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Abstract: This article presents a review of current advances and prospects in the field of forecast-
ing renewable energy generation using machine learning (ML) and deep learning (DL) techniques.
With the increasing penetration of renewable energy sources (RES) into the electricity grid, accurate
forecasting of their generation becomes crucial for efficient grid operation and energy management.
Traditional forecasting methods have limitations, and thus ML and DL algorithms have gained
popularity due to their ability to learn complex relationships from data and provide accurate predic-
tions. This paper reviews the different approaches and models that have been used for renewable
energy forecasting and discusses their strengths and limitations. It also highlights the challenges
and future research directions in the field, such as dealing with uncertainty and variability in renew-
able energy generation, data availability, and model interpretability. Finally, this paper emphasizes
the importance of developing robust and accurate renewable energy forecasting models to enable
the integration of RES into the electricity grid and facilitate the transition towards a sustainable
energy future.

Keywords: accurate predictions; deep learning; energy management; machine learning; renewable
energy forecasting

1. Introduction

Renewable energy research and development have gained significant attention due
to a growing demand for clean and sustainable energy in recent years [1,2]. In the fight
to cut greenhouse gas emissions and slow down climate change, renewable energy is
essential [3–5]. In addition, renewable energy sources (RES) offer several advantages,
including a reduction in energy dependence on foreign countries, job creation, and the
potential for cost savings [1,6]. However, the inherent variability and uncertainty of RES
present a significant challenge for the widespread adoption of renewable energy [7,8].
For example, wind energy generation is heavily influenced by the weather, which can be
unpredictable and difficult to forecast accurately [9,10]. Similarly, solar energy generation
is influenced by factors such as cloud cover and seasonal changes in sunlight [11]. The high
variability and uncertainty of renewable energy generation make it challenging to integrate
RES into the power grid efficiently [12].

One approach to addressing this challenge is to develop accurate forecasting models
for renewable energy generation. Accurate forecasting models can help minimize the
negative impact of the variability and uncertainty of renewable energy generation on the
power grid. For decades, energy generation has been predicted using traditional forecasting
models, such as statistical and physical models [13]. However, statistical models such as the
autoregressive integrated moving average (ARIMA) method have limitations in their ability
to handle complex nonlinear relationships and the high-dimensional nature of renewable
energy data [14]. Physical models, such as numerical weather prediction (NWP) models
and solar radiation models, are widely used for renewable energy forecasting. NWP models

Sustainability 2023, 15, 7087. https://doi.org/10.3390/su15097087 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15097087
https://doi.org/10.3390/su15097087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1250-6944
https://orcid.org/0000-0003-4248-9644
https://orcid.org/0000-0001-5774-7672
https://doi.org/10.3390/su15097087
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15097087?type=check_update&version=2


Sustainability 2023, 15, 7087 2 of 33

use atmospheric data to predict wind speed and direction, while solar radiation models
use cloud cover and atmospheric conditions to predict solar irradiance. However, these
models have limitations due to the complexity of the Earth’s atmosphere and the inherent
uncertainty in weather forecasting. Improving these models’ accuracy requires ongoing
research and development to address these limitations [15,16]. Promising approaches to
address the limitations of traditional forecasting models involve the utilization of ML and
DL algorithms [14]. ML and DL algorithms can learn complex nonlinear relationships
from immense quantities of information, making them suitable for handling the high-
dimensional nature of renewable energy data. Moreover, they can handle a wide range of
input data types, including time series data, meteorological data, and geographical data.

Many researchers have looked at the application of ML and DL algorithms for the
forecasting of solar radiation, a significant element influencing the output power of solar
systems [17]. For instance, Voyant et al. suggested the use of hybrid models (HMs) to
enhance prediction performance after discovering that SVR, SVM, ARIMA, and ANN are
the superior approaches for forecasting solar radiation [18]. Huertas et al. demonstrated
that the HM with SVM outperformed single predictor models in terms of improving
forecasts of solar radiation [19]. In comparison to other models, Gürel et al. discovered
that the ANN algorithm was the most effective model for assessing solar radiation [20].
Alizamir et al. found that when predicting solar radiation, the GBT model outperforms
other models in terms of accuracy and precision [21]. Srivastava et al. suggest that the
four ML algorithms (CART, MARS, RF, and M5) can be utilized for forecasting hourly solar
radiation for up to six days in advance, with RF demonstrating the best performance while
CART showing the weakest performance [22]. In their study, Agbulut et al. demonstrated
that the various ML algorithms they tested were highly accurate in predicting daily global
solar radiation data, with the best performance achieved by the ANN algorithm [23].

Similar to solar energy, the prediction of wind energy poses a challenge due to its non-
linearity and randomness, which results in inconsistent power generation. Consequently,
there is a need for an effective model to forecast wind energy, as evidenced by research
studies [24,25]. In light of the rising global population and increasing energy demand,
wind energy is viewed as a feasible alternative to depleting fossil fuels. Offshore wind
farms are particularly advantageous compared to onshore wind farms since they offer
higher capacity and access to more wind sources [26]. ML and DL models and algorithms
are employed in wind energy development, utilizing wind speed data and other relevant
information. Various researchers have proposed different models to increase prediction
accuracy. For example, Zendehboud et al. suggested the SVM model as superior to other
models and introduced hybrid SVM models [27]. Wang et al. proposed an HM comprising
a combination of models for short-term wind speed prediction [28]. Demolli et al. used five
ML algorithms to predict long-term wind power, finding that the SVR algorithm is most
effective when the standard deviation is removed from the dataset [29]. Xiaoetal suggested
using a self-adaptive kernel extreme learning machine (KELM) as a means to enhance the
precision of forecasting [30]. The ARIMA and nonlinear autoregressive exogenous (NARX)
models were evaluated by Cadenas et al., who concluded that the NARX model had less
error [31]. Wind power and speed were predicted in other studies using a variety of models,
including the improved dragonfly algorithm (IDA) with SVM (IDA–SVM) model, local
mean decomposition (LMD), firefly algorithm (FA) models, and the CNN model [15,32,33].

ML and DL have significantly advanced the field of forecasting renewable energy.
However, there are still several issues that need to be resolved. For instance, the choice
of ML and DL algorithms, the selection of input data, and the handling of missing data
are essential factors that affect the precision of forecasting models for renewable energy.
Additionally, there is a need to develop robust and interpretable models that can provide
insights into the factors that influence renewable energy generation.

This review provides an overview of the current advances and prospects of ML and
DL algorithms for renewable energy forecasting. The paper highlights the advantages and
limitations of different ML and DL algorithms and their applications to various renewable
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energy sources. In addition, the paper discusses the challenges facing renewable energy
forecasting with ML and DL and provides recommendations for future research in the
field. This makes the article’s approach distinctive since it acknowledges that addressing
the variability and unpredictability of renewable energy sources is essential for achieving
a more sustainable and dependable energy system. Additionally, it advocates the use of
machine learning and deep learning models, a relatively new and creative strategy, as
efficient instruments for tackling these problems. Utilizing these technologies will enable
grid operators and renewable energy source operators to make better-educated decisions
about managing and integrating renewable energy sources into the grid, resulting in a
more efficient, reliable, and sustainable energy system.

