
Citation: Meng, G.; Li, H.; Wu, B.;

Liu, G.; Ye, H.; Zuo, Y. Prediction of

the Tunnel Collapse Probability

Using SVR-Based Monte Carlo

Simulation: A Case Study.

Sustainability 2023, 15, 7098. https://

doi.org/10.3390/su15097098

Academic Editor: Jianjun Ma

Received: 15 March 2023

Revised: 11 April 2023

Accepted: 20 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Prediction of the Tunnel Collapse Probability Using SVR-Based
Monte Carlo Simulation: A Case Study
Guowang Meng 1,2, Hongle Li 1,2, Bo Wu 1,3,*, Guangyang Liu 1,2, Huazheng Ye 1 and Yiming Zuo 1

1 School of Civil Engineering and Architecture, Guangxi University, 100 University Road,
Nanning 530004, China

2 State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures,
Guangxi University, Nanning 530004, China

3 School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
* Correspondence: wubo@ecut.edu.cn

Abstract: Collapse is one of the most significant geological hazards in mountain tunnel construction,
and it is crucial to accurately predict the collapse probability. By introducing the reliability theory,
this paper proposes a calculation method for the collapse probability in mountain tunnel construction
based on numerical simulation, support vector regression (SVR), and the Monte Carlo (MC) method.
Taking the Jinzhupa Tunnel Project in Fujian Province as a case study, three-dimensional models
were constructed, and the safety factors of the surrounding rock were determined using the strength
reduction method. By defining the shear strength parameters of the surrounding rock as random
variables, the problem was formulated as a reliability model, and the safety factor was chosen as
the reliability index. To increase computational efficiency, the SVR model was trained to replace
numerical simulations, and the MC method was adopted to calculate the probability of collapse.
The results showed that the cause of the collapse was the change in the excavation method and the
very late installation of supports. The feasibility and reliability of the proposed method have been
verified, indicating that the method can be used to predict the probability of collapse in a practical
risk assessment of mountain tunnel construction.

Keywords: mountain tunnel; collapse risk assessment; support vector regression; Monte Carlo
method; reliability theory

1. Introduction

China has the largest number and the fastest development rate of highway tunnels
in the world [1]. Complex geological conditions are inevitably encountered in mountain
tunnel construction, resulting in frequent geological hazards. Wang et al. [2] reported
97 geological hazard accidents in mountain tunnel construction in China between 2002 and
2018, resulting in 393 fatalities, 467 injuries, and 51 missing. According to the report, the
collapse was the most common form of geological hazard, accounting for 62.89 percent.
Therefore, a more accurate and effective evaluation of the collapse risk in mountain tunnels
is of crucial practical importance.

Over the past decade, a great deal of research has been conducted in the risk assess-
ment of tunnel collapse. Ou et al. [3] proposed a new risk assessment method for tunnel
collapse based on case analysis, advanced geological prediction, and Dempster–Shafer evi-
dence theory. Xu et al. [4] proposed an attribute recognition model of loess tunnel collapse
risk assessment, which is based on the attribute mathematical theory. Sharafat et al. [5]
proposed a novel risk analysis method based on the generic bow-tie method in order to
simultaneously identify the risk causes and consequences of TBM tunneling projects in
difficult ground conditions. To assess the probability of collapse, Sun et al. [6] proposed a
novel assessment method based on multistate fuzzy Bayesian networks integrated with
multiple features. Ou et al. [7] proposed a multistate dynamic Bayesian network (DBN)
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evaluation method for highway tunnel collapse based on parameter learning. Meanwhile,
some studies used artificial intelligence algorithms for risk assessment to realize the au-
tomation and intelligence of the assessment process. In order to predict the occurrence
of collapse hazards quickly, Li [8] developed a risk assessment model based on a sup-
port vector machine. Wu et al. [9] proposed a multisource information fusion assessment
method for tunnel collapse using artificial intelligence, including the Gaussian process
regression. The Gaussian process regression used in this method played a role in predicting
the deformation of the surrounding rock in the next few days after the excavation.

