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Abstract: As the world’s largest energy consumer, China is facing multiple pressures to conserve
energy, mitigate pollution and reduce carbon emissions. An objective and scientific assessment of green
total factor energy efficiency (GTFEE) is an important prerequisite for achieving energy conservation,
emission reduction and low carbon development. In this research, a non-radial data envelopment
analysis (DEA) is conducted to assess the GTFEE in China, while the issue of climate and air pollution
from energy use is considered in the assessment system. We use different indicators to refer to air
pollutants, which provides a reference for related research in indicator selection. The results show that
different indicators have different inefficiency values, but changes in the indicators have a minimal
effect on the inefficiency values of the other constant indicators. We also assess the GTFEE for the
last three five-year plan periods to inform future policy development. The results show that China’s
average annual GTFEE exhibits a unique trend in each five-year plan period, with an overall “v”
shaped trend. The annual average GTFEE of different regions also varies. The other changes in the
rankings of the provinces are mainly concentrated in the 11th to 12th Five-Year Plan period.

Keywords: green total factor energy efficiency; air pollutant indicators; NDDF; China Five-Year Plan;
DEA; GML index

1. Introduction

Energy scarcity, severe air pollution, and global climate change are important chal-
lenges confronting many developing countries today [1], and atmospheric pollutants and
greenhouse gas emissions, which contribute to global climate change, are largely caused by
the same process: energy use. China has taken extensive actions in recent years to improve
air quality and reduce greenhouse gas emissions, but it remains under dual pressure. On the
one hand, China produces a massive amount of air pollution and greenhouse gas emissions.
China’s total end-use energy consumption accounted for 20.97% of the global consumption in
2019 (China Energy Statistical Yearbook, 2021). As the country with the highest total energy
consumption, China emits billions of tons of CO2 [2] and tens of millions of tons of air pollu-
tant emissions each year. On the other hand, as an emerging economics, China continues
to rely on economic development to raise the living standards of its citizens. Under dual
pressure, policymakers and implementation authorities are focusing on identifying priority
governance measures with low social costs. Currently, many studies are in agreement that
improving energy efficiency is the key pathway for balancing socioeconomic development
and pollution and carbon reduction goals and that the reduction potential and combined
benefits of this measure are high [3].

The Chinese government has taken numerous measures to promote energy conserva-
tion, energy efficiency improvement, pollutant emission control and CO2 emission intensity
reduction since the 11th Five-Year Plan. In terms of energy conservation and energy efficiency
improvement, China first proposed the binding target of reducing energy consumption
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per unit of gross domestic product (GDP) in the 11th Five-Year Plan (2006–2010) and has
maintained it to date. The Chinese government began to call for increasing the share of
non-fossil energy in primary energy consumption in the 12th Five-Year Plan (2011–2015).
In terms of air pollutant emission control, China listed sulfur dioxide (SO2) as a major
pollutant in the 11th Five-Year Plan, requiring a reduction in its total emissions; by the
12th Five-Year Plan, nitrogen oxides (NOX) were added to the major pollutants; and by the
13th Five-Year Plan (2016–2020), China also listed the air quality of prefecture-level cities
as a binding indicator, and for cities that do not meet the standard, they are required to
decrease their particulate matter (PM)2.5 concentration by 18%. In terms of carbon dioxide
(CO2) emissions intensity, China first proposed and has maintained a binding target to
reduce CO2 emissions per unit of GDP in the 12th Five-Year Plan. China has long proposed
a series of plans and policies aimed at reducing energy intensity, CO2 emissions, and air
pollutant emissions to achieve sustainable development and build a resource-saving and
environmentally friendly society by improving energy efficiency.

“High-quality development” is the product of further upgrading and evolution of the
concept of sustainable development, as opposed to low-quality, poorly structured devel-
opment, which requires economic development processes to intensively use production
factor inputs, reduce ecological and environmental costs, and achieve higher levels of
socio-economic benefits. Green total factor energy efficiency (GTFEE) measures total factor
energy efficiency, which integrates all inputs and outputs, and measures productivity via
the relative change between energy inputs and other outputs, which comprehensively
reflects the quality of development. Therefore, this paper uses GTFEE to evaluate past and
present energy efficiency. Assessing energy efficiency enables us to understand the trends
in energy efficiency and the differences among different regions and provides a favorable
reference for improving energy efficiency and ultimately achieving sustainable develop-
ment goals. In production activities, energy is only one of the input factors, and therefore
other factors of production besides energy need to be taken into account when assessing
the energy efficiency of the whole system. Similar to the research of other scholars, this
paper assesses energy efficiency from a total factor productivity perspective and considers
both CO2 and air pollutant emissions from the perspective of energy use [4–7]. In addition,
many scholars assess GTFEE considering contraction or expansion of all inputs and out-
puts. The efficiency measured in this case is the combined efficiency of the entire economic
production activity, not energy efficiency. This paper refers to the research of Zhou et al. [8]
and Wang et al. [9] and defines GTFEE as the relative ratio between the input side, energy,
and the output side, which is a combination of CO2 emissions, air pollutant emissions,
and economic output, given the given capital and labor inputs. The purpose of this paper
is to use GTFEE to assess the spatial and temporal characteristics of China’s green devel-
opment performance at the provincial level from the 11th to 13th Five-Year Plan period.
Furthermore, to emphasize the connotation of energy efficiency, the non-radial directional
distance function (NDDF) model of the data envelopment analysis (DEA) model is chosen
for assessment. DEA is a widely used method for assessing GTFEE [10–21]. This method
does not require pre-assumptions about the form of the production function and avoids
the risk of incorrectly setting the function form [22]. Furthermore, the DEA model setting
is flexible and versatile, as is indicator selection, allowing it to meet the research needs of
various researchers. In terms of the scope of the analysis, DEA has the capability to assess
efficiency at various levels including cities [9], provinces [23], regions [14,24], and at even
the national level [25]. NDDF models are frequently employed in DEA to determine other
efficiencies, such as carbon emission performance [8,26,27]. Efficiency assessments may be
on the high side [28] by non-zero slack when using Chambers’ [29] directional distance
function measure of efficiency. In contrast, the NDDF model developed by Zhou et al. [8]
allows inputs and outputs to be adjusted in different proportions. This advantage enables
us to avoid the consideration of contraction or expansion of all inputs and outputs (ensuring
that the inputs of capital and labor remain constant) and ensures that we obtain the energy
efficiency rather than the combined efficiency of the whole system. On the other hand,
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we can also use this method to obtain the potential for improvement in each input and
output, identify the inefficiencies of the subject, and provide more targeted suggestions for
improving efficiency.

