP, i.e., mining possible
aggregation or random patterns from the <Polygon, Time-stamps> sets, is also important.

In this work, irregular land use blocks were extracted from a multi-temporal sequential
land use data set, and the LUCP, composed of temporal land use blocks with time stamps,
was studied. The spatial and temporal distance between irregular spatial and temporal
blocks was measured using a buffer-based method. The shortest temporal and spatial
distances were used as indicators to conduct a temporal and spatial pattern analysis of
LUCP based on Monte Carlo simulation, and the significance of spatial and temporal LUCP
aggregation patterns in the study area was evaluated.

2. Related Research

Since LUCC research has received extensive attention, a variety of LUCC research methods
have been proposed in previous studies. For example, basic statistics have been used often
to analyze the structural composition of land use in a given year, and comprehensive land
use indicators have been proposed to evaluate the intensity of land development and use
within a study area [11]. Furthermore, to compare changes in land use structure in different
years, the concepts of land use dynamics and two-way change dynamics of land use have been
proposed [12,13]. Although such indicators can describe the overall rate of change in land use,
they are not spatially expressive. In addition, the land use transfer matrix has become one of
the most commonly used tools in LUCC research [14]. This tool is used to quantify the overall
quantitative changes in different land use types between adjacent or non-adjacent years.

These methods can be used to quantitatively evaluate the overall differences in land
use between years, but cannot be used to analyze the evolution trajectory of the same
land use unit between years. As shown in Figure 1, the collection of the same land use
unit between adjacent interannual periods constitutes the evolutionary trajectory of the
land use unit. From time t1 to t2, the land use type of the land use unit changes from
arable land to construction land (expressed as a color difference). From time t2 to t3, the
land use type of the land use unit is still construction land, but the area and shape change
greatly. In this work, we refer to sequences of the same land use unit as that of LUCP.
Unlike the conventional method of LUCC research, this study employs LUCP to analyze the
aggregation pattern of land use change in time and space. At the same time, our approach
takes into account the size and shape of the land unit, rather than simply replacing it with
a point expressing the location. A similar approach is gradually being taken into account in
other research areas and is becoming more widespread, including research on atmospheric
pollution and solar activity [15,16].

Methods of research on the “random/aggregation mode” mainly include distance-
based methods and density-based methods. Typical distance-based approaches include the
use of the nearest neighbor index (NNI), used for global evaluation, and Ripley’s K-function,
used for multi-distance scale assessment. These tools, developed from two-dimensional
spatial pattern exploration, are applied to studies of high-dimension spatiotemporal models,
often by compressing space-time processes into discrete point data on a two-dimensional
plane [17]. This discretization method objectively detaches the temporal connection of
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the evolutionary trajectories of land use units [18]. A typical density-based method is the
scanning statistical method advocated and developed by Kulldorff [19]. Density-based
methods are commonly used for disease surveillance and hot spot exploration. Most of
the scanning windows used in the scanning statistical method are based on regular shapes
such as circles or ellipses [20,21], and tools such as CrimeStat and SaTScan are commonly
used [22–25]. The evaluation results of these tools are greatly affected by parameter settings.
In general, existing methods cannot evaluate spatiotemporal changes in the orientation,
shape, and size of space-time objects, and research on spatiotemporal pattern discovery for
irregular polygon-based spatiotemporal objects such as LUCP is still lacking.
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Figure 1. LUCP objects composed of sequential irregular land use units.

3. Study Area and Data Processing

The target area was Huainan, located in Anhui Province, China (31◦54′8”–33◦00′26” N
116◦21′5”–117◦12′30” E; Figure 2), with a total area of 5533 km2. Huainan City is an important
energy base in East China and is a typical resource-based city. Huainan City is rich in coal
resources and has developed a series of energy-heavy industries around coal mining and
coal utilization. In Huainan City, the industrial output of heavy industries that use coal has
consistently been high, often exceeding 50%. In recent years, coal mining has brought about
geological and ecological disasters such as ground subsidence, a loss of arable land, and a
destruction of vegetation, which has directly led to dramatic changes in land use patterns.
Moreover, with the increasing emphasis on mitigating carbon emissions, Huainan City is
attempting to transform its industrial structure. Therefore, the land use changes in Huainan City
differ significantly from the general trend of continuous urban expansion that is accompanying
the rapid urbanization throughout China. Studying the land use changes in Huainan City can
provide a reference for exploring the land use change patterns in resource-based cities.