2. Machine Learning-Based Forecasting of Renewable Energy

This section discusses the various machine learning techniques utilized for renewable
energy forecasting. Machine learning-based forecasting has become an increasingly pop-
ular approach for predicting renewable energy output due to its ability to handle large
and complex datasets. This section covers the two main categories of machine learning
algorithms, supervised and unsupervised learning, and their various subcategories. It
also explores reinforcement learning and its applications in renewable energy forecasting.
The section provides a detailed description of each algorithm, along with its advantages,
limitations, and applications in renewable energy forecasting.

2.1. Supervised Learning

ML is a subset of artificial intelligence that seeks to enable machines to learn from
data and improve their ability to perform a particular task [34,35]. The process involves
developing statistical models and algorithms that enable computers to identify patterns in
data and utilize them to make decisions or predictions. In essence, ML involves teaching
a computer to identify and react to specific types of data by presenting it with extensive
examples, known as “training data.” This training procedure helps the computer identify
patterns and make predictions or decisions based on fresh data that it has not encountered
previously [36–38]. The applications of ML span diverse industries such as healthcare,
finance, e-commerce, and others [39–44]. In addition, ML techniques can be leveraged for
predicting renewable energy generation, resulting in better management of renewable en-
ergy systems with improved efficiency and effectiveness. There are multiple ML algorithms
available, each with distinct strengths and weaknesses. The algorithms can be categorized
into three primary groups: supervised learning, unsupervised learning, and reinforcement
learning [45].

Supervised learning refers to a ML method that involves training a model using data
that has been labeled. The labeled data comprises input-output pairs, where the input is
the data on which the model is trained and the output is the expected outcome [46,47].
The model learns to map inputs to outputs by reducing the error between the predicted
and actual outputs during training. Once trained, the model can be applied to generate
predictions on new, unlabeled data [48,49]. Regression and classification are the two basic
sub-types of supervised learning algorithms (Figure 1) [46].

Table 1 presents a comparative analysis of various ML and DL algorithms, outlining
their respective advantages and disadvantages across different applications.

1. Regression: Regression is a supervised learning approach that forecasts a continuous
output variable based on one or more input variables. Regression aims to identify a
mathematical function that can correlate the input variables to a continuous output variable,
which may represent a single value or a range of values [50]. Linear regression, polynomial
regression, and support vector regression (SVR) are the three main types of supervised
learning algorithms in regression [51].
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Table 1. ML and DL Technics with pros and cons in different applications.

Technique Pros Cons Applications

Linear Regression Easy to implement, fast training Limited to linear relationships Predictive analytics

Logistic Regression Interpretable, works well
with small datasets

Assumes linearity, apply
only for classification

Predict power outages, classify
extreme weather events, market,
and healthcare

Decision Trees Interpretable, can handle both
categorical and continuous data Prone to overfitting Predictive maintenance, finance

Random Forest High accuracy, less prone
to overfitting

Computationally expensive
compared to DT, difficult to interpret

Operation control strategy, image
classification, and fraud detection

SVM
Can handle high-dimensional data,
can handle non-linear relationships,
robust to noise

Computationally expensive and
requires careful parameter tuning Text classification, bioinformatics

K-means clustering Simple and fast, useful for data
exploration and segmentation

Requires a pre-determined number
of clusters and can be sensitive to
initial conditions

Market segmentation,
image segmentation

PCA
Can reduce dimensionality and noise
in data, useful for data exploration
and visualization

May not capture all relevant
information and can be
difficult to interpret

Image and speech recognition,
natural language processing

Reinforcement Learning
Can learn through trial and error,
useful for decision-making in
dynamic environments

Requires a lot of data and can be
prone to overfitting Game playing, robotics

ANN
Can learn complex relationships,
handle large datasets, and model
non-linear relationships

Requires large amounts of data and
can be difficult to interpret

Predict energy demand (stationary),
energy resource forecasting, image
recognition, and speech recognition

CNN Highly effective for image analysis, it
can learn features automatically

Requires large amounts of data, is
computationally expensive, may not
be suitable for low spatial or
temporal resolutions

Object detection, image classification,
and predicting energy demand based
on satellite images of areas
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Table 1. Cont.

Technique Pros Cons Applications

RNN
Can handle sequential data and time
series data and can handle
long-term dependencies

Can be prone to overfitting and slow
training, and may suffer from
vanishing or exploding gradients

Energy price forecasting (time series),
speech recognition, and
sentiment analysis

LSTM Can handle long-term dependencies,
which is useful for time series data

Can be prone to overfitting and
require careful tuning

Time series, speech recognition,
natural language processing, load
forecasting, and energy price
forecasting (time series)

Autoencoders
Can reduce dimensionality and noise
in data and be used for
unsupervised learning

Requires large amounts of data and
can be difficult to interpret

Anomaly detection, image, and
speech recognition

ELM Fast training, can handle
large datasets

Limited interpretability may not
generalize well to new data

Renewable energy forecasting, image
and speech recognition,
predictive analytics

GRNN Fast training and can handle
noise in data

Limited to regression tasks and may
not scale well to large datasets

Renewable energy forecasting, time
series prediction, and
function approximation

RBNN Effective for non-linear regression
and classification tasks

Requires careful tuning of network
architecture and hyperparameters

Image and speech recognition,
anomaly detection

WNN Can handle multi-resolution and
multi-scale data

Requires careful selection of wavelet
basis functions and can be
computationally expensive

Image and signal processing, time
series prediction

ANFIS Can handle uncertainty and
non-linearity in data

Requires careful selection and tuning
of fuzzy rules and can be
computationally expensive

Control systems, fault diagnosis

DBN
Can learn hierarchical
representations of data, which is
effective for unsupervised learning

Requires large amounts of data, can
be difficult to interpret

Image and speech recognition,
natural language processing

Ensemble Learning
Can improve performance and
reduce overfitting by combining
multiple models

Can be computationally expensive
and may require careful tuning

Renewable energy forecasting, image
and speech recognition, and natural
language processing

Transfer Learning
Can leverage pre-trained models to
improve performance and require
less data

May not generalize well to new data,
limited to similar tasks

Load forecasting, energy price
prediction, predictive maintenance,
fault diagnosis, energy consumption,
energy efficiency forecasting,
renewable energy foresting, image
and speech recognition, and natural
language processing

Linear and Polynomial Regression: Linear regression is a prevalent and straightfor-
ward approach used to forecast a continuous output variable utilizing one or more input
variables. It uses a straight line to indicate the correlation between the input variables
and the output variables [52]. On the other hand, polynomial regression, a type of linear
regression, employs nth-degree polynomial functions to depict the connection between
input features and the outcome variable [53]. This can enhance the accuracy of predictions
by enabling the model to capture more intricate correlations between the input data and the
target variable. In renewable energy forecasting, both linear and polynomial regression can
be used to predict the power output of RES such as solar and wind power [54,55]. Weather
information such as temperature, humidity, and wind speed are frequently included in
the input characteristics, along with historical power output data. The target variable
is the power output of the renewable energy source, which can be predicted using the
input features.