This paper also attempts to conduct a comparative study in terms of indicator selection
when measuring GTFEE. The selection of assessment indicators in previous studies on total
factor energy efficiency was relatively simple. Hu et al. [20] and Chang et al. [30] assessed
energy efficiency in 29 provincial administrative regions in early China using the Charnes–
Cooper–Rhodes (CCR)-DEA [31] model with GDP as the only output. Similarly, Honma
et al. [18] calculated total factor energy efficiency for 14 developed countries using GDP as
the only output from 1995 to 2005. As the study progressed, Yeh et al. [21] added CO2 and
SO2 emissions as undesirable outputs and utilized the Banker–Charnes–Cooper (BCC)-
DEA [32] model to assess total factor energy efficiency in 30 Chinese provinces from 2002 to
2007. According to the findings, the eastern region had the highest energy efficiency, while
the western region exhibited poor energy efficiency. Wang et al. [14] also used CO2 and
SO2 as undesirable outputs to assess the energy efficiency of China’s provinces between
2000 and 2008. In a recent study, Sueyoshi et al. [33] included three indicators, SO2, NOX,
and CO2, as undesirable outputs in the energy efficiency assessment system. Qin et al. [19]
employed an epsilon-based measure (EBM)-DEA [34] model to analyze the energy efficiency
of China’s coastal areas from 2000 to 2012, simultaneously focusing on multiple air pollutant
emissions and including NOX as undesirable outputs of energy use in addition to CO2 and
SO2. The results show that the energy efficiency scores of most provinces decrease when
multiple undesirable outputs are considered. A synthesis of the existing literature shows
that scholars are increasingly using non-radial slacks-based measure (SBM), EBM or NDDF
models in their methods, instead of radial CCR or BCC models. In early research on the
selection of indicators, scholars neither paid attention to the environmental impacts of en-
ergy use nor considered the undesirable outputs. As the research progressed, CO2 and SO2
were slowly being incorporated into the assessment system to characterize the problems
of climate change and air pollution caused by energy use. In terms of air pollution, with
the government’s attention to environmental issues, an increasing number of pollutants
are classified as major pollutants and subject to strict emission restrictions. Therefore, more
major air pollutants need to be considered when selecting indicators that refer to air pollution
problems. In addition, there is a lack of comparative research on the differences in energy
efficiency assessment results due to different undesirable outputs choices. In this study, on
the one hand, we include three current major air pollutants in the assessment system; on
the other hand, this paper also hopes to improve the reliability of the results by comparing
the measurement results of different indicators and to more fully characterize the spatial
and temporal characteristics of green development performance between the 11th and 13th
Five-Year Plan periods.

This paper contributes to existing research in two ways: first, in terms of methodology,
this paper chooses to measure GTFEE while maintaining non-energy inputs using the NDDF
model. In contrast to the traditional DEA model based on the radial distance function, the
NDDF model makes specific suggestions for energy use and helps us explore more targeted
energy adjustment strategies in energy management and regulation. Second, the selection
of undesirable outputs in this paper is achieved using a variety of options. A more reliable
assessment of provincial GTFEE is made possible by contrasting various indicator systems.
The comparative analysis of indicator selection may also be utilized to assess total factor
productivity based on pollution and carbon reduction, offering fresh perspectives on how
to choose or create undesirable outputs.

The remainder of this paper is organized as follows: Section 2 describes the methods
and data. Section 3 presents the related results and discussions, and Section 4 concludes
the paper.
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2. Methods and Data
2.1. DEA Model Based on the NDDF

This paper uses the NDDF DEA model to assess GTFEE. First, this paper supposes a
production possibility set containing a single desirable output and two undesirable outputs
for the efficiency assessment of N Chinese provinces. There are N decision making units
(DMUs). It is assumed that each DMU uses energy (E), labor force (L), and capital stock
(K) as inputs during the production process to generate the desirable economic output of
GDP (Y) while producing undesirable outputs, such as CO2 (C) and air pollution (AP). The
production possibility set (T) is defined as:

T = {(K, L, E, Y, AP, C) : (K, L, E)can produce (Y, AP, C)} (1)

According to Faere [35], the T must satisfy the weak disposability assumption (I) and
null-jointness assumption (II), which are denoted as:

(I) I f (K, L, E, Y, AP, C) ∈ T and 0 < θ ≤ 1, then (K, L, E, θY, θAP, θC) ∈ T.
(II) I f (K, L, E, Y, AP, C) ∈ T and AP = C = 0, then Y = 0.
Assumption I implies that to reduce the undesirable output, one must also reduce the

desirable output, that is, reducing the undesirable output has a cost. Assumption II implies
that there is no desirable output without undesirable output. AP and CO2 emissions are
unavoidable during the production process. Since T is only conceptually defined and lacks
a concrete form, it cannot be directly applied in empirical studies. A common solution is to
formulate them within a nonparametric piecewise linear framework (DEA approach). Kn,
Ln, En, Yn, APn, and Cn are vectors representing capital inputs, labor force inputs, energy
inputs, GDP output, air pollutant emissions and CO2 emissions, respectively. Then, T
exhibiting constant returns to scale is represented by

T = {(K, L, E, Y, AP, C) :
N
∑

n=1
znKn ≤ K

N
∑

n=1
znLn ≤ L

N
∑

n=1
znEn ≤ E

N
∑

n=1
znYn ≥ Y

N
∑

n=1
zn APn = AP

N
∑

n=1
znCn = C

zn ≥ 0, n = 1, 2, . . . , N}

(2)

where zn is the intensity variable used to construct T by convex combination. Once the T
set is well-constructed, the non-radial directional distance functions can be used to assess
the GTFEE. Referring to the research method of Zhou et al. [8] on the non-radial directional
distance function, this paper defines the non-radial directional distance function as follows:

→
D(K, L, E, Y, AP, C; g) = sup

{
wT β : ((K, L, E, Y, AP, C) + g× diag(β)) ∈ T

}
(3)

where w = (wK, wL, wE, wY, wAP, wC)
T is the weight vector of inputs and outputs, g =

(−gK,−gL,−gE, gY,−gAP,−gC) is the explicit directional vector, the symbol diag means
the diagonal matrices, and β = (βK, βL, βE, βY, βAP, βC)

T ≥ 0 is the vector of the scaling
factors representing the individual inefficiency measure for each input and output. Because
the focus of this paper is on the potentially adjustable amount of energy inputs, the
non-energy inputs (K and L) are fixed in the model, and the direction vector is set as g =
(0, 0,−E, Y,−AP,−C). In accordance with common approaches in the literature [8,9,36–38],
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this paper assigns the same weights to the inputs, desirable outputs, and undesirable
outputs, as well as AP and C in the undesirable outputs, and the final weight vector is set to

w = (0, 0, 1
3 , 1

3 , 1
6 , 1

6 )
T

. Therefore, the value of Equation (3)
→
D(K, L, E, Y, AP, C; g) is solved

by the following DEA model:

→
D(K, L, E, Y, AP, C; g) = maxwEβE + wY βY + wPβAP + wCβC

s.t.
N
∑

n=1
znKn ≤ K

N
∑

n=1
znLn ≤ L

N
∑

n=1
znEn ≤ E− βEgE

N
∑

n=1
znYn ≥ Y + βYgY

N
∑

n=1
zn APn = AP− βAPgAP

N
∑

n=1
znCn = C− βCgC

zn ≥ 0, n = 1, 2, . . . , N
βE, βY, βAP, βC ≥ 0

(4)

where β indicates the degree of inefficiency of the variables, that is, the proportion of
each variable that can be improved. For the inputs and undesirable outputs, β implies the
proportion that can be reduced. For the desirable output, β implies the proportion that
can be increased. Note β is calculated from the model and may not be fully realized in
practice. A larger β indicates a larger proportion of that variable that can be improved and
lower efficiency, while the opposite indicates a higher efficiency. The analysis of β explains
why GTFEE is at a low level and facilitates the proposal of more targeted policies. If β is

equal to zero for all variables, then
→
D(K, L, E, Y, AP, C; g) = 0. Thus, there is no room for

improvement in all variables of this DMU. The DMU is located on the production frontier.
Supposing that β∗ is the optimal solution of the DEA model, then GTFEE is expressed as:

GTFEE =
1
3
[
(1− β∗E) +

(
1− β∗AP

)
+
(
1− β∗C

)]
1 + β∗Y

(5)

The GTFEE falls between zero and unity. A higher GTFEE indicates that the DMU is
able to produce more regional GDP with less energy while emitting fewer pollutants and
CO2.

2.2. Global Malmquist–Luenberger Index

The Malmquist productivity index is a classic indicator used to measure a change in
productivity [39]. As the study evolved, researchers discovered that the Malmquist productiv-
ity index was unable to account for undesirable outputs when measuring efficiency changes
in multi-input, multi-output models. Therefore, Chung et al. [40] proposed a Malmquist
index containing undesired output, named the Malmquist–Luenberger (ML) index. The
ML index is now widely utilized to assess the change in efficiency containing undesirable
output. However, ML index only compares the efficiency change of two adjacent periods,
cannot compare the change between two different periods, and cannot fully reflect the
change in consecutive periods, and also may have no solution. Based on the ML index,
Pastor and Lovell [41] proposed the Global ML (GML) index. In contrast to the ML index,
the GML index uses the technology frontier, which is jointly constructed for all periods, as
the reference frontier. Using the global frontier, GML index is able to show both efficiency
changes in consecutive periods and those in different periods. Simultaneously, GML solves
the problem that ML may be unresolved.
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In this paper, we use the GML index to analyze the time variation of GTFEE, which is
shown in Equations (6)–(8). The superscript G of GTFEE indicates that the frontier used
for this efficiency value is composed of DMUs from all periods; the superscript t or t − 1
indicates that the frontier is composed of DMUs from the current period (period t or period
t − 1, respectively) only. The input-output indicator’s superscripts t and t − 1 indicate that
the input-output is from period t or t − 1, respectively; the subscript n indicates the nth
DMU.