Huainan City is situated in the hinterland of the Yangtze River Delta and the middle
reaches of the Huai River. The terrain in the southern part of the Huai River is characterized
by hills belonging to the Jianghuai hills, and that in the northern and central parts of
the Huai River is high in the south and low in the north. The northwest part of the
study area follows the Huai River and Pihe River depression, and the southeast part is a
hillock. Between 2008 and 2017, the proportion of the areas of farmland and water bodies
in Huainan changed slightly. The proportion of grassland, forest land and unused land
decreased, whereas the proportion of urban construction and residential land increased.
Specifically, farmland was mainly transformed into urban construction and residential land,
whereas forest land and unused land were mainly transformed into urban construction
land, residential land and grassland.
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In this study, the sequential land use data were derived from Landsat imagery of the
research area, downloaded from the geospatial data cloud “http://www.gscloud.cn/search
(accessed on 25 March 2022)”, with the row and column numbers (121, 37) and (121, 38),
respectively. Specifically, data sets were derived from Landsat 4-5 TM imagery obtained
from 2008 to 2012, Landsat 7 ETM imagery obtained in 2013, and Landsat 8 OLI imagery
obtained from 2014 to 2017. Additionally, data with low cloud cover from May to October
were selected, as illustrated in Figure 3, using the 2010 image as an example. First, bands
7, 4, and 1 of all 10 remote sensing images were combined after geometric correction,
seamless mosaic generation, and cropping, and the experimental data for Huainan was
then extracted, since the LandSat 7 data were striped. Therefore, it needed to be debanded
before being interpreted. First, the remote sensing image of LandSat7 was pre-processed,
including radiometric correction and atmospheric correction. Then, the debanding plug-in
was installed in ENVI 5.3. The pre-processed remote sensing image was debanded using
this plug-in. Following this, supervised classification using a support vector machine
classifier was adopted, with training samples including grassland, farmland, forest land,
water bodies, urban construction land and residential land, as well as unused land. Finally,
post-processing operations were conducted on the data after supervised classification,
and debris patches were merged through clustering. Additionally, the classification error
categories were manually modified and the classification results were exported as vector
files (Figure 4) for further research.

The accuracy of the remote sensing interpretation results was evaluated using various
methods. On the one hand, the separability of the training samples between each category
reached an impressive value of 1.8 during the supervised classification. On the other hand,
because the source data for this paper were a series of historical remote sensing images
from 2008 to 2017 and because the authors were unable to obtain field-validated data for
the corresponding years in the past, they could only seek to validate the classification
accuracy of the remote sensing interpretation through indirect ways. The first way was
to conduct a reliability analysis using contemporaneous high-resolution, 2 m resolution,
remote sensing image data of the study area from 2013–2017. Points were randomly

http://www.gscloud.cn/search
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sampled, and the classification results of the high-scoring images were cross-referenced with
the land use types of the corresponding points from the LandSat supervised classification
results obtained during the same period, and a conversion matrix was constructed. The
Kappa coefficient calculated from this matrix was found to be 79.3%. For the second way,
the consistency was compared with the experimentally interpreted results using the widely
recognized GLobalLand30 dataset. The results show a consistency of 70% for grassland;
90% for cropland; 70% for forest land; 90% for water bodies; and 90% for construction land.
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4. Methods

A novel approach to study the spatiotemporal model of LUCP based on continuous
land use time series data in the target area is proposed herein. Specifically, a buffer-based
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spatiotemporal distance measurement method is proposed to deal with irregular land
patches of evolution sequences. This method consists of three steps: (1) assessing the
relationship types of the irregular evolution sequence; (2) calculating the buffer-based
spatial distance of the overlapping area; and (3) measuring the buffer-based spatiotem-
poral distance of the overlapping area. Furthermore, based on the measured distance
between LUCPs, the shortest spatiotemporal distance method is employed to conduct
Monte Carlo simulation and to evaluate the significance of the spatiotemporal model
during the evolution of LUCP in the target area.