On the one hand, previous research, with or without the use of artificial intelligence
algorithms, typically selected and graded risk indicators based on engineering experience,
resulting in subjective evaluation results. With the capability of taking numerous factors
into account, such as nonlinear rock behavior, soil–structure interaction, and construction
methods, numerical methods have proven to be an effective and realistic approach to
analyzing the safety of tunnel construction [10,11]. Therefore, the introduction of numerical
methods into the risk assessment process can effectively improve the reliability of the
results [12]. On the other hand, the quantification of the collapse hazard probability, which
is one of the main elements of risk assessment, has rarely been considered in previous
studies, except for those based on Bayesian networks. Furthermore, few studies have
assessed the collapse risk of tunnels under specific construction behaviors. Considering that
the probability of tunnel collapse is influenced by numerous uncertainties, especially the
uncertainty of the surrounding rock properties, the reliability-based method can be applied
to the calculation [13]. The Monte Carlo (MC) method is one of the most popular and well-
documented methods for reliability analysis; it calculates the exceedance probability for
any desired reliability index in a target structure [14,15]. However, to ensure the accuracy
of the calculation, the MC method requires a large number of random samples. Given the
time required for numerical simulations, it may not be practical to perform MC simulations
directly with numerical methods. Currently, machine- and deep-learning techniques are
efficient tools for predicting tunnel performance [16,17], and support vector regression
(SVR) is considered to increase computational efficiency in this study.

In order to probabilistically assess the collapse risk in mountain tunnels under specific
construction behaviors, this paper adopts the reliability theory and proposes a novel
method for predicting the collapse probability of mountain tunnels based on numerical
simulation, support vector regression, and the Monte Carlo method. The proposed method
can provide references for project managers to choose a safe excavation method and to
develop reasonable construction schemes. The significant difference between this paper
and similar studies [18,19] is that the proposed method adopts the safety factor of the
surrounding rock as the random output parameter, and it adopts the reliability index
instead of the deformation, which makes the proposed method more reliable because
the modulus significantly affects the deformation, and the exact value of it is difficult to
determine. As a case study, an overview of the Jinzhupa Tunnel of the Puyan Expressway
in Fujian Province, China, was obtained, and a FLAC3D numerical model was constructed.
Then, the strength reduction method, which provides an effective way to analyze the
stability of tunnels, was implemented in the FLAC3D simulation to determine the safety
factor of the surrounding rock. Next, based on the numerical results, the SVR model was
trained to replace numerical simulations in order to increase computational efficiency.
Finally, in conjunction with the well-trained SVR model, a sufficient number of random
samples were used to calculate the collapse probability using the MC method.

2. Theory and Methodology
2.1. Strength Reduction Method and the Failure Criterion

The strength reduction method is widely used in stability analysis of slope. Some
scholars in the tunnel field introduced the strength reduction method into the stability
analysis of tunnels, and the corresponding achievements verified the applicability of the
method to tunnel engineering [20–23]. For the surrounding rock described by the Mohr–
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Coulomb yield criterion, the strength reduction method involves dividing the actual shear
strength parameters c and ϕ by the strength reduction coefficient K:

c′ =
c
K

, ϕ′ = arctan
(

tanϕ

K

)
(1)

The actual shear strength parameters are then replaced with the new shear strength
parameters c′ and ϕ′. To obtain the factor of safety, the strength reduction coefficient (K)
must be incrementally increased until the surrounding rock reaches its limit state. At this
point, the safety factor is equal to the strength reduction coefficient, i.e., Fs = K.

When the strength reduction method is introduced into the numerical methods for
stability analysis of tunnels, the resulting safety factor depends significantly on the failure
criteria. Currently, three commonly used failure criteria for tunnels are the abrupt displace-
ment criterion [24], the penetration of plastic yield zone criterion [25], and the numerical
non-convergence criterion [20], which are the same for slope. In this paper, the abrupt
displacement criterion was chosen for the stability analysis of the surrounding rock because
of its high accuracy and clear physical significance [24]. The abrupt displacement criterion
requires that the displacement of certain characteristic points should increase abruptly
when the strength reduction coefficient (K) increases to a certain value. The inflection point
of the curve between displacement and strength reduction coefficient is considered the
limit state, and the corresponding strength reduction coefficient is equivalent to the safety
factor of the surrounding rock.

According to the previous research [26,27], the safety factor of 1.30 was determined
as the critical value for determining the stability of the surrounding rock by integrating
various factors that cannot be considered by numerical simulation (such as overbreak,
unfavorable geology, etc.), and it is believed that the tunnel is prone to collapse when the
safety factor of the surrounding rock is less than 1.30.