GMLn(t− 1, t) =
GTFEEG

n
(
Kt

n, Lt
n, Et

n, Yt
n, Pt

n, Ct
n
)

GTFEEG
n

(
Kt−1

n , Lt−1
n , Et−1

n , Yt−1
n , Pt−1

n , Ct−1
n

) (6)

GMLn(t− 1, t) is used to assess the overall change in the GTFEE of the nth DMU from
year t − 1 to year t. If GMLn(t− 1, t) > 1, GTFEE increases; if GMLn(t− 1, t) < 1, GTFEE
decreases. The GML index can be further decomposed into two components: technical
efficiency change (EC) and technological change (TC) in the production technology of the
DMU between two periods, EC and TC are expressed as:

ECn(t− 1, t) =
GTFEEt

n
(
Kt

n, Lt
n, Et

n, Yt
n, Pt

n, Ct
n
)

GTFEEt−1
n

(
Kt−1

n , Lt−1
n , Et−1

n , Yt−1
n , Pt−1

n , Ct−1
n

) (7)

TCn(t− 1, t) =

GTFEEG
n (Kt

n ,Lt
n ,Et

n ,Yt
n ,Pt

n ,Ct
n)

GTFEEt
n(Kt

n ,Lt
n ,Et

n ,Yt
n ,Pt

n ,Ct
n)

GTFEEG
n (Kt−1

n ,Lt−1
n ,Et−1

n ,Yt−1
n ,Pt−1

n ,Ct−1
n )

GTFEEt−1
n (Kt−1

n ,Lt−1
n ,Et−1

n ,Yt−1
n ,Pt−1

n ,Ct−1
n )

(8)

EC indicates the relative rate of change of technical efficiency between two periods. If
EC > 1, the technical efficiency has improved, which indicates that DMU is closer to the
frontier side of the same period compared with the previous period and has a tendency to
catch up with the frontier. Otherwise, the technical efficiency decreases and moves away
from the frontier. For TC, the numerator in Equation (8) reflects the distance between the t
period frontier of the nth DMU and the global frontier, and a larger value indicates that
the t period frontier is closer to the global frontier. Similarly, the denominator reflects the
distance between the t− 1 period frontier of the nth DMU and the global frontier. Therefore,
TC measures the change in the technology frontier of the nth DMU with the change in time.
TC > 1 indicates technological progress and TC < 1 indicates technological regression.

2.3. Indicators and Data

The 11th to 13th Five-Year Plan period covers three five-year plans in China. Dur-
ing this period, China’s economy rapidly developed, with the per capita GDP increasing
from 16,700 RMB (2006, current year prices) to 71,800 RMB (2020, current year prices).
Simultaneously, national and local governments in China implemented large-scale and
comprehensive environmental management under immense pressure on the ecological en-
vironment. Therefore, the period selected for the energy efficiency assessment in this paper
is from the 11th Five-Year Plan to the 13th Five-Year Plan. Considering the large change in
data in 2020 due to the Coronavirus Disease 2019 (COVID-19) pandemic, 2006-2019 was
ultimately chosen as the study period. The study population comprised 30 provinces in
China (Tibet, Hong Kong, Macau, and Taiwan are not included in the assessment due to
missing data). The three input indicators employed in assessing GTFEE are K, L, and E; the
desirable output is Y, and there are two types of undesirable outputs, C and AP, including:
SO2, NOX, PM, and pollutant equivalents.

2.3.1. Air Pollutant Indicators

In this paper, three single indicators (SO2 emissions, NOX emissions, and PM emis-
sions) and one composite indicator are used to refer to air pollutants. The composite
indicator was calculated by referring to the research method of Mao et al. [42–44] in the
field of synergistic control, using the equivalent value of air pollutants (the equivalent
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value reflects the degree of harm of pollutants and their treatment costs) and pollutant
emissions in the Environmental Protection Tax Law of the People’s Republic of China. The
composite indicator was calculated as follows:

P = ∑ αi·pi (9)

where P is the air pollution equivalent value, which is the composite indicator used in this
paper; αi is the conversion coefficient of the ith pollutant, and the specific values are shown
in Table 1; and pi is the actual emission of the ith pollutant (data from the China Statistical
Yearbook and the China Environment Yearbook). This composite indicator has been widely
employed in studies on the synergistic control effects of air pollutants and greenhouse
gases in China [45–50] but has not been applied to the analysis and assessment of energy
efficiency.

Table 1. Air pollutant conversion coefficient.

Air Pollutants Conversion Coefficient Value

SO2 α1 1/(0.95 1)
NOX α2 1/(0.95 1)
PM α3 1/(2.18 1)

1 The value is derived from the Environmental Protection Tax Law of the People’s Republic of China.

In this paper, there are four metrics that refer to air pollutants in the undesirable output:
SO2 emissions (S), NOX emissions (N), PM emissions (PM), and air pollutant equivalents
(P). In the subsequent results and discussion, this paper uses different subscripts to indicate
the air pollutant indicators used for GTFEE. See Table 2 for details.

Table 2. Inputs and outputs of the four types of GTFEE.