4.1. Spatiotemporal Distance Measurement for Irregular Land Patches in Evolution Sequences

LUCP is an archetypal unstructured object consisting of a polygon time stamp se-
quence, and the key to understanding its spatiotemporal evolution model lies in assessing
the spatiotemporal distance between its objects. Three major challenges exist with reference
to the measurement of the spatiotemporal distance of an irregular evolution sequence
similar to that of the LUCP: firstly, a consistent and universally applicable process type
should be identified in order to develop a suitable measurement method; secondly, an ap-
propriate approach to calculate the distance between irregular geometric shapes should be
established; and thirdly, the time dimension should be taken into account when calculating
the spatiotemporal distance. To this end, this study proposes buffer-based spatiotemporal
distance measurement to provide insight into the spatiotemporal distance of irregular
evolution sequences from a different angle.

4.1.1. Relationship Types of Irregular Evolution Sequence

To clearly express the spatiotemporal relationship between two irregular LUCC evo-
lution sequences, a diagram was constructed to illustrate the situation (Figure 5). In the
figure, A and B represent different evolutionary sequences of irregular LUCC patches. T1
to T6 represent different time points, with no fixed sequence between each time point; two
adjacent time points are separated by a unit time interval. Furthermore, the two-way arrow
indicates that the two cases can be converted into each other. By summarizing the spatial
relations between land use units at a certain time point, four types of relationships can be
identified: separation (T1 and T6), adjacency (T2), intersection (T3 and T4), and overlap
(T5). Therefore, for any two irregular LUCC evolution sequences, the relationship types
that may appear at unit time intervals can be summarized as depicted in Figure 5. For
example, from T1 to T2, the relation between sequences A and B is the transition from
separation to adjacency; from T2 to T3, the relation of sequences A and B is the evolution
from adjacency to intersection.
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4.1.2. Spatial Distance Representation of Buffer-Based Overlapping Area

Geographic space entities can be grouped into four categories according to their
different geometric forms: point, line, plane, and bulk entities. While existing distance
analysis methods are mostly tailored to point-like and line-like geographical entities, they
do not take into consideration the shape characteristics of the entities. For planar data such
as LUCC data, using conventional distance calculation methods such as Mahalanobis distance
and Euclidean distance methods may reduce the complexity of distance calculation; however,
the results are not sufficiently accurate. To overcome this, the generalized Hausdorff distance
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measurement model is proposed. Instead of simply representing the distance between two
entities in terms of the closest, the farthest, or the distance between the centroids, this method
obtains the maximum value of the minimum distance between two sets of points in space,
thereby considering the overall shape of planar entities to a certain extent. Nevertheless, this
method is susceptible to the influence of the local shape characteristics of entities [26].

The proposed buffer-based spatiotemporal distance measurement method does not
simplify a planar entity into a point for distance calculations, but comprehensively considers
the irregular shape characteristics of the planar entity. Creating buffers for entities leads
to overlaps between the buffers if the two entities are sufficiently close in space (Figure 6).
The area of overlap increases as the distance between the entities decreases (Figure 6a,b).
If the two entities are dissimilar in shape, the area of the overlapping part will exhibit a
corresponding difference (Figure 6a,c). Thus, the reciprocal of the area of overlap between
buffers can be used as the index of the distance measurement.
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(a,c) if the shapes of the buffers of entities are different.

In terms of space-time, the spatiotemporal evolution sequences can be thought of as a
combination of multiple planar entities at different time points. Although these sequences
might not necessarily occur at the same time, it is possible to measure the spatiotemporal
distance by considering space and time separately, with the latter being considered last. All
evolutionary sequences are unified on the same time plane, and the spatial distance between
each pair is considered, followed by the influence of time. In a two-dimensional space plane,
the distance between planar entities can be measured using the area of overlap between
buffers. However, in the space-time dimension, the distance can be measured using the
volume of the cube formed by the area of overlap between two buffers at different time points
and the time interval (Figure 7). In the three-dimensional space-time formed by X, Y and T, a
and b represent two different LUCC spatiotemporal evolution sequences, while a1 and a2, (or
b1 and b2) represent the spatial distribution state of sequence a (or b) at t1 and t2, respectively.
If equal-sized buffers are created for a1, a2, b1 and b2, the overlapping parts between them at
different times will be c1 and c2, which can be taken as the bases. The difference between t1
and t2 is the height of the irregular platform, and c1 and c2 can be used as the bottom and top
surfaces, thus enabling the calculation of its volume.
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The area of overlap of the buffers can be effectively approximated as a circle, and
its volume can be determined using the circular table volume formula. When one or
two time nodes are adjacent or separate between buffers, the overlapping area is set to
zero. The volumes between two adjacent time nodes are then calculated independently.
Finally, the total volume of a long time series is determined by summing up the volumes.
The reciprocal of the volume is utilized to assess the spatial distance between LUCC
spatiotemporal evolution sequences.