For instance, Ibrahim et al. (2012) used data from a weather station collected over
three years to create a linear regression model to predict solar radiation in Perlis. The
model used three input variables (average daily maximum and minimum temperatures,
as well as the average daily solar radiation) and had a good fit with an R-squared value
of 0.954. The authors concluded that their model could be a useful tool for estimating



Sustainability 2023, 15, 7087 6 of 33

solar radiation in Perlis [56]. Ekanayake et al. (2021) created artificial neural networks
(ANNs), multiple linear regression, and power regression models to produce wind power
prediction models for a Sri Lankan wind farm. In their modeling approach, they utilized
climate parameters such as average wind speed and average ambient temperature as input
variables for their analysis. The models were developed using power generation data over
five years and showed acceptable accuracy with low RMSE, low bias, and a high correlation
coefficient. The ANN model was the most precise, but the MLR and PR models provide
insights for additional wind farms in the same area [57]. Mustafa et al. (2022) also compared
four regression models, linear regression, logistic regression, Lasso regression, and elastic
regression, for solar power prediction. The results showed that all four models are effective,
but the elastic regression outperformed the others in predicting maximum solar power
output. Principal component analysis (PCA) was also applied, showing improved results
in the elastic regression model. The paper focuses on the strengths and weaknesses of each
solar power prediction model [58].

Support Vector Regression (SVR): The SVR algorithm is utilized in regression analysis
within the field of ML [59]. It works by finding the best hyperplane that can separate the
data points in a high-dimensional space. The selection of the hyperplane aims to maximize
the distance between the closest data points on each side of it. The approach involves
constraining the margin while minimizing the discrepancy between the predicted and
actual values. It is also a powerful model to predict renewable energy potential for a specific
location. For example, Yuan et al. (2022) proposed a jellyfish search algorithm optimization
SVR (IJS-SVR) model to predict wind power output and address grid connection and power
dispatching issues. The SVR was optimized using the IJS technique, and the model was
tested in both the spring and winter. IJS-SVR outperformed other models in both seasons,
providing an effective and economical method for wind power prediction [60]. In addition,
Li et al. (2022) created ML-based algorithms for short-term solar irradiance prediction,
incorporating a hidden Markov model and SVM regression techniques. The Bureau of
Meteorology demonstrated that their algorithms can effectively forecast solar irradiance
for 5–30 min intervals in various weather conditions [61]. Mwende et al. (2022) developed
SVR and random forest regression (RFR) models for real-time photovoltaic (PV) power
output forecasting. On the validation dataset, SVR performed better than RFR with an
RMSE of 43.16, an adjusted R2 of 0.97, and a MAE of 32.57, in contrast to RFR’s RMSE of 86,
an adjusted R2 of 0.90, and a MAE of 69 [62].

2. Classification: Classification, a form of supervised learning, involves using one or
more input variables to anticipate a categorical output variable [63]. Classification aims
to find a function that can map the input variables to discrete output categories. The
most widely used classification algorithms for predicting RES include logistic regression,
decision trees, random forests, and support vector machines.

Logistic Regression: Logistic regression is a classification method that utilizes one or
more input variables to forecast a binary output variable [64,65]. It models the probability
of the output variable being true or false using a sigmoid function. In renewable energy
forecasting, logistic regression can be used to predict whether or not a specific event will
occur, such as a solar or wind farm reaching a certain level of power output. For instance,
Jagadeesh et al. used ML to develop a forecasting method for solar power output in 2020.
They used a logistic regression model with data from 11 months, including plant output,
solar radiation, and local temperature. The study found that selecting the appropriate
solar variables is essential for precise forecasting. Additionally, it examined the algorithm’s
precision and the likelihood of a facility generating electricity on a particular day in the
future [66].

Decision Trees: An alternative classification method is decision trees, which involve
dividing the input space into smaller sections based on input variable values and then
assigning a label or value to each of these sections [65]. The different studies developed
decision tree models to forecast power output from different renewable energy systems.
Essama et al. (2018) developed a model to predict the power output of a photovoltaic (PV)
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system in Cocoa, Florida, USA, using weather parameters obtained from the United States
National Renewable Energy Laboratory (NREL). By selecting the best performance among
the ANN, RF, DT, extreme gradient boosting (XGB), and LSTM algorithms, they aim to
fill a research gap in the area. They have concluded that even if all of the algorithms were
good, ANN is the most accurate method for forecasting PV solar power generation.

Random Forest: An effective and reliable prediction is produced by the supervised ML
method known as random forest, which creates several decision trees and merges them [67].
The bagging technique, which is employed by random forests, reduces the variance of the
base algorithms. This technique is particularly useful for forecasting time-series data [68].
Random forest mitigation correlation between trees by introducing randomization in
two ways: sampling from the training set and selecting from the feature subset. The RF
model creates a complete binary tree for each of the N trees in isolation, which enables
parallel processing.

Vassallo et al. (2020) investigate optimal strategies for random forest (RF) modeling in
wind speed/power forecasting. The investigation examines the utilization of random forest
(RF) as a corrective measure, comparing direct versus recursive multi-step prediction, and
assessing the impact of training data availability. Findings indicate that RF is more efficient
when deployed as an error-correction tool for the persistence approach and that the direct
forecasting strategy performs slightly better than the recursive strategy. Increased data
availability continually improves forecasting accuracy [69]. In addition, Shi et al. (2018) put
forward a two-stage feature selection process, coupled with a supervised random forest
model, to address overfitting, weak reasoning, and generalization in neural network models
when forecasting short-term wind power. The proposed methodology removes redundant
features, selects relevant samples, and evaluates the performance of each decision tree.
To address the inadequacies of the internal validation index, a new external validation
index correlated with wind speed is introduced. Simulation examples and case studies
demonstrate the model’s better performance than other models in accuracy, efficiency, and
robustness, especially for noisy data and wind power curtailment [70]. Similarly, Natarajan
and Kumar (2015) also compared wind power forecasting methods. Physical methods rely
on meteorological data and numerical weather prediction (NWP), while statistical methods
such as ANN and SVM depend on historical wind speed data. This study experiments
with the random forest algorithm, finding it more accurate than ANN for predicting wind
power at wind farms [71].

Support Vector Machines (SVM): SVM are a type of classification algorithm that
identifies a hyperplane and maximizes the margin between the hyperplane and the data
points, akin to SVR [72,73]. SVM has been utilized in renewable energy forecasting to
estimate the power output of wind and solar farms by incorporating input features such
as historical power output, weather data, and time of day. For instance, Zeng et al. (2022)
propose a 2D least-squares SVM (LS-SVM) model for short-term solar power prediction.
The model uses atmospheric transmissivity and meteorological variables and outperforms
the reference autoregressive model and radial basis function neural network model in
terms of prediction accuracy [74]. R. Meenal and A. I. Selvakumar (2018) conducted studies
comparing the accuracy of SVM, ANN, and empirical solar radiation models in forecasting
monthly mean daily global solar radiation (GSR) in several Indian cities using varying
input parameters. Using WEKA software, the authors determine the most significant
parameters and conclude that the SVM model with the most influential input parameters
yields superior performance compared to the other models [75]. Generally, classification
algorithms are used to predict categorical output variables, and regression techniques are
used to predict continuous output variables. The particular task at hand and the properties
of the data will determine which method is used.

2.2. Unsupervised Learning

Another form of ML is unsupervised learning, where an algorithm is trained on an
unlabeled dataset lacking known output variables, to uncover patterns, structures, or
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relationships within the data [76–78]. Unsupervised learning algorithms can be primarily
classified into two types, namely clustering and dimensionality reduction [79].