GTFEE Inputs Desirable
Output

Undesirable Outputs

Greenhouse Gas Air Pollutant

GTFEEP Capital Labor force Energy GDP CO2 emissions Air pollution equivalent value
GTFEES Capital Labor force Energy GDP CO2 emissions SO2 emissions
GTFEEN Capital Labor force Energy GDP CO2 emissions NOX emissions

GTFEEPM Capital Labor force Energy GDP CO2 emissions PM emissions

2.3.2. CO2 Emission Indicators

Global climate change is an important issue for many countries, and excessive CO2
emissions are one of the main causes of climate change. The CO2 emissions data in this paper
are obtained from the Carbon Emission Accounts and Datasets (CEDAs) [2,4,51,52], which
is calculated by the Intergovernmental Panel on Climate Change (IPCC) sectoral accounting
method. According to this data source, the total CO2 emissions of 30 Chinese provinces grew
from 6198 Mt in 2006 to 10,882 Mt in 2019, ranking among the top worldwide.

2.3.3. Other Input-Output Indicators

The K is estimated by referring to the method of Shan [53], using the perpetual inventory
method, and the data base is the social fixed asset investment data from the China Statistical
Yearbook; L is taken as the number of employed people in the whole society, and the data
is obtained from the data for each province’s statistical yearbook; E is the comprehensive
energy consumption from the China Energy Statistical Yearbook; and Y is each province’s
GDP from the China Statistical Yearbook. The descriptive statistics of all input-output
indicators are shown in Table 3.
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Table 3. Descriptive statistics of input and output indicators for four years.

Inputs and Outputs Year 2006 2010 2015 2019

Capital Mean 1364.92 2921.85 6497.86 9894.93
(billion RMB) Std. Dev. 1046.70 1982.08 4093.22 6453.72

Max 3901.45 8027.84 17,276.27 25,874.06
Min 105.27 310.89 918.80 1531.73

Labor force Mean 24.18 25.85 27.66 27.50
(million people) Std. Dev. 16.49 17.51 18.27 18.12

Max 59.60 64.02 66.42 71.50
Min 2.94 3.08 3.21 3.30

Energy Mean 96.85 129.84 146.92 163.11
(million tce) Std. Dev. 62.73 81.72 89.39 96.32

Max 267.59 348.08 393.32 413.90
Min 9.20 13.59 19.16 22.64

GDP Mean 735.63 1162.98 1816.65 2380.64
(billion RMB) Std. Dev. 610.63 954.87 1458.49 1916.58

Max 2596.12 4078.83 6149.18 8059.91
Min 58.52 92.39 151.31 198.70

Pollutant emissions Mean 1732.29 1611.94 1534.68 756.20
(kilotons of pollutant

equivalents) Std. Dev. 1012.97 889.67 898.70 435.56

Max 3793.95 3367.36 3601.40 1617.62
Min 97.00 96.14 137.57 69.12

CO2 Mean 206.60 286.62 327.72 362.72
(million tCO2) Std. Dev. 141.57 191.00 210.29 243.85

Max 605.51 795.49 854.46 937.12
Min 19.19 28.93 42.28 43.07

SO2 Mean 862.20 728.26 619.53 152.32
(kiloton) Std. Dev. 510.46 411.50 363.32 94.74

Max 1962.00 1537.80 1525.70 352.40
Min 24.00 28.80 32.30 1.90

NOX Mean 507.93 617.50 615.25 409.92
(kiloton) Std. Dev. 357.84 390.20 363.76 268.95

Max 1247.00 1408.00 1423.90 1093.30
Min 59.00 56.00 89.50 48.70

PM Mean 632.30 425.87 512.10 358.32
(kiloton) Std. Dev. 426.48 249.17 379.05 226.50

Max 1704.00 986.00 1575.40 957.60
Min 21.00 15.00 20.40 15.40

3. Results and Discussions

We expect to compare a variety of undesirable output indicators to more robustly
assess China’s provincial GTFEE, and to assess the change in China’s provincial GTFEE
between the 11th Five-Year Plan period and the 13th Five-Year Plan period based on the NDDF
and GML index models. In the first section of this part, we compare the differences in GTFEE
assessed by different undesirable output indicators, identify the source of the differences,
and analyze the differences by region. A more robust composite indicator is chosen as the
undesirable output. Sections 2 and 3 assess the efficiency in terms of the global static GTFEE
and the dynamic GML index, respectively. Section 4 analyzes the changes in the ranking of
each province in these three five-year plans. This paper explores more targeted strategies in
energy management and regulation by analyzing the spatial and temporal characteristics
of GTFEE at the provincial level in China over the past three five-year plans in the context
of current pollution reduction and carbon reduction.

3.1. Undesirable Output Indicator Selection and Comparison

We use four different indicators to separately represent the air pollutants in the un-
desirable output and asses GTFEE. Figure 1 shows the national annual average values of
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the four types of GTFEE during the study period (different subscripts represent the air
pollutant indicators for assessing GTFEE). China’s GTFEE shows a similar trend regardless
of which undesirable output is utilized. GTFEEP is always in between the 4 types of GTFEE.
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Due to the vast territory of China, provinces in different geographic locations have
different resources and levels of development, and their development rates and stages vary,
as do the problems they face. Thus, generalizations are impossible. This research groups
the 30 provinces into eastern, central, and western regions according to their geographical
locations [38]. Figure 2 shows the comparison of the four types of GTFEE for the three
regions. The results indicate that the four types of GTFEE have similar results regardless of
region, and that GTFEEP is always in an intermediate position.
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To further explore the sources of variation, we analyzed the β value used to calculate
GTFEE. The results are shown in Figure 3. The difference in GTFEE when different indica-
tors are used to refer to air pollutants for assessment is mainly derived from the change in
the inefficiency of different air pollutant indicators, which has a minimal effect on the β