V =
n−1

∑
i=1

1
3

h(Si + Si+1 +
√

Si ∗ Si+1) (1)

d =
1
V

(2)

where V represents the volume formed by the overlap between the buffers of two LUCC
spatiotemporal evolution sequences; i represents the i-th year in the spatiotemporal se-
quence; n represents the total number of years in the spatiotemporal sequence; h indicates
the unit time interval; Si represents the area of buffer overlap in year i; and Si+1 represents
the area of buffer overlap in year i + 1. In Equation (2), d represents the spatial distance
between LUCC spatiotemporal evolution sequences.

4.1.3. Buffer-Based Spatiotemporal Distance Measurement

Spatiotemporal evolution sequences differ not only spatially, but also temporally. In
this context, the time interval between such sequences serves as an essential indicator to
measure spatiotemporal distance. For two spatiotemporal evolution sequences that have
the same spatial distance, the spatiotemporal distance increases (or decreases) as the time
interval increases (or decreases). To set the weights for time in this study, the inverse
distance Weighted (IDW) interpolation method was adopted. This method utilizes the
power value of the reciprocal of the distance as a weight to measure the influence of distance
on the result. Thus, as the distance decreases, both the reciprocal value of the distance and
the corresponding weight increase. The influence of time on spatiotemporal distance also
exhibits similar properties, and hence, the power value of the reciprocal of the time interval
was adopted as the weight to measure the influence of time on spatiotemporal distance.
Subsequently, the buffer-based spatiotemporal distance measurement was obtained.

W =

{
1 (4t = 0)

1
(4t+1)µ (4t 6= 0)

(3)

4t = ta − tb (4)

D = d ∗W =
1[

∑n−1
i=1

1
3 h(Si + Si+1 +

√
Si ∗ Si+1)

] ∗ 1
(4t + 1)µ (5)

where W indicates the weight of the time interval and µ represents a power parameter,
which is an arbitrary positive real number (usually 2) that is used to control the influence
of time. For a large power value, the weight share decreases rapidly as the time interval
increases, whereas for a small power value, the weight share decreases evenly as the
time interval increases. In Equation (4), ta and tb represent the initial temporal state of
spatiotemporal evolution sequences a and b, respectively. In Equation (5), D represents
the spatiotemporal evolution distance between spatiotemporal evolution sequences and d
represents the spatial distance between LUCC spatiotemporal evolution sequences, which
is consistent with Equation (2).
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4.2. Monte Carlo Simulation and Significance Evaluation of Spatiotemporal Model

The spatiotemporal model of LUCP has been found to be based on the spatiotemporal
distance metric. The principle of spatiotemporal model analysis involves a comparison
of the measured spatiotemporal distance index of the current research object with that
generated through random simulation. To achieve this, Monte Carlo simulation is typically
used to simulate random patterns. Monte Carlo simulation involves taking the frequency
of an event or the average value determined by a random variable as the solution of the
problem through a sufficient number of random simulation experiments. This method
accurately accounts for the numerical and geometric characteristics of the target event
distribution, thus enabling a realistic simulation of physical processes. When a sufficient
number of simulation experiments are conducted, a reliable and precise result can be
obtained, and the approach is both simple to program and comprehend. Therefore, Monte
Carlo simulation experiments were designed in this work to measure the spatiotemporal
random patterns of various evolution processes. Furthermore, the statistical significance of
the obtained random patterns was assessed via significance tests.

4.2.1. Monte Carlo Simulation

Monte Carlo simulation is a technique for generating samples that conform to the
probability density function of a given distribution. First, 1000 spatiotemporal evolution
sequences are randomly selected from the total sample, and the shortest distance for all
sequences that meet the LUCP spatiotemporal evolution process type to be analyzed is
analyzed. Then, the average of these closest distances is computed. The random experiment
is repeated 999 times, and the average of the mean values obtained in each experiment is
taken as a measure to evaluate the mode distribution.