Clustering: It is an unsupervised learning method that consists of clustering related
data points depending on how close or similar they are to one another. Clustering algo-
rithms, such as K-means clustering, hierarchical clustering, and density-based clustering,
are commonly used in energy systems to identify natural groupings or clusters within
the data. The primary objective of clustering is to discover these inherent patterns, or
clusters [76,77]. K-means clustering is a widely used approach for dividing data into k
clusters, where k is a user-defined number. Each data point is assigned to the nearest cluster
centroid by the algorithm, and the centroids are updated over time using the average of
the data points in the cluster [76,77]. Hierarchical clustering is also a family of algorithms
that recursively merge or split clusters based on their similarity or distance to create a
hierarchical tree-like structure of clusters. The other family of clustering algorithms that
groups data points that are within a certain density threshold and separates them from
areas with lower densities is the density-based clustering algorithm [76–78].

Dimensionality Reduction: It is also an unsupervised learning technique utilized to
decrease the quantity of input variables or features while retaining the significant infor-
mation or structure in the data [76–78]. The purpose of dimensionality reduction is to
find a lower-dimensional representation of data that captures the majority of the variation
or variance in the data. Principal component analysis (PCA), t-SNE, and autoencoders
are some dimensionality reduction algorithms used in renewable energy forecasting [79].
Principal component analysis (PCA) is a commonly utilized method for decreasing the
dimensionality of a dataset. It does so by identifying the primary components or direc-
tions that have the most variability in the data and then mapping the data onto these
components [79]. t-SNE is a non-linear dimensionality reduction algorithm that is par-
ticularly useful for visualizing high-dimensional data in low-dimensional space. It uses
a probabilistic approach to map similar data points to nearby points in low-dimensional
space. Autoencoders are a type of neural network that can learn to encode and decode
high-dimensional data in a lower-dimensional space. The encoder network is trained to
condense the input data into a representation with fewer dimensions, and the decoder
network is trained to reconstruct the original data from this condensed representation [79].

In general, unsupervised learning algorithms are particularly useful when there is
a large amount of unstructured data that needs to be analyzed and when it is not clear
what the specific target variable should be. Unsupervised learning has found various
applications in the field of renewable energy forecasting, and one of its commonly used
applications is the clustering of meteorological data [80]. For example, in a study by
J. Varanasi and M. Tripathi (2019), K-means clustering was used to group days of the
year, sunny days, cloudy days, and rainy days into clusters based on similarity for short-
term PV power generation forecasting [81]. The resulting clusters were then used to train
separate ML models for each cluster, which resulted in improved PV power forecasting
accuracy. Unsupervised learning has also been used for anomaly detection in renewable
energy forecasting. Anomaly detection refers to the task of pinpointing data points that
exhibit notable deviations from the remaining dataset. In the context of renewable energy
forecasting, anomaly detection can aid in identifying exceptional weather patterns or
uncommon circumstances that may impact renewable energy generation. For example, in
a study by Xu et al. (2015), the K-means algorithm was used to identify anomalous wind
power output data, which was then employed to improve the accuracy of the wind power
forecasting model [82].

In the realm of renewable energy forecasting, unsupervised learning has been utilized
for feature selection, which involves choosing a smaller set of pertinent features from a
larger set of input variables. In renewable energy forecasting, feature selection can be
used to reduce the computational complexity of ML models and improve the accuracy
of renewable energy output predictions. For example, in a study by Scolari et al. (2015),
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K-means clustering was used to identify a representative subset of features for predicting
solar power output [83].

Overall, unsupervised learning is a powerful tool for analyzing large amounts of
unstructured data in renewable energy forecasting. Clustering, anomaly detection, and
feature selection are just a few of the many applications of unsupervised learning in this
field, and new techniques are continually being developed to address the unique challenges
of renewable energy forecasting.

2.3. Reinforcement Learning Algorithms

Reinforcement learning (RL) is a branch of ML in which an agent learns to make
decisions in an environment to maximize a cumulative reward signal [84,85]. The agent
interacts with its surroundings by taking actions and receiving responses in the form of
rewards or penalties that are contingent on its actions. [86]. Some examples of RL algorithms
are Q-learning, policy gradient, and actor-critic [87,88]. Q-learning is a RL algorithm
used for learning optimal policies for decision-making tasks by iteratively updating the
Q-values, which represent the expected future rewards for each action in each state [89].
Policy gradient is also a RL algorithm used for learning policies directly without computing
the Q-values [90]. Actor-critic is another RL algorithm that combines elements of both
value-based and policy-based methods by training an actor network to generate actions
and a critic network to estimate the value of those actions [90].

Renewable energy forecasting is among the many tasks for which RL has been
utilized [88,91]. One approach to applying RL to renewable energy forecasting is to use
it to control the operation of energy systems [92]. For example, Sierra-García J. and S.
Matilde (2020) developed an advanced yaw control strategy for wind turbines based on
RL [93]. This approach uses a particle swarm optimization (PSO) and Pareto optimal front
(PoF)-based algorithm to find optimal actions that balance power gain and mechanical
loads, while the RL algorithm maximizes power generation and minimizes mechanical
loads using an ANN. The strategy was validated with real wind data from Salt Lake City,
Utah, and the NREL 5-MW reference wind turbine through FAST simulations [93].

2.4. Deep Learning (DL)

DL is a type of ML that employs ANNs containing numerous layers to acquire intricate
data representations with multiple layers of abstraction. The term “deep” refers to the
large number of layers in these ANNs, which can range from a few layers to hundreds
or even thousands of layers [94]. DL algorithms can learn to recognize patterns and
relationships in data through a process known as “training.” During training, the weights
of the links between neurons in an ANN are changed to reduce the disparity between the
anticipated and actual output [95]. DL has brought about significant transformations in
several domains, such as energy systems, computer vision, natural language processing,
speech recognition, and autonomous systems. It has facilitated remarkable advancements
in various fields, such as natural language processing, game playing, speech recognition,
and image recognition [80].

3. DL Algorithms Used for Renewable Energy Forecasting
3.1. ANN for Renewable Energy Forecasting

Artificial neural networks (ANNs) belong to a category of ML models that imitate the
arrangement and operation of the human brain [96]. They are designed to learn from data
and utilize that knowledge to produce predictions or decisions. At a high level, ANNs
consist of three main components: input layers, hidden layers, and output layers. The
input layer receives the data, which is usually represented as a vector of numbers. The
output layer produces the desired output of the network, which could be a classification
(e.g., predicting the type of an object in an image) or a regression (e.g., predicting the price
of a house based on its features). The hidden layers are where most of the “computation”
happens in the network. They consist of one or more layers of neurons that perform
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nonlinear transformations on the input data [97]. Each neuron in an ANN receives input
from other neurons or directly from the input layer. For each input, a weight is assigned
that signifies the connection’s potency between two neurons (Figure 2). Then, the neuron
processes an activation function on the weighted sum of its inputs, which generates an
output. This output can serve as the input for another neuron, and this process repeats
until the final output of the output layer is obtained [98].
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The weights within the network are modified during training to ensure that the
network generates the intended output for a given input. This process is usually executed
through a technique known as back-propagation, which determines the gradient of the
loss function concerning the weights and adjusts them correspondingly (Figure 2). [99,100].
The loss function quantifies the variance between the predicted output and the actual
output, and the primary objective of the training is to lessen this discrepancy. ANNs are
versatile and can be employed for various purposes, such as predicting renewable energy,
classifying images, recognizing speech, processing natural language, and conducting
predictive analytics [101–105].