of other indicators. When NOX is selected as an indicator of air pollutants, its β rises much
faster than the other three indicators. When SO2 is utilized as an indicator of air pollutants, its
rate of increase is slow, but its inefficiency level is always high (near 0.8) and substantially
higher than that of the other indicators.
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Based on the results of the above analysis, we focus on the inefficiency values of air
pollutants to further analyze each region; the results are shown in Figure 4. A comparison
of Figure 4 with Figure 3d reveals some differences among the regions. βS shows the same
trend in all regions. Higher inefficiency values are observed in the eastern and western
regions, but by 2019, inefficiency values in the eastern region have declined to a lower
level, while those in the western region exhibit a slower decreasing trend. βN is different:
the central and western regions are still efficient in 2006 (βN is 0.23 in the central region
and 0.29 in the western region), while βN in the eastern region has reached 0.52. During
subsequent development, βN in the central and western regions rapidly rises and reaches a
maximum of 0.62 and 0.65, respectively, a level similar to that of the eastern region. After
2014, βN rapidly decreases and reaches lower levels in the eastern and central regions,
while it decreases at a slower rate in the western region.
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This section analyzes the impact of different air pollutant indicators in the undesirable
output on the GTFEE assessment and the sources of efficiency differences. The results show
that all four types of GTFEE have similar results from both a regional perspective and national
perspective, which may be related to China’s air pollutant control policies. Policy development
tends to focus on the overall atmospheric environment rather than on the control of a single
pollutant. Further, this research finds that the differences in the four types of GTFEE mainly
arise from the differences in the inefficiency values of the air pollutant indicators. Using
different air pollutant indicators has less impact on the inefficiency values of other inputs
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and outputs. There are large differences in the inefficiency values of different air pollutant
indicators. Using a single indicator to refer to air pollutants may not comprehensively
reflect the GTFEE, while using a composite indicator can yield more robust measurement
results. Based on the results in this section, we choose GTFEEP as the target of our analysis
in the following analysis.

3.2. Global Static GTFEE Analysis

In this section, we follow the results of Section 3.1, that is, we choose the composite in-
dicator (P) to refer to air pollutants to assess the global static GTFEE for China (global static
means that the reference frontier of GTFEE is all years that include DMUs). We integrated
the national GTFEEP and three regional GTFEEP in Figure 5. We discover that the national
average annual GTFEEP are at a low level (highest value of 0.57 and lowest value of 0.32)
and show a decreasing trend from 2006–2010, fluctuating at low values from 2011–2014, and
starting to increase in 2015. Combined with Figure 3, during the 11th Five-Year Plan period,
while the inefficiency of energy inputs is decreasing, the inefficiency of air pollutants and
CO2 is still increasing, resulting in a decreasing trend in China’s average annual GTFEEP.
During the 12th Five-Year Plan period, China paid more attention to green development
and the environmental problems caused by development, updating and introducing a
series of emission standards for heavily polluting industries (Table 4) and by proposing
more stringent environmental development requirements. During this five-year period,
the inefficiency level of air pollutants stopped rising, and China’s annual average GTFEEP
stopped falling, fluctuating at a low level. With the 13th Five-Year Plan, China included
carbon emission intensity reduction as a mandatory target in China’s development goals,
in addition to the original air pollution control measures. Under the dual pressure on
air pollutants and carbon emissions management, the inefficiency of air pollutants and
CO2 started to decline and China’s annual average GTFEEP started to rise from 2015. This
finding is different from those of previous studies [14,54]. After including CO2 and air
pollutants in the assessment system, we discover that the GTFEEP in China does not show
an increasing trend from year to year, but a “v” shaped trend. The inefficiency of CO2 has
been increasing during the 11th Five-Year Plan period, probably because CO2 emissions
were not emphasized during this period. CO2 emissions are often disregarded in previ-
ous studies, thus causing discrepancies between the results of this research and those of
previous studies.
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Table 4. Some of the new or updated national standards in 2011–2013.

Industry Standard Number Standard Name

Thermal Power Plant GB 13223-2011 Emission standard of air pollutants for thermal power plants [55]
Flat Glass GB 26453-2011 Emission standard of air pollutants for flat glass industry [56]
Sintering GB 28662-2012 Emission standard of pollutants for sintering and pelletizing of iron and steel [57]
Coking GB 16171-2012 Emission standard of pollutants for coking chemical industry [58]

Ironmaking GB 28663-2012 Emission standard of air pollutants for iron smelt industry [59]
Steelmaking GB 28664-2012 Emission standard of air pollutants for steel smelt industry [60]
Steel Rolling GB 28665-2012 Emission standard of air pollutants for steel rolling industry [61]

Electronic Glass GB 29495-2013 Emission standard of air pollutants for electronic glass industry [62]