E(dmin) =
1
n

n

∑
i=1

dmin(i) (6)

where E(dmin) represents the average shortest distance expectation of 999 experiments,
dmin represents the average shortest spatiotemporal distance of each experiment, n is the
total number of experiments, and i is the i− th experiment.

The spatiotemporal randomness of a given sequence can be determined by assessing
the magnitude of its NNI (R). To carry this out, the average shortest distance among all the
sequences is calculated from the real distribution of spatiotemporal evolution process types.
The NNI (R) is then calculated as the ratio of the actual observation data to the expected
shortest distance of the random sample, according to the following formula:

R =
Dmin

E(dmin)
(7)

For the same set of data, the NNI obtained under different distribution models varies.
(1) If R = 1, it indicates that the observed event originates from a complete spatial ran-
domness (CSR) model, and thus belongs to a spatiotemporally random model (Figure 8b).
(2) If R < 1, it indicates that a large number of events are located close to one another
spatially, and thus belong to a spatiotemporal aggregation model (Figure 8a). The smaller
the R value, the higher the degree of spatiotemporal aggregation. (3) If R > 1, it indicates
that the shortest distance between sequences is greater than that in the CSR process. The
sequences in the event model are mutually exclusive in time and space and tend to belong
to a spatiotemporally uniform model (Figure 8c). In addition, the degree of spatiotemporal
dispersion is proportional to R.
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4.2.2. Significance Evaluation

Significance testing is a method of testing hypotheses made about an entire population.
It involves accepting or rejecting a hypothesis based on the concept of the improbability of
rare- or small-probability events. In this study, the difference between the observed average
shortest distance and the expected CSR was calculated, and then the z-score was obtained
by comparing this difference with its standard deviation.

z− score =
d
′
min − E(dmin)

SEr
(8)

SEr =

√
Var

(
dmin − E(dmin)

)
(9)

The z-score is employed to assess whether or not a statistical significance exists.
The critical value of the z-score under different significance levels can be accessed by
consulting the standard normal table. Based on the criteria in the standard normal table,
the significance evaluation standard was obtained (Table 1).

Table 1. Significance evaluation criteria.

z-Score p Confidence Level Statistical Significance

>−1.65 and <+1.65 —- —- non-significant

<−1.65 or >+1.65 <0.10 90% significant

<−1.96 or >+1.96 <0.05 95% significant

<−2.58 or >+2.58 <0.01 99% significant

5. Results and Discussion

In this study, we examined the spatiotemporal evolution of LUCP from farmland to
grassland in two consecutive years in the municipal district of Huainan, Anhui Province,
China. This type of evolution was widespread in the area during the target period, and it
can be observed from Figure 9 that its changes over time were obvious. The spatiotemporal
evolution distribution of this variation shows that it was very dramatic between some years (e.g.,
2008–2009, 2009–2010, 2010–2011, and 2015–2016). In the other case, such changes were again
relatively small between some years (e.g., 2012–2013 and 2014–2015). The changes allowed us
to discern the characteristics and trends in LUCC in the area during the period of interest.