ANNs have been employed in renewable energy forecasting, such as solar energy,
wind energy, and multi-renewable energy forecasting, for several years, demonstrating
their efficacy in this application. For instance, Rehman and Mohandes [106] used ANN to
estimate global solar radiation in Abha, Saudi Arabia, by incorporating air temperature and
relative humidity as inputs. Meanwhile, Benghanem et al. [107] established six ANN-based
models to estimate global solar radiation in Al-Madinah, Saudi Arabia, and found that
the model based on sunshine duration and air temperature had the highest precision. In
a different study, Ozgoren et al. [108] developed an ANN model that predicted monthly
global solar radiation in Turkey by using several input variables and the stepwise MNLR
technique to identify influential inputs. The ANN model demonstrated an acceptable level
of precision compared to measured values. Despite the variations in the models and input
variables used, ANN has proven to be a reliable tool for predicting global solar radiation in
different regions. S. Kumar and T. Kaur (2016) also used ANN to predict solar radiation
for solar energy applications in Himachal Pradesh. The ANN model used temperature,
rainfall, sunshine hours, humidity, and barometric pressure as input variables. Three
models with 3 to 5 input parameters were developed and tested, with the ANN-I5 model
showing the best prediction accuracy with a mean absolute percentage error (MAPE) of
16.45%. This study showed the method can also be used to identify solar energy potential
for any location worldwide without direct measuring instruments [109]. Another study
by N. Premalathaa and Amirtham V. (2016) showed that an ANN model for accurately
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predicting solar radiation using meteorological mean monthly data such as station level
pressure, ambient air temperature, wind speed, average GSR, and relative humidity from
five different locations across India over the last 10 years. The analysis evaluated two
ANN models that incorporated four distinct algorithms, and the optimal algorithm and
model were determined by the minimum MAE and RMSE, as well as the maximum R.
The resulting ANN model exhibits a low MAPE, which renders it useful for designing or
assessing solar energy systems in regions of India that lack meteorological data recording
capabilities [110]. In their study, Woldegiyorgis et al. (2021) explored the viability of
utilizing ANN for estimating the mean daily global solar radiation (GSR) and contrasted
its effectiveness with empirical models founded on sunshine. They used daily average
sunshine hours, temperature (max/min), wind speed, relative humidity, pressure, and the
number of days as inputs, with daily averaged global solar radiation as the network output.
The results demonstrated that the ANN model displayed favorable performance with a
validation R-value of 0.932, surpassing the empirical models [111].

Wind energy forecasting is another important area of research in renewable energy
forecasting. For instance, Jamii et al. (2022) proposed an ANN-based paradigm to forecast
wind power generation and load demand using meteorological parameters such as wind
speed, atmospheric pressure, and temperature as inputs. Results showed that the ANN
outperformed four other ML methods, providing high effectiveness and accuracy for
power forecasting [112]. Q. Chen and K. Folly (2019) suggested an artificial neural network
(ANN) model for precise short-term wind power prediction in small wind farms. Their
research examines how the input variables (wind speed at various heights, wind direction,
atmospheric pressure, temperature, and relative humidity) and sample size influence the
forecasting efficiency and computational expense of the model. The study investigates the
effect of input variables and sample size on the forecasting performance and computing
cost of the model. Their findings suggest that the ANN model with all input features and a
large training sample size performs the best in terms of forecasting [113].

3.2. CNN for Renewable Energy Forecasting

Convolutional neural networks (CNNs) are a class of ANN that exhibit exceptional
performance in handling and interpreting data with a grid-like arrangement, such as videos
or images [114]. CNNs derive inspiration from the organization and operation of the visual
cortex in the brain and employ convolutional layers to acquire localized characteristics from
the input data [115]. A CNN is composed of several layers, which encompass convolutional
layers, pooling layers, and fully connected layers (Figure 3). The convolutional layers are
the principal building blocks of a CNN, which utilize filters (referred to as kernels) to extract
localized characteristics from the input data [116]. Each filter is a small matrix that slides
over the input data, performing a dot product between the filter and the corresponding
input pixels. The output of this operation is a feature map, which highlights the areas of
the input data that are most important for the task at hand [116,117]. Pooling layers are
frequently added after convolutional layers to decrease the spatial dimensions of feature
maps and enhance the computational efficiency of the network. Popular types of pooling
include max pooling, which chooses the highest value within a small area of the feature
map, and average pooling, which calculates the mean value within a small area of the
feature map [118]. The fully connected layers are employed to generate the ultimate
predictions based on the features acquired by the convolutional and pooling layers. These
layers are similar to those in a traditional neural network and use the learned features to
make predictions based on the task at hand. In the course of training, the CNN weights
are modified to minimize the disparity between the predicted and actual output, akin to
other types of neural network structures [119]. The back-propagation algorithm is utilized
to compute the gradients of the loss function relative to the weights, and the weights are
subsequently updated based on this information [120].
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CNNs have demonstrated exceptional performance in various image and video recog-
nition tasks, such as object detection, segmentation, and classification. To forecast time
series, which is essential for forecasting renewable energy, CNNS can also be used in
combination with the other algorithms [121–124]. For example, Lim et al. (2022) propose a
CNN-LSTM for stable power generation forecasting in photovoltaic (PV) systems, consider-
ing the impact of environmental factors such as solar radiation and temperature. PV power
output data from a plant located in Busan, Korea, was used to train and test the model.
The suggested model yielded a mean absolute percentage error of 4.58 on a clear day
and 7.06 on a cloudy day, demonstrating its ability to enhance the efficiency of PV power
plant operations [125]. Similarly, Gao et al. (2019) propose a CEEMDAN–CNN–LSTM
model for hourly solar irradiance forecasting to managing electricity generation and smart
grids. The model employs CEEMDAN to decompose data into constitutive series and a
DL network based on CNN and LSTM to predict solar irradiance. The model outperforms
other methods, achieving an average RMSE of 38.49 W/m2 and demonstrating stable
performance in different climates [126]. Cannizzaro et al. (2021) presented a fresh approach
to anticipating short- and long-term global horizontal solar irradiance (GHI) through ma-
chine learning techniques. Their methodology involves a combination of variational mode
decomposition (VMD) and CNN with either RF or LSTM. The approach is evaluated on
a real-world dataset and achieves accurate results [127]. Furthermore, Wu et al. (2020)
suggest a spatio-temporal correlation model (STCM) that utilizes CNN-LSTM to forecast
ultra-short-term wind power. The model reconstructs meteorological factors at different
sites from input data using CNN to extract spatial correlation features and LSTM to extract
temporal correlation features. The STCM performs better than traditional models and
accurately forecasts wind power using measured meteorological factors and wind power
datasets from a wind farm in China [128].