The performance of GTFEEP varies across regions. In general, the eastern region
is the most efficient, followed by the central region, and the western region is the least
efficient. This finding may be related to the economic structure of each region. The eastern
region has a developed economy, and the main industries are advanced manufacturing
and service industries. These industries are characterized as high value-added and have less
pollutant emissions, so the GTFEEP of the eastern region is higher than that of the western
and central regions. The central region and western region are dominated by manufacturing
industries and resource and energy industries, respectively. There are numerous high-energy-
consumption and heavy pollution industries, such as steel, chemical and metallurgical
industries. Therefore, the GTFEEP of these two regions is lower than that of the eastern
region. Specifically, in 2006, GTFEEP did not significantly differ among the three regions,
with the central and western regions being close in efficiency and slightly higher than the
eastern region. Over time, all regions began to show a decreasing trend in GTFEEP, but to
different degrees. The eastern, central, and western regions decreased by 14.47%, 34.21%,
and 58.56%, respectively. The lowest GTFEEP values in the eastern and central regions
occurred in 2011, while the lowest values in the West occurred in 2014. By 2019, the GTFEE
improves to a higher level in both the eastern and central regions. The GTFEE of the western
region has improved but still lags behind the other regions. We speculate that the different
trends in GTFEE in each region are attributed to the different stages of development in each
of the three regions. Although the economies of the eastern and central regions are more
developed, the associated cost is massive energy consumption and serious environmental
pollution. This situation continued for several years before improving in 2011. The year
2011 marked the beginning of China’s 12th Five-Year Plan period, in which China focused
more on green development and environmental issues and introduced a series of policies
to address air pollution. The western region, on the other hand, is developing at a slower
rate, and its energy consumption and air pollutant and CO2 emissions are much smaller in
the early years compared to the eastern region, so GTFEEP was at a higher level. With the
rapid economic development, the vast energy consumption and pollutant emissions cause
a rapid decline in GTFEEP. However, its economic level is below that of the eastern region,
so its level of energy savings and pollution control measures is also relatively lower. This
situation leads to a much larger decline in GTFEEP in the western region than in the eastern
region. The efficiency results for different regions are consistent with those of existing
studies [54,63,64], where the efficiency levels are highest in the eastern region and lowest
in the western region.

This section analyzes the annual average global static GTFEEP in China, for the whole
country and the three study regions. The analysis finds that the change nodes of the national
average annual GTFEEP are closely related to the Five-Year Plan and vary by region.

3.3. GML Index and Its Decomposition Analysis

To analyze the dynamics of GTFEE and its variation, we use the GML index to further
analyze GTFEEP. The results are shown in Figure 6. During the period 2006–2011, the GML
index was low for both the whole country and the study regions, which means that
the average annual GTFEEP in China during that period exhibited a decreasing trend.
Decomposing the GML index into EC and TC, we find that EC fluctuates near 1 during
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this period, while TC, similar to the GML index, is almost always less than 1. This finding
indicates that the decline in GTFEEP during this period is mainly attributed to technological
regression. During the period 2011–2014, the GML index, EC and TC fluctuated above and
below 1, and the annual average GTFEEP in China fluctuated during this period. During
the period 2014–2019, the national average annual GTFEEP started to rise and the GML
index and TC were greater than 1, with the exception of a few years. Thus, technological
progress was the main reason for the GTFEEP increase during this period.
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Regionally, GML indices for the eastern and central regions are generally above 1
from 2011 to 2019, which indicates that the GTFEEP for both the regions basically show
an increasing trend since 2011. Further decomposition of the GML index into EC and TC
reveals that EC fluctuates above and below 1 in these two regions, while TC is basically
higher than 1. This finding indicates that efficiency growth in these two regions is largely
dependent on technological progress, rather than the catching up of technological effi-
ciency. The performance of the western region is different from the central and eastern
regions, where the GML index has only started to exceed 1 since 2014 (GTFEE exhibits an
increasing trend). The efficiency growth in the western region is also largely dependent on
technological progress.

We further analyzed the average EC and TC of each province for 14 years and classified
them by different regions. The results are shown in Figure 7. TC tends to be higher in the
eastern provinces, with half exceeding the national average. Although TC in most of the
central provinces exceeds 1 (representing technological progress), these provinces remain
below the national average level. TC in the majority of the western provinces is higher
than 1, but EC is lower compared to other regions, suggesting that the technical efficiency
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improvements in the western provinces are worse and cannot catch up with the efficiency
improvements in the eastern and central regions.
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This section presents a dynamic analysis of GTFEEP using the GML index. The results
show that the main source of efficiency change is TC, both nationally and regionally, but
that the timing of its change turnaround differs. The results are identical to those of existing
studies [10,19], where the main driver for improving efficiency was TC.

3.4. Analysis of Ranking Changes

The efficiency calculated by DEA is relative efficiency, so in addition to analyzing
the efficiency values, we also analyze the changes in the rankings of the provinces. This
section ranks the average efficiency of each five-year plan for each province and subtracts
the ranking of the beginning period (11th Five-Year Plan) from the ranking of the ending
period (13th Five-Year Plan), with a positive number indicating an improved ranking and a
negative number representing a decrease in ranking. The results are shown in Table 5.

Among the top ten provinces during the 11th Five-Year Plan period, six provinces were
able to maintain their efficiency levels and remained in the top ten until the 13th Five-Year
Plan period. Among the five provinces ranked last in the 11th Five-Year Plan period, only
Jilin rose to the middle ranking (13th) during the 13th Five-Year Plan period, while the
other provinces remained at the bottom. This phenomenon suggests that we should focus
on provinces with lower rankings that have difficulty achieving higher efficiency rankings
by virtue of their own development conditions.
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Table 5. Change in Provincial Ranking.