2.2. Stress Release Method for Support Timing Control

The stress release method is often used to simulate the spatial effects of the excavation
process, such as the simulation of the two-dimensional excavation support process, the
formation pressure release and support pressure control process, and the three-dimensional
support timing control process [28]. The stress release method of this study is based on the
technique proposed by Duncan and Dunlop [29]. The method is implemented in FLAC3D
by controlling the nodal unbalanced force at the excavation boundary (Figure 1). First, the
initial state of the model is obtained by applying gravity (Figure 1a). Second, the null model
is assigned to the zones to be excavated, representing the removal of rock from the model.
The model is then solved for a single step, resulting in the generation of only the nodal
unbalanced force at the excavation boundary (Figure 1b). Then, the nodal unbalanced
force is reversed and multiplied by a certain coefficient, and the model is solved to the
equilibrium state to achieve the desired release rate (Figure 1c). Finally, the support is
installed after the nodal unbalanced force is removed (Figure 1d).

2.3. The Monte Carlo Method

The Monte Carlo method, also known as the random simulation method and the
random sampling method, is often used to simulate random phenomena in engineering. In
reliability analysis, the state of the random sample is determined by the limit state function,
which is described as follows:

g(X) = f0 − f (X) (2)

where f (X) is the performance function, and f 0 is the corresponding threshold.
If k times g(X) < 0 is obtained by N random calculations, the failure probability is

given by

p f =
k
N

(3)
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2.4. Support Vector Regression

Support vector machines (SVMs), which were proposed by Vapnik et al. in 1995, are
a widely used machine-learning method for classification, regression, and other learning
tasks, with excellent performance in solving small sample and nonlinear problems [30].
The support vector machine for regression is briefly introduced in this section. Consider a
set of training points, {(x1, z1), . . . , (xl , zl)}, where xi ∈ Rn is a feature vector and zi ∈ R is
the target output. Given a penalty factor C > 0 and an insensitive loss function ε > 0, the
standard form of SVR [31] is

min
ω,b,ξ,ξ∗

1
2

ωTω + C
l

∑
i=1

ξi + C
l

∑
i=1

ξ∗i (4)

The constraint conditions are as follows:
ωTφ(xi) + b− zi ≤ ε + ξi,
zi −ωTφ(xi)− b ≤ ε + ξ∗i ,
ξi, ξ∗i ≥ 0, i = 1, . . . , l.

(5)

The dual problem is

min
α,α∗

1
2
(α− α∗)TQ(α− α∗) + ε

l

∑
i=1

(αi + α∗i ) +
l

∑
i=1

zi(αi − α∗i ) (6)
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The constraint conditions are expressed in Equation (7):{
eT(α− α∗) = 0,
0 ≤ αi, α∗i ≤ C, i = 1, . . . , l.

(7)

where Qij = K(xi, xj) ≡ φ(xi)
Tφ(xj).

After solving problem (6), the approximate function is

l

∑
i=1

(−αi + α∗i )K(xi, x) + b (8)

where K(xi, xj) is the kernel function of SVM.
The performance of the SVR algorithm largely depends on the choice of kernel. Four

commonly used kernel functions are listed as follows: linear kernel function, polynomial
kernel function, radial basis function (RBF), and sigmoid function [32]. In this paper, RBF
was selected as the kernel function for SVR models because of its excellent performance in
practical applications [33].

2.5. Collapse Risk Prediction Method

The proposed method for predicting the collapse probability operates as follows:

(1) Several parameters are selected as random variables based on the actual conditions of
the project. Then, a series of safety factors of the surrounding rock, derived from the
FLAC3D simulations, are utilized as training data for SVR.

(2) The SVR model with ideal performance is obtained through the training process, and
a nonlinear mapping between random variables and safety factors is established to
replace the performance function of the Monte Carlo method.

(3) The reliability model for the problem is established and a limit state function is defined.
Then, the number of random samples required for the MC method are determined to
ensure probability convergence.

(4) The required number of random samples are generated and fed into a well-trained
SVR model to execute the MC simulation. The number of random samples that
fall into the failure domain is counted according to the limit state function, and
the approximate failure probability, i.e., the collapse probability, can be obtained by
Equation (3).

The flowchart of the proposed method is shown in Figure 2.
Sustainability 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 
Figure 2. Flowchart of the proposed method. 