3.3. RNN for Renewable Energy Forecasting

Recurrent neural networks (RNNs) are an artificial neural network category that
is specifically engineered to manage sequential data by analyzing every element in a
sequence while retaining an internal state or memory of previous elements [129–131]. RNNs
are particularly useful for natural language processing, speech recognition, time series
prediction, and other applications that involve sequential or temporal data. The key feature
of RNNs is the use of recurrent connections, which allow information to be passed from
one-time step to the next. Recurrent connections are established in the network through
the inclusion of loops, which permit the output of the prior time step to be utilized as input
for the current time step. Similar to other neural networks, an RNN consists of layers of
neurons with learnable weights. However, unlike other neural networks, the input and
output of an RNN can be sequences of variable length, and the weights are shared across
all time steps, allowing the network to learn patterns that are dependent on the sequence
of input data (Figure 4) [132]. The internal state of an RNN at each time step is typically
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represented by a hidden vector or memory cell. The hidden vector is updated at each time
step by combining the input at that time step with the previously hidden vector using a
set of learnable weights. This update is usually performed using an activation function,
such as the hyperbolic tangent or the rectified linear unit (ReLU). One limitation of basic
RNNs is that they can struggle to capture long-term dependencies in the input sequence,
which can cause the gradient to vanish or explode during training. Recurrent connections
are established in the network through the inclusion of loops, which permit the output of
the prior time step to be utilized as input for the current time step. Different types of RNNs
have been created to tackle this issue, including long short-term memory (LSTM) networks
and gated recurrent units (GRUs), which employ more intricate structures to effectively
retain long-term correlations in the input sequence [133]. During the training process, the
RNN weights are modified to reduce the difference between the predicted output and the
actual output, similar to other neural network models. The back-propagation algorithm is
employed to determine the gradients of the loss function in relation to the weights, and the
weights are subsequently updated based on this information [134].
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RNNs have shown remarkable success in tasks involving sequential data, such as
speech recognition, sentiment analysis, machine translation, and even time series forecast-
ing, including renewable energy forecasting. Several research studies have investigated
the use of RNNs for predicting renewable energy. One such study by Kisvari et al. (2021)
suggests a data-driven method for wind power prediction that involves pre-processing,
anomaly detection, feature engineering, and hyperparameter tuning using gated recurrent
DL models [135]. They also compare a new DL neural network of GRU with LSTM. The
approach achieves high accuracy at lower computational costs, and GRU outperforms
LSTM in predictive accuracy [135]. Another work by M. Abdel-Nasser and K. Mahmoud
(2017) proposes using LSTM-RNN to precisely estimate PV power output. Because of their
recurrent architecture and memory units, LSTM networks can simulate temporal variations
in PV output power. Utilizing hourly datasets, the proposed strategy is evaluated and
found to reduce forecasting errors more than three previous methods [136]. Yadav et al.
(2013) also suggest a RNN model that utilizes an adaptive learning rate to predict daily,
mean monthly, and hourly solar irradiation with the assistance of meteorological data. The
outcomes demonstrate that the RNN performs better than the multi-layer perceptron (MLP)
method, and the proposed adaptive learning rate enhances performance in comparison to
the traditional feed-forward network [137].

3.4. RBM for Renewable Energy Forecasting

Restricted Boltzmann Machines (RBM) is a type of unsupervised neural network that
can learn complex probability distributions over input data. They are composed of two
layers, a hidden layer and a visible layer, with each layer consisting of binary nodes that
are either activated or deactivated [138]. The training process of RBM involves contrastive
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divergence, a technique that works towards reducing the dissimilarity between the input
data and the model’s depiction of the data. Through training, the RBM adapts the weights
connecting the visible and hidden layers to model the probability distribution of the input
data. RBMs have several unique features that make them useful for a variety of applications.
Their capacity to learn high-level representations of input data without labels or supervision
is one of their key strengths. This makes them ideal for unsupervised learning tasks like
feature learning and dimensionality reduction [139]. Another strength of RBMs is their
ability to model complex dependencies between input features, which makes them effective
in modeling data with multiple interacting factors. They have been effectively employed in
a wide range of fields, including image recognition, voice recognition, and natural language
processing. Finally, RBMs have also been used as building blocks for more complex neural
networks, such as deep belief networks and deep neural networks. In these architectures,
RBMs are used to pre-train the network’s layers before fine-tuning them for a specific task
(Figure 5) [140].
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RBMs have found applications in various fields, including renewable energy fore-
casting. One such application involves using RBMs as a pre-processing step to extract
features from renewable energy data before using them in other ML models such as neural
networks for forecasting. Yang et al., for instance, proposed an unsupervised model for
identifying irregularities in wind turbine monitoring systems that includes RBM [141].

3.5. Auto Encoder for Renewable Energy Forecasting

One of the most effective unsupervised learning models in recent decades is the
autoencoder based on a deep neural network. The unsupervised model allows for the
extraction of effective and discriminative features from a large unlabeled data set, making
this approach extensively suitable for feature extraction and dimensionality reduction [142].
Essentially, an autoencoder can be described as a neural network consisting of three fully
connected layers, with the encoder containing input and hidden layers and the decoder
containing hidden and output layers. The encoder converts higher-dimensional input data
into a lower-dimensional feature vector [143]. The data is then converted back to the input
dimension by the decoder. Building a complex nonlinear relationship between the input
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data and the output data is one of the deep neural network’s top priorities since it enables
the autoencoder to successfully recreate the decoder’s output. As a result, throughout the
entire training period, the reconstruction error will decrease simultaneously, and important
features will be stored in the hidden layer. Lastly, the output of the hidden layer will
show how effectively the proposed autoencoder extracted features [144,145]. The basic
autoencoder’s configuration is shown in Figure 6.
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In renewable energy forecasting, autoencoder models have been used to extract fea-
tures from input data such as weather data, historical energy production data, and other
relevant variables. These features are then used to train ML models for energy forecast-
ing. For example, Dairi et al. (2015) propose a variational autoencoder (VAE) model for
short-term solar power forecasting. The study compares the performance of the VAE-based
method with seven DL methods and two ML methods using data from two PV systems.
Results indicate that the VAE consistently outperforms the other methods in forecasting
accuracy, highlighting the superiority of DL techniques over traditional ML methods [146].
Jaseena and Kovoor (2015) also presented a wind speed forecasting model that utilizes a
hybrid approach of an autoencoder and LSTM. The model incorporates an autoencoder
to extract characteristics from the input data. The extracted features are then fed into an
LSTM model for forecasting wind speed. Compared to other models, the proposed model
attained superior accuracy in its forecasting [147].

3.6. Deep Belief Neural Networks (DBN) for Renewable Energy Forecasting

DBNs are deep neural networks made up of several layers of RBMs. Similar to RBMs,
DBNs are generative models trained through unsupervised learning techniques to extract
and represent features from input data [139]. The training process of DBNs follows a
layer-wise unsupervised learning approach, where each layer is trained independently to
extract features from input data (Figure 7) [148]. After training each layer, the output of the
preceding layer is used as input to the subsequent layer until the entire network is trained.
Once the network is fully trained, it can be fine-tuned using supervised learning methods
for classification or regression tasks [149].
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DBNs have found diverse applications in fields such as computer vision, speech
recognition, and natural language processing, demonstrating remarkable performance in
numerous use cases [150]. For example, DBNs have been utilized for image classification,
achieving state-of-the-art accuracy on the MNIST dataset, which is a collection of handwrit-
ten digits. In natural language processing, DBNs have been used for sentiment analysis and
language modeling, where they are effective in learning hierarchical representations of the
input data. In the context of renewable energy forecasting, DBNs have been used for feature
extraction and forecasting. For instance, a study by Noe et al. (2017) proposed a forecasting
method based on DL and the deep belief network training algorithm. Their study found
that the optimal number of input variables influences performance, and the proposed DBN
accurately selected the parameters that best fit the data to achieve the lowest prediction
error. The results were validated by comparing them to ELM, and actual evidence shows
that DBN has better forecasting accuracy [151]. Similarly, Wang et al. (2018) introduced a
deep belief network (DBN) model that employs clustered numerical weather prediction
(NWP) data to enhance wind power forecasting, outperforming back-propagation neural
networks (BP) and Morlet wavelet neural networks (MWNN) by over 44% in accuracy
when tested on the Sotavento wind farm [152].