Province Area

GTFEEP Rank

11th
Five-Year

Plan

12th
Five-Year

Plan

13th
Five-Year

Plan

Ranking
Changes *

Beijing East 9 2 2 7
Fujian East 8 8 10 −2

Guangdong East 4 1 7 −3
Hainan East 1 5 5 −4
Hebei East 23 23 26 −3

Jiangsu East 13 14 12 1
Liaoning East 25 24 25 0

Shandong East 19 17 20 −1
Shanghai East 21 6 3 18

Tianjin East 22 19 6 16
Zhejiang East 12 9 15 −3

East average 14.3 11.6 11.9 2.4
Anhui Central 2 3 1 1
Henan Central 15 11 4 11

Heilongjiang Central 20 18 21 −1
Hubei Central 10 12 16 −6
Hunan Central 7 7 14 −7

Jilin Central 27 25 13 14
Jiangxi Central 3 4 8 −5
Shanxi Central 28 28 27 1

Central average 14.0 13.5 13.0 1.0
Gansu West 11 21 22 −11

Guangxi West 5 13 17 −12
Guizhou West 16 22 23 −7

Inner Mongolia West 30 29 24 6
Ningxia West 29 30 30 −1
Qinghai West 26 26 28 −2
Shaanxi West 17 20 19 −2
Sichuan West 6 10 11 −5
Xinjiang West 24 27 29 −5
Yunnan West 14 15 18 −4

Chongqing West 18 16 9 9
West average 17.8 20.8 20.9 −3.1

* The change is the total change from the 11th Five-Year Plan period to the 13th Five-Year Plan period, a positive
number represents a rise in ranking, and a negative number represents a fall in ranking.

Regionally, the changes in the average ranking of the three regions occurred mainly be-
tween the 11th Five-Year Plan period and the 12th Five-Year Plan period. This finding shows
that provinces that paid attention to air pollution control during the 12th Five-Year Plan
period were able to act quickly when the government proposed carbon emission-related
policies during the 13th Five-Year Plan period, thus retaining their rankings. In addition,
from the change in the average ranking of each region, the average ranking of the eastern
region rose 2.4 places, the central region remained almost unchanged, while the western
region dropped 3.1 places. This finding confirms our previous statement that in less effi-
cient regions, it is difficult to keep up with the rate of efficiency improvement in the more
efficient regions, so the rankings of provinces in these regions tend to fall. This situation
is also evidenced by the number of provinces that fell in the rankings among the regions,
with approximately half of the number of provinces in the eastern and central regions and
9 of the 11 provinces in the western region falling in the rankings.

This section analyzes the ranking and changes in ranking for each province in the three
five-year plans and summarizes them by region. The analysis revealed that the ranking
changes mainly during the period from the 11th Five-Year Plan to the 12th Five-Year Plan,
while the period from the 12th Five-Year Plan to the 13th Five-Year Plan is relatively stable.
The change in ranking varies by region, with more provinces in the west declining in
ranking than in the east and central regions. Combined with the analysis of the results in
3.2 and 3.3, the decline in the western ranking is not attributed to lower efficiency but to
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the notion that the rate of improvement lower than that of other regions. Therefore, for the
western region, more support is needed to prevent serious polarization.

4. Conclusions

In the context of pollution and carbon reduction, this paper divides the environmental
impacts caused by energy use into two issues, climate change and air pollution, and
separately calculates GTFEE using various undesirable output indicators and finds a more
robust indicator system among them. Through this index system, we choose the NDDF
DEA model as our assessment method to measure China’s GTFEE between the 11th and
13th Five-Year Plan periods and use the GML index for dynamic analysis. For the analysis
of the results, in addition to the changes in GTFEE, we also compared the changes in the
ranking of the provinces in these three five-year plans. The findings of this paper are
presented as follows:

1. When assessing GTFEE, different air pollutant indicators have different inefficiency
values. Use of the composite indicator to refer to air pollutants yields more robust
results.

2. During the study period, the national average annual efficiency level was low (highest
value of 0.57 and lowest value of 0.32) and showed a decreasing and then increasing
trend. The GTFEE showed a decreasing trend during the 11th Five-Year Plan period,
although the energy inefficiency values decreased. The environmental (undesirable
outputs) inefficiency values, on the other hand, started to decline only during the 12th
Five-Year Plan period and 13th Five-Year Plan period.

3. The change in the GML index varies by region, with the eastern and central regions
having the lowest GTFEE in 2011, the western region having the lowest value in 2014,
and all regions relying mainly on technological progress for efficiency improvements.
Average TC tends to be higher in the eastern provinces. Although the provinces in the
central region are mostly experiencing technological progress (average TC higher than
1), they are still not at the national average level. In the provinces in the western region
are also mostly experiencing technological progress, their efficiency improvement
(EC) rate is not as high as that in the eastern and central provinces, and the GTFEE is
low in comparison.

4. Changes in the ranking of the provinces occurred mainly during the 11th to 12th Five-
Year Plan period. The western provinces have not improved as quickly as provinces
in the eastern and central regions, resulting in a decline in the ranking of most of the
western provinces.

China’s GTFEE is closely related to the five-year plan, and energy efficiency policies
alone are not sufficient to support an increase in GTFEE; policies regarding atmospheric
environmental management are equally important. China has also made practical actions,
through the completed 12th Five-Year Plan, the Air Pollution Prevention and Control Action
Plan and other policies, which have greatly reduced the air pollutant emissions. Simultane-
ously, China’s proposed carbon peak and carbon neutral targets have slowed the growth of
CO2 emissions. With the joint efforts of many parties, improvements in GTFEE have been
achieved. In addition, China is a vast country with different stages of development in each
region, so it is necessary to formulate different policies accordingly. The eastern region is
ahead of the central and western regions in economic development and is relatively more
efficient, but its energy consumption and air pollutant and CO2 emissions exceed those
of the other two regions. For the eastern region, under the premise of ensuring economic
development, more attention should be paid to breakthroughs in energy-saving technology
and environmental management technology to improve the energy structure to reduce the
negative environmental impact caused by economic development. For the western region,
although its GTFEE has improved after the 12th Five-Year Plan, it lags behind the eastern
and central regions. Therefore, the western region needs to learn advanced environmental
management tools and management methods from the eastern and central regions. The
government can also assist when necessary to avoid polarized development.
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