3. Case Study 
3.1. Overview of the Tunnel Excavation Project 

The Jinzhupa Tunnel is a two-way six-lane tunnel located on the Puyan Expressway 
in Sanming City, Fujian Province, China (Figure 3). The site is covered with Quaternary 
slope residual soil, and the underlying bedrock consists of the Devonian sandstone and 
the Cambrian shale. Bedrock fracture water is the main groundwater type at this site. The 
maximum buried depth of the tunnel is 131 m. Figures 4 and 5 show the longitudinal 
geological profile of the Jinzhupa Left Tunnel and the design of the tunnel cross section, 
respectively. The exit of the left tunnel is in the direction of Jianning. The rock mass sur-
rounding the tunnel exit is fractured and strongly weathered; it has poor self-stability and 
is prone to collapse during construction. Section A (ZK243 + 319~ZK243 + 279) and section 
B (ZK243 + 279~ZK243 + 245) were designed to be excavated using the twin-side heading 
method and the CRD method, respectively. 

 
Figure 3. Location of the tunnel. 

Figure 2. Flowchart of the proposed method.



Sustainability 2023, 15, 7098 6 of 21

3. Case Study
3.1. Overview of the Tunnel Excavation Project

The Jinzhupa Tunnel is a two-way six-lane tunnel located on the Puyan Expressway
in Sanming City, Fujian Province, China (Figure 3). The site is covered with Quaternary
slope residual soil, and the underlying bedrock consists of the Devonian sandstone and
the Cambrian shale. Bedrock fracture water is the main groundwater type at this site. The
maximum buried depth of the tunnel is 131 m. Figures 4 and 5 show the longitudinal
geological profile of the Jinzhupa Left Tunnel and the design of the tunnel cross section,
respectively. The exit of the left tunnel is in the direction of Jianning. The rock mass
surrounding the tunnel exit is fractured and strongly weathered; it has poor self-stability
and is prone to collapse during construction. Section A (ZK243 + 319~ZK243 + 279) and
section B (ZK243 + 279~ZK243 + 245) were designed to be excavated using the twin-side
heading method and the CRD method, respectively.
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3.2. Numerical Modeling and Validation

Because the left tunnel was excavated 50 m ahead of the right tunnel, a 3D numerical
model of the left tunnel was constructed in FLAC3D without the right tunnel (Figure 6).
The dimensions of the model are X × Y × Z = 110 m × 70 m × 60 m, and the tunnel cross
section has a width of 17.2 m and a height of 11.7 m. The tunnel passes through stratum I,
which consists of fragmented, highly weathered shale. Stratum II consists of moderately
weathered shale. The bottom and the side surfaces of the model were constrained in the
normal direction, while the top surface was free. The mass of the silty clay at the surface
and the change of longitudinal ground elevation were applied to the top surface by means
of equivalent stress in the vertical direction. The density of the silty clay was 1840 kg/m3

and the thickness was 3 m. The change of longitudinal ground elevation was 24.6 m. Hence,
the equivalent vertical stress applied to each node on the top surface was −(55,200 + 8080y)
Pa, where the value 55,200 Pa represented the gravity stress of the silty clay, and y was
the y-axis position of the node. The following assumptions were made in the modeling
process: (1) Since the groundwater level in the area was low and the tunnel was excavated
during a dry winter, the effect of water was not considered. (2) The surrounding rock
was an isotropic and continuous elastoplastic material described by the Mohr–Coulomb
yield criterion. (3) The pipe shed, steel-reinforced shotcrete, and rock bolts were modeled
using beam elements, shell elements, and cable elements, respectively, as isotropic and
continuous plastic materials. Tables 1 and 2 list the properties of the rock and the primary
support system, respectively.
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Table 1. Rock properties of two strata.

Rock Type Density
(kg/m3)

Elastic
Modulus

(GPa)

Poisson’s
Ratio

Bulk
Modulus

(GPa)

Shear
Modulus

(GPa)

Cohesion
(kPa)

Friction
Angle

(◦)

Stratum I 2300 0.2 0.35 0.22 0.06 10 30
Stratum II 2500 1.3 0.39 1.97 0.37 120 35

Table 2. Material properties of the support system.