3.7. ANFIS for Renewable Energy Forecasting

ANFIS is a hybrid of ANN and fuzzy logic, designed in the early 1990s [153]. It uses a
fuzzy inference system to approximate nonlinear functions, making it a powerful general
estimator [154]. ANFIS consists of five layers, which include the input layer, fuzzification
layer, rule layer, normalization layer, and output layer. The fuzzification layer is the first
layer and takes in input values to determine membership functions using the premise
parameter sets a, b, and c. The second layer, the rule layer, generates firing strengths for the
rules. The third layer normalizes the firing strengths by dividing each value by the total
firing strength. In the fourth layer, the normalized values and result parameter sets p, q,
and r are used as inputs to produce defuzzified values, which are then sent to the final
layer to generate the ultimate output [155]. Figure 8 illustrates the ANFIS architecture.
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ANFIS has been extensively utilized in renewable energy forecasting owing to its capac-
ity to capture both linear and nonlinear connections in the data. For instance, Hussieny et al.
(2018) developed a wind speed and temperature prediction system utilizing a combination
of ANN, a genetic algorithm fused with ANN (GPANN), and ANFIS. The implementation
of ANFIS with a trapezoidal membership function yielded the best results, with an optimal
mean square error of 7.2989 m/s for wind speed and 3.8364 ◦C for temperature [157].
Mellit et al. (2007) also proposed a new approach for estimating total solar radiation data
with an ANFIS that is purely dependent on the mean sunshine duration and air tempera-
ture. The model was trained and tested using a 10-year database of daily sunshine duration,
ambient temperature, and total solar radiation data. The validation data set produced a
highly accurate estimate, with a mean relative error (REM) of less than 1% between the
actual and predicted values and a correlation coefficient of 98%. They further claim that the
proposed approach can be applied to any geographical location on Earth [158]. To enhance
the accuracy of wind speed forecasting, ANFIS models have been utilized in conjunction
with other machine learning models. Ahmed et al. (2017) conducted a study in which
they developed a hybrid algorithm for wind speed forecasting, a critical factor for wind
power generation, by introducing a novel optimization algorithm called Krill Herd (KH)
and combining it with ANFIS. The Krill-ANFIS model, which was optimized using KH,
outperformed the basic ANFIS, PSO-ANFIS, and GA-ANFIS models in terms of perfor-
mance measures [157]. Yadav et al. (2019) also developed a hybrid model using a genetic
algorithm and an adaptive network-based fuzzy inference system to forecast short-term
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solar photovoltaic (PV) power in the Indian electricity market. This model outperformed
four other models, demonstrating higher accuracy in PV power forecasting [159].

3.8. Wavelet Neural Network (WNN) for Renewable Energy Forecasting

WNN is a kind of NN that combines the mathematical concept of wavelets with ANNs.
Wavelets are mathematical functions that can be used to analyze and decompose complex
signals or data into simpler components. They are particularly useful in analyzing signals
with both time and frequency components, such as audio, images, and time-series data.
Wavelets are employed as the activation functions for the hidden neurons in a WNN. The
neurons are fed with input signals that have been broken down into wavelet coefficients.
They then perform linear transformations on these coefficients to extract characteristics
or features from the input information [160]. The outcome of each hidden neuron is then
passed through a wavelet activation function, which applies a wavelet function to the
transformed coefficients to produce an output signal. The use of wavelet coefficients and
activation functions in a network enables it to effectively capture the time and frequency
features of the input data. As a result, this approach is highly advantageous for tasks that
involve time series forecasting, signal processing, and image analysis [161]. WNNs can
capture non-linear correlations between input and output data as well as manage noisy or
missing data. They are also computationally efficient and can be trained using standard
back-propagation techniques [162,163].

The application of WNN in renewable energy forecasting is attributed to its capability
to capture the temporal and frequency characteristics of the input data. For example,
a study by Dewangan et al. (2015) proposed using wavelet neural networks (WNN)
with Levenberg-Marquardt training for short-term solar irradiance forecasting. WNNs
employ adaptive wavelet-based activation functions, resulting in better accuracy and
generalization capability than conventional sigmoidal neural networks [164]. Chitsaz et al.
(2015) developed a new engine for wind power prediction using a wavelet neural network
with multi-dimensional Morlet wavelets as activation functions. The model is optimized
with an improved clonal selection algorithm and trained with the maximum correntropy
criterion. Results using real-world data in Alberta, Canada, show the effectiveness of
the proposed approach [165]. Shen et al. (2017) also developed a WNN-based technique
for wind power prediction. They optimized the forecasting model using EKMOABC,
a new multi-objective artificial bee colony (MOABC) technique. They found that the
proposed model and algorithm produced higher-quality prediction intervals for wind
power forecasting [166]. Sharma et al. (2016) created a mixed WNN using the wavelet
transform, which outperformed other methods for short-term solar irradiance forecasting
in Singapore [167]. The use of WNN models in conjunction with other ML models has been
implemented to enhance the precision of forecasting. For instance, Hamed H.H. Aly (2020)
created a series of hybrid DL clustered models utilizing various AI systems such as RKF,
FS, WNN, and ANN to predict wind speed and power with remarkable accuracy. They
proposed and tested twelve distinct models, and it was found that the clustered model,
which combined WNN and RKF, yielded the most optimal results [161].

3.9. RBNN for Renewable Energy Forecasting

The radial basis function neural network (RBNN) is an ANN type that has gained
extensive usage in different fields, including but not limited to pattern recognition, control
systems, time-series prediction, and function approximation [168]. In RBNN, the neurons
in the hidden layer are typically implemented using radial basis functions (RBFs). RBFs are
a class of functions that have a center, which represents a prototype or a reference point,
and a width, which controls the influence of the function on the input space [169,170]. In
RBNN, the input vector is first transformed by the hidden layer using the RBFs, and the
resulting outputs are then combined linearly to produce the final output. The weights of
the linear combination are typically learned using a supervised learning algorithm such
as backpropagation [169,170]. RBNN can approximate any continuous function with a
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high degree of accuracy, provided that an ample number of hidden neurons are available.
Additionally, RBNN exhibits strong generalization performance when the RBF centers
are thoughtfully selected to represent the input data distribution, particularly for unseen
data [170].

RBNN has been applied in renewable energy forecasting due to its ability to capture
the nonlinear relationships and temporal dependencies in the input data. In 2011, Wu et al.
introduced a wind power prediction model based on RBNN that can forecast one hour
ahead. They preprocessed the samples using the Grubbs test and evaluated the accuracy
of their forecasting results by comparing them with the actual wind power outputs. The
study demonstrated that the method proposed by the authors can provide reliable and
consistent predictions [171]. Chala et al. (2015) created an improved T-RBNN to predict
wind speed in areas with no measurements. The model was tested and validated with
nearby wind stations, demonstrating acceptable accuracy [172]. M. Madhiarasan (2020)
also developed a recursive RBNN to predict wind speed reliably utilizing wind speed,
temperature, and wind direction inputs. According to the author, the model can improve
the management, control, and protection of power systems, and the simulation results
show more accuracy compared to existing forecasting models [173]. RBNN models have
also been used in combination with other ML models, such as SVR, to improve forecasting
accuracy. For example, Ramedani et al. (2014) utilized four artificial intelligence models
to predict global solar radiation in Tehran, Iran. They utilized SVR with polynomial and
radial basis neural network (RBNN) kernel functions. The combination of SVR and RBNN
yielded the most accurate predictions compared to the other models [174].