At the beginning of the period of interest, Huainan, a typical coal-resource-based city,
witnessed an expansion in coal mining activities, which led to an increase in coal mining
subsidence areas and the subsequent transformation of farmlands to grasslands. However,
after 2012, the decline of the coal industry and the acceleration of urbanization caused
farmlands to mainly evolve into urban construction or residential land. In recent years,
the ecological problems caused by the rapid economic growth of the city have become
increasingly prominent, prompting the local government to implement certain policies and
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resulting in a further increase of farmland-to-grassland evolution. Therefore, the fluctuations
in the distribution and area of land use changes from farmland to grassland in the target
region are considerable. Examining the spatiotemporal distribution characteristics of the
evolution from farmland to grassland can not only reveal the effectiveness of local ecological
governance, but also provide guidance for the formulation of future governance policies and
plans. Thus, investigating this spatiotemporal distribution model is of great importance.
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Table 2 presents the results of the Monte Carlo simulation and significance evaluation
for an experimental type. The average of the expected shortest distance under the com-
pletely random mode (CSR) was 0.085, whereas that under the observed mode was 0.037;
R was calculated to be 0.435 (i.e., less than 1). The result of the LUCP NNI (R) calculation
and significance evaluation standard indicated that for Huainan City, the evolution from
farmland directly to grassland from 2008 to 2017 belonged to a spatiotemporal aggregation
model. The standard deviation was 0.078, whereas the mean was 0.080, resulting in a
z-score of 1.03, which fell within the range of −1.65 to 1.65 (Table 1). The result of the
significance evaluation standard indicated that the aggregation model of the evolution
from farmland directly to grassland from 2008 to 2017 was not statistically significant. The
non-significance of the experimental results may indicate the following issues. On the one
hand, the spatiotemporal evolution distance between spatiotemporal evolution sequences
was buffer-based. The appropriateness of the buffer distance setting may have had an
impact on the results. On the other hand, the richness of the data may have also affected
the results of the experiment. In addition, the results of this experiment do not contradict
the authors’ field experience of having been in the study area several times. In conclusion,
this experimental validation is a specific result based on the sound logic of the method
proposed by the authors. More in-depth studies are needed later to mutually corroborate
the reliability of the conclusions.

Table 2. Results of Monte Carlo simulation and significance evaluation.

Variate R z-Score Spatiotemporal Distribution Model Significance Evaluation

result 0.435 1.03 spatiotemporal aggregation non-significant

The aforementioned results are only applicable under a particular sampling scale, and
they reflect the spatiotemporal changes in land use at this scale. Differences in sampling
scales may lead to different conclusions. Additionally, due to limitations related to data
collection precision, accuracy, and other factors, this study only selected a typical kind
of evolution from farmland directly to grassland in the research area for experiments.
The spatiotemporal evolution models for other kinds of LUCP may exhibit significant
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differences from the ones found in this study. Therefore, a more accurate understanding of
the evolution characteristics of land use can be achieved by analyzing spatiotemporal models
for different types of LUCP, as well as by conducting comparative analyses between different
types of LUCP. Consequently, subsequent studies should further improve experimentation for
different types of cases and investigate the spatiotemporal aggregation models for different
scales and kinds of land use processes using data with greater accuracy. This will help enhance
our understanding of the spatiotemporal characteristics of land use evolution processes.

6. Conclusions

The spatiotemporal evolution model of LUCP is an important aspect of geographical study.
Investigating the spatiotemporal evolution model of LUCP in typical regions is conducive to
developing an in-depth understanding of land use change trends in the area and provides a
useful reference for optimizing land management and framing relevant policies. This study
proposed a method to analyze the spatiotemporal random/aggregation model of LUCP based
on Monte Carlo simulation. Using LUCP as the core research target, this study analyzed
the spatiotemporal neighborhood index and performed Monte Carlo simulation as well as
significance tests to simulate and analyze the spatiotemporal random/aggregation model of
LUCP in Huainan City from 2008 to 2017. The following conclusions can be drawn:

(1) The buffer-based spatiotemporal distance measurement method was utilized to obtain
the NNI of the LUCP. This method could fully consider the irregular shape character-
istics, location characteristics, and time attributes of land use patches, thereby offering
a novel perspective to measure and describe trends in land use change at a fine scale.

(2) Monte Carlo simulation and significance tests were conducted for the target area, and
a specific random/aggregation model in the spatiotemporal evolution process of land
use was revealed. Additionally, it was also confirmed that the spatiotemporal model
of LUCP was affected by multiple factors (e.g., traffic roads, location, previous land
use types), which resulted in certain discrepancies in statistical significance.

(3) The approach proposed herein, which involves using the LUCP composed of land
use patches between consecutive snapshots as the core research target, enhances the
existing body of research on LUCC. Moreover, related research methods can provide
a reference for the study of the spatial process of geographical phenomena.

In conclusion, this study is of great importance for enhancing the perception of LUCP
and for advancing theoretical and practical knowledge on methods of spatiotemporal
process analysis. It provides the possibility to analyze the spatiotemporal model of land
use change using a typical spatial-mode analysis model and serves as a useful reference
for research on several related issues in the field of spatiotemporal data mining, such as
animal migration processes and habitat change, air pollution and changes in underlying
surface properties, and solar activity.
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