Rock Bolts Pipe Shed Steel-Reinforced Shotcrete

Parameter Value Parameter Value Parameter Value

Density (kg/m3) 7800 Density (kg/m3) 7800 Density (kg/m3) 2400
Elastic modulus (GPa) 210 Elastic modulus (GPa) 210 Elastic modulus (GPa) 30 (28 *)

Grout exposed
perimeter (m) 0.3 Poisson’s ratio 0.3 Poisson’s ratio 0.25

Cross-sectional
area (m2) 4.233× 10−4 Cross-sectional

area (m2) 1.923× 10−3 Thickness (m) 0.28
(0.16 *)

Tensile yield
strength (kN) 150 — — — —

Grout cohesive
strength (kPa) 200 — — — —

Grout friction
angel (◦) 25 — — — —

Grout stiffness (MPa) 17.5 — — — —

* Note: Parenthesized values are intended for temporary steel-reinforced shotcrete.

According to the documentation provided by the project manager, the excavation and
support installation of section A were completed. Therefore, FLAC3D simulations were
performed according to the excavation sequence shown in Figure 7. The vertical displacement
contour of the longitudinal section is shown in Figure 8a, and the comparison between
simulation values and monitoring values of the vault settlement is shown in Figure 8b. It can
be observed that the trend of the simulation values is similar to that of the monitoring values.
In addition, the monitoring cross section and displacement monitoring points corresponding
to the section at ZK243 + 291 were set in the model (Figure 9). The comparison between
simulation values and monitoring values of the monitoring section is shown in Table 3. The
average relative error is 10.20% and the maximum relative error is 13.31%, indicating that the
simulation results and the field monitoring results are in good agreement.
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Table 3. Displacement of the monitoring section at ZK243 + 291.

Item
Vault Settlement Sidewall Convergence

A B C DE FH

Simulation value (mm) −52.8 −45.2 −45.4 −64.6 −87.6
Monitoring value (mm) −58.1 −49.4 −51.1 −73.2 −92.7
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3.3. Stability Analysis of the Surrounding Rock

Following the excavation and the support installation procedures for section A,
section B was excavated by the three-bench method instead of the CRD method to expedite
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the construction schedule, with each bench measuring 5 m in length. At about 01:00 on
19 December 2019, excavation of the upper bench was completed for 5 m. Due to a shortage
of cement, shotcrete construction, and rock bolt grouting did not begin until 12:40 and was
completed at about 16:00. The collapse occurred at 19:40 p.m. (Figure 10).
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3.3.1. Simulation Scheme

In order to analyze the stability of the tunnel, the strength reduction method was
introduced into numerical simulations, and the construction process of the collapsed
section (ZK243 + 279~ZK243 + 274) was simulated using the numerical model developed
in Section 2. The construction process of the CRD method was simulated for comparison,
and the installation time of the support system was taken into account.

Figure 11 shows the excavation models for the three-bench method and the CRD
method based on the excavation sequence shown in Figure 12. The corresponding monitor-
ing points, which were also selected as characteristic points, were set in the model. Both
the three-bench method and the CRD method were set up with five construction cases,
with 20%, 40%, 60%, 80%, and 90% stress release rates of the surrounding rock prior to the
installation of the primary support, respectively. The case identifiers are listed in Table 4
for convenience.
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Table 4. Identifiers of construction cases.

Method
Stress Release Rate (%)

20 40 60 80 90

Three-bench B1 B2 B3 B4 B5
CRD C1 C2 C3 C4 C5

3.3.2. Calculation of Safety Factors

Derived from numerical simulations, the relationship curves between the displace-
ments of the characteristic points and the reduction coefficients are shown in Figure 13.
Determined by the displacement mutation criterion, the safety factors of the surrounding
rock are shown in Figure 14.
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It is observed that the safety factor of the surrounding rock of the case excavated using
the three-bench method is less than 1.30 when the stress release rate is greater than or
equal to 60 percent, indicating that the tunnel is unstable and prone to collapse. In contrast,
the five cases excavated using the CRD method have a safety factor greater than 1.30. In
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addition, changing the excavation method from CRD to three-bench reduces the safety
factor of the surrounding rock, with the latter being significantly more affected by the
support timing than the former.
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3.4. Generating Data Set