3.10. GRNN for Renewable Energy Forecasting

The generalized regression neural network (GRNN) is frequently utilized for regres-
sion tasks that require forecasting continuous quantities [175]. A GRNN’s fundamental
structure comprises four layers, namely the input layer, pattern layer, summation layer,
and output layer (Figure 9). In the input layer, the network takes in the input data, which
could be a vector or a set of vectors. The pattern layer is where the network compares the
input data to stored prototypes and computes the similarity between them. The prototypes
are essentially a set of reference vectors that the network uses to make predictions. After
receiving the output from the pattern layer, the summation layer calculates a weighted sum
of the values using similarity values determined by the former. Finally, the output layer
generates a continuous prediction for the network. GRNNs are trained using a process
called radial basis function (RBF) learning [162]. Throughout the training process, the
network modifies the prototypes and their corresponding weights to decrease the disparity
between the anticipated and factual values of the training dataset. GRNNs have several
advantages over other types of neural networks [176]. They are relatively easy to train
and can be trained on small datasets. They are also efficient at making predictions and
can handle noisy and incomplete data. Nevertheless, they may not demonstrate optimal
performance when dealing with complex datasets that possess high-dimensional input
spaces, and their predictions may be comparatively less accurate than those of other types
of neural networks on such datasets.

GRNNs have been applied in renewable energy forecasting due to their ability to
handle noisy and nonlinear data [177,178]. For example, Tu et al. (2022) propose a grey
wolf optimization (GWO)-based GRNN for predicting energy output in solar power sys-
tems, which is affected by unpredictable external factors such as weather and cloud cover.
They used wind speed, temperature, humidity, rainfall, and solar irradiance as inputs. A
self-organizing map (SOM) is used for weather clustering and GRNN training with GWO.
The proposed model achieves high prediction accuracy with shorter computational times
and enhances the effective operation of solar power systems [179]. In 2021, M. Sridha-
ran put forward a GRNN model that utilizes seasonal and meteorological factors such
as months, latitude, longitude, altitude, clearness index, temperature ratio, and mean
duration of sunshine per hour as input parameters to forecast global solar irradiance. The
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outcomes demonstrate that this model offers precise predictions and is on par with other
ML models such as fuzzy logic and ANN models. The average percentage error for the
proposed GRNN model stands at 3.55%, whereas for fuzzy logic and ANN models, it is
4.64% and 5.49%, respectively [180]. Likewise, G. Kumara and H. Malikb (2016) proposed
wind speed prediction in 67 Indian cities employing GRNN and multi-layer perceptron
(MLP) models. Input variables included latitude, longitude, air temperature, daily solar
radiation- horizontal, relative humidity, elevation, Earth temperature, cooling degree-days,
atmospheric pressure, and heating degree-days. Compared to MLP, GRNN exhibited
superior performance, achieving accuracy rates of 99.99% and 97.974% during training and
98.85% and 95.23% during testing, respectively [181].
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3.11. ELM for Renewable Energy Forecasting

Extreme learning machines (ELM) were presented as a substitute for conventional
gradient-based NN. ELM is designed to be computationally efficient and easy to implement
while still providing high accuracy in various applications, including regression, classi-
fication, and clustering. ELM is composed of a solitary layer of neurons that are hidden.
In this layer, the connections between the input layer and the hidden layer are generated
randomly and remain constant. The output layer in ELM is typically a layer that performs
linear regression or classification, and the connections between the hidden layer and the
output layer are determined through analytical means using matrix inversion [182]. During
the training stage, the input information is fed through the randomly generated hidden
layer weights to produce a set of outputs, which are then used to calculate the output
layer weights using matrix inversion. Once the output layer weights are determined, the
model becomes capable of making predictions for new input data. ELM offers a significant
benefit in terms of its fast training time. This is due to the fact that the weights of the
hidden layer are randomly generated and remain fixed throughout the training process,
which eliminates the need for any adjustments. This means that ELM can handle large
datasets and complex problems with high-dimensional input spaces in a relatively short
amount of time. Additionally, ELM is less prone to overfitting compared to traditional
gradient-based neural networks, which can be beneficial in many applications. Overall,
ELM is a simple and efficient NN model that can achieve high accuracy in a variety of
applications, especially when dealing with large datasets and high-dimensional input
spaces [183].
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ELM models are utilized for forecasting renewable energy sources (RES), including
wind and solar power [184]. For example, Shamshirband et al. (2015) utilized the extreme
learning machine (ELM) for predicting horizontal global solar radiation (HGSR) using
three different input parameter types. The ELM was compared to SVM, genetic program-
ming (GP), and ANN, and found to provide higher accuracy and reliability, especially
with multiple parameter-based estimations [184]. Golestaneh et al. (2016) also proposed a
nonparametric approach using an extreme learning machine (ELM) for solar power genera-
tion forecasting. The approach generates fast, short-term predictive densities, achieving
skillful and reliable probabilistic forecasts with fast frequency updates. Results show that
ELM outperforms four probabilistic benchmarks in terms of accuracy and computational
efficiency for two different solar power generation sites [185]. Likewise, Li et al. (2016)
suggested an ELM and error correction model to precisely predict short-term wind power.
The addition of an error correction model enhanced the accuracy of ultra-short-term wind
power forecasts [186]. Hou et al. (2018) suggest a forgetting factor (FOS)-ELM model
with a variable forgetting factor to predict solar radiation. Using the Bayesian Information
criterion (BIC), they build and evaluate seven input combinations, with the FOS-ELM
model showing improved RMSE and MAE compared to the classical ELM model. The
study confirms FOS-ELM’s effectiveness in daily global solar radiation simulation [187].
Likewise, Li et al. (2019) developed an ELM model to predict wind power with kernel
mean p-power error loss to overcome the limitations of traditional BP neural networks. The
method eliminates redundant data components using PCA and achieves lower prediction
errors without compromising accuracy [188].

3.12. Ensemble Learning for Renewable Energy Forecasting

A ML approach called ensemble learning (EL) combines several models to provide
more accurate predictions [189]. The idea is to train several models independently on the
same data and then combine their predictions to make a final prediction. EL is particularly
useful when a single model is not able to achieve high accuracy or when there is significant
noise or variability in the data [190]. Bagging, boosting, and stacking are among the various
types of EL techniques available [191,192]. Bagging involves training multiple models on
various subsets of the training data with replacement. The final prediction is generated by
combining the predictions of all the models. This technique is particularly useful when the
base model is prone to overfitting [193]. Boosting involves training multiple models in a
sequence where each subsequent model aims to correct the errors of its predecessor. The
ensemble prediction is generated by aggregating the predictions of all the models. Boosting
is particularly useful when the base model is prone to underfitting. In contrast, stacking
involves training multiple models and using their predictions as input to a higher-level
model that learns how to combine them [191]. Stacking is particularly useful when the
base models have different strengths and weaknesses. EL has proven to be useful in a
variety of applications, including image classification, natural language processing, and
recommendation systems. However, it can be computationally expensive and requires
careful tuning of the ensemble parameters to achieve optimal performance [194].

The bagging technique is a popular EL method utilized in the prediction of renewable
energy [193]. For example, Guia et al. (2020) conducted a study where a bagging-based
EL technique was applied to forecast solar irradiance using weather patterns. The base
learner in the ensemble was a pre-processed stacked LSTM model. The study showed that
bagging-based ensemble learners outperformed individual learners in terms of accuracy,
as evidenced by multiple metrics [195]. Another EL method used in renewable energy