In this paper, the following assumptions were made in consideration of the actual
conditions: (1) Due to the limited influence of stratum II on the construction and the highly
developed manufacturing and construction techniques of the support system, the properties
of the stratum II and the support system were assumed to be deterministic. (2) Stratum
I, through which the tunnel passes, has a significant influence on the construction, so the
uncertainty of stratum I was taken into account. (3) The safety factor of the surrounding
rock is almost independent of elasticity modulus and Poisson’s ratio but is mainly related
to the shear strength [34]; therefore, the cohesion and the friction angle of stratum I were
treated as random variables, which is consistent with the large variation of the shear
parameters of geomaterials in practice. (4) The cohesion and the friction angle of stratum I
followed the lognormal and normal distributions, respectively, and both were considered
as independent variables. Table 5 shows the mean values and the coefficients of variation
for the two random variables, which are based on the deterministic material values of
stratum I in Table 1.

Table 5. Probabilistic characteristics of stratum I.

Variables Mean Cov Probability Distribution Type

Cohesion (kPa) 10 0.2 Lognormal
Friction angle (◦) 30 0.1 Normal

Several sampling methods are available to cover the multivariate space, including
the inverse transform sampling method (ITM), Latin hypercube sampling (LHS), Halton
sequence, and Sobol sequence [35]. In this paper, the LHS was used owing to its efficiency to
stratify across the range of each sampled variable [36]. For each case, 100 random samples
consisting of the two random variables were generated and introduced into the FLAC3D
model to simulate the system responses and determine the safety factor of the surrounding
rock. In this section, safety factors were determined by the abrupt displacement criterion
as well. The data set used for training and testing the SVR model was then constructed
with 100 input random samples stored as a 100 × 2 matrix and corresponding output safety
factors stored as a 100-component vector (Figure 15).
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3.5. SVR Training for Safety Factor Prediction

A well-trained SVR model will output the corresponding safety factor directly if a
new random sample is input. The goal of the training process is to minimize the root mean
square error (RMSE) of the SVR model. Using case B1 as an example, the corresponding
data set was first normalized, i.e., all input and output variables were scaled between [−1, 1]
after the normalization process to eliminate differences in magnitude between variables.
The normalized data set was then divided into a training set consisting of 80 random
samples and a testing set consisting of 20 random samples. The optimal hyperparameters
(C, γ) of the SVR model were then determined using the grid search method and the training
set. Given the small sample size of the training set, fivefold cross-validation was performed.
The search range for the optimal hyperparameters is [2−10, 210]. As shown in Figure 16,
each grid point in the logarithmic coordinates represents a pair of hyperparameters and
the corresponding RMSE. When the hyperparameters C and γ were set to 32 and 0.03125,
respectively, the RMSE was the minimum.

The SVR model for case B1 with the optimal hyperparameters, i.e., (C, γ) = (32, 0.03125),
was constructed, trained, and tested after the optimization procedure. Figure 17a shows
a comparison between the training data and the output results of the SVR model, while
Figure 17b shows the corresponding errors. There is a good agreement between the SVR
outputs and the training data. The mean deviation and the standard deviation (StD) of
the errors are relatively small, and the majority of the errors are close to zero (Figure 17c).
The testing process of the SVR model shows the same phenomenon (Figure 18). It can be
seen that the corresponding RMSE is close to 0 and the coefficient of determination R2 is
close to 1 for both the training and testing set. In addition, all the SVR outputs were plotted
against their corresponding FLAC outputs, and the majority of the data points lie on the
line of best fit with a slope of 1 (Figure 19). In conclusion, the constructed SVR model has
demonstrated an ideal performance in predicting the safety factor of the surrounding rock.

Similarly, the optimal hyperparameters of the SVR models can be determined for the
remaining cases, as shown in Table 6.



Sustainability 2023, 15, 7098 14 of 21

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 22 
 

variables. The normalized data set was then divided into a training set consisting of 80 
random samples and a testing set consisting of 20 random samples. The optimal hyperpa-
rameters (C, γ) of the SVR model were then determined using the grid search method and 
the training set. Given the small sample size of the training set, fivefold cross-validation 
was performed. The search range for the optimal hyperparameters is [2−10, 210]. As shown 
in Figure 16, each grid point in the logarithmic coordinates represents a pair of hyperpa-
rameters and the corresponding RMSE. When the hyperparameters C and γ were set to 
32 and 0.03125, respectively, the RMSE was the minimum. 

 
Figure 16. Optimization result of hyperparameters. 

The SVR model for case B1 with the optimal hyperparameters, i.e., (C, γ) = (32, 
0.03125), was constructed, trained, and tested after the optimization procedure. Figure 17a 
shows a comparison between the training data and the output results of the SVR model, 
while Figure 17b shows the corresponding errors. There is a good agreement between the 
SVR outputs and the training data. The mean deviation and the standard deviation (StD) 
of the errors are relatively small, and the majority of the errors are close to zero (Figure 
17c). The testing process of the SVR model shows the same phenomenon (Figure 18). It 
can be seen that the corresponding RMSE is close to 0 and the coefficient of determination 
R2 is close to 1 for both the training and testing set. In addition, all the SVR outputs were 
plotted against their corresponding FLAC outputs, and the majority of the data points lie 
on the line of best fit with a slope of 1 (Figure 19). In conclusion, the constructed SVR 
model has demonstrated an ideal performance in predicting the safety factor of the sur-
rounding rock. 

  

Figure 16. Optimization result of hyperparameters.

Table 6. Optimal hyperparameters for all cases.

Para-Meter
Three-Bench Method CRD Method

B1 B2 B3 B4 B5 C1 C2 C3 C4 C5

C 32 16 11.314 128 45.256 22.627 5.566 16 8 8
γ 0.0313 0.0442 0.063 0.008 0.0313 0.044 0.088 0.044 0.063 0.088

3.6. Collapse Probability Calculation

In order to calculate the collapse probability, the reliability model was established and
a limit state function was defined as follows:

g(X) = Fs(X)− Fs0 (9)

where Fs(•) = safety factor obtained from the SVR as a function of the input random vari-
ables X = {(c1, ϕ1), (c2, ϕ2), . . . , (cN , ϕN)}T ; and Fs0 = 1.30 is the safety factor threshold in
this paper. The occurrence of g(X) < 0 indicates that the prediction of the SVR exceeds the
threshold value. Therefore, the collapse probability pc can be defined as follows:

pc = P(g(X) < 0) = P(Fs(X) < Fs0) ≈
k
N

(10)

where k is the number of random samples that fall into the failure domain.
Before implementing the MC simulation with the well-trained SVR model, it is critical

to ensure that the number of samples used in the MC simulation is sufficient so that the
resulting probability does not change significantly as more samples are added. For this
purpose, using case B1 as an illustration, the values of probability pc were calculated
using different numbers of random samples and then plotted on a graph to show the
convergence process (Figure 20). The result indicates that the probability convergence
in the MC simulation can be guaranteed if the sample size exceeds 10,000. In this paper,
500,000 random samples were used in the MC simulation.
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Figure 21 shows the histogram of the safety factor of case B1 obtained from the SVR
model in the MC simulation. Spearman’s rank correlation coefficient was used to show the
efficiency of each input random variable on the safety factor, as illustrated in Table 7. The
result indicates that the efficiency of cohesion is greater than the friction angle in this study.
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Table 7. Spearman’s rank correlation coefficient of each input variable.

Input Random Variable Cohesion Friction Angle

Spearman’s rank
correlation coefficient 0.7741 0.5962

Then, the collapse probabilities in all cases were calculated, and the variation of
collapse probabilities with stress release rates for the two excavation methods is shown in
Figure 22.
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3.7. Result Analysis and Validation

The Jinzhupa Tunnel is a super-large section tunnel, and the surrounding rock through
which the left tunnel passes consists of fragmented, strongly weathered shale, which is
very poor in self-stability. The CRD method increases the excavation height compared
with the three-bench method but significantly reduces the excavation span, resulting
in less disturbance to the surrounding rock. In addition, when the support system is
installed, the temporary support measure, which consists of the middle wall and the
temporary invert, more effectively limits the displacement evolution of the surrounding
rock. Therefore, the collapse probabilities of the CRD-excavated cases, which are less than
16%, are significantly lower than those of the three-bench method. In addition, the collapse
probability gradually increases as the support timing is gradually delayed. In contrast, the
collapse probabilities of the cases excavated using the three-bench method are all greater
than 30%, and the collapse probability increases sharply as the support timing is gradually
delayed. In addition, the collapse probability exceeds 50% when the stress release rate of
the surrounding rock is 60% or higher, and it reaches 91.30% when the stress release rate
is 90%.

In conclusion, using the three-bench method to excavate the tunnel is riskier than
using the CRD method, and the stability of the surrounding rock and the tunnel cannot
be guaranteed if the support system is not installed in time. The results indicate that
the field collapse was caused by the change from the CRD method to the three-bench
method without additional ground-reinforcement measures and the very late installation of
supports. The same but qualitative conclusion of the collapse causes can be obtained from
the collapse analysis report provided by the project manager, which verifies the reliability
of the proposed method.

4. Discussion

Unlike the results of a qualitative risk assessment, which are risk levels, risk probabili-
ties are quantitative and more intuitive. The proposed method can calculate the collapse
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risk probabilities for mountain tunnels under specific construction behaviors, which pro-
vides an intuitive reference for project managers to choose a safe excavation method and to
develop a reasonable construction scheme.

In this study, the numerical method was used to determine the stability of the tunnel,
which makes the results of the collapse risk assessment more objective. The safety factor of
the surrounding rock was chosen as the output random variable; the reliability index was
chosen instead of the deformation as the former is sometimes more reliable because the
deformation is significantly related to the deformation modulus, and the actual deformation
modulus is difficult to determine.

Machine-learning techniques such as support vector regression can significantly in-
crease computational efficiency. In this study, FLAC3D simulations, SVR training, testing,
and prediction were performed on a workstation configured with 256 GB of RAM, two Intel
Xeon Platinum 8268 processors, and an Nvidia GeForce GTX 1070 GPU. Table 8 compares
the time required by the FLAC3D simulation method and the SVR algorithm to output the
same number of safety factors. The FLAC3D simulation method required approximately
345,600 s to complete the assignment of 100 samples, while the SVR algorithm required
less than 1 s. Thus, the SVR algorithm is considerably more efficient than the FLAC3D
simulation method. Since at least 10,000 samples are required, it is impractical to calculate
the collapse probability using the MC method without the SVR algorithm.

Table 8. Comparison of the time consumption between the SVR algorithm and the FLAC3D simula-
tion method for outputting safety factors.

Method 100 Samples (s) 10,000 Samples (s) 500,000 Samples (s)

FLAC3D 345600 — —
SVR 0.012 0.018 0.214

This study still has some limitations. First, the loss of the collapse, which is an im-
portant part of the assessment result as well, cannot be obtained by the proposed method.
Second, the support installation timing was controlled by an approximate approach,
i.e., the stress release method, which is somewhat different from the actual excavation.
Third, some unaccounted-for factors may influence the result of tunnel stability analysis
and collapse probability. For instance, the correlation between cohesion and friction angle
was not considered in this study. Finally, the proposed method does not include the dy-
namics or fluid mechanics method, so it cannot be applied to other tunnel projects under
any complex conditions, such as vibration from vehicles and machines, earthquakes, and
developed groundwater. However, the ideas of this study will be helpful if the necessary
risk factors are considered and the appropriate methods are implemented.

5. Conclusions

By introducing the reliability theory, this paper proposes a novel collapse probability
prediction method based on numerical simulation, support vector regression (SVR), and
the Monte Carlo (MC) method in order to overcome the subjectivity and lack of probability
quantification in existing risk assessment methods for tunnel collapse. The Jinzhupa Tunnel
was used to illustrate the process of the proposed method. The strength reduction method,
which provides an effective way to analyze the stability of the tunnel, was introduced into
the FLAC3D simulation to calculate the safety factor of the surrounding rock. By defining
the shear strength parameters of the surrounding rock as random variables, the problem
was formulated as a reliability model. The SVR model was then trained to represent a
nonlinear mapping between the shear parameters and the safety factor. The computational
efficiency was significantly increased by substituting the FLAC3D simulation with a well-
trained SVR model. Finally, in conjunction with the well-trained SVR model, a sufficient
number of random samples were used to calculate the collapse probability using the MC
method. The results show that using the three-bench method to excavate the tunnel is
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riskier than using the CRD method, and the stability of the surrounding rock and the tunnel
cannot be guaranteed if the support system is not installed in time. As the result was in
good agreement with the collapse analysis report, the feasibility and the reliability of the
proposed method were verified, indicating that the method can be used to predict the
probability of collapse in a practical risk assessment of mountain tunnel construction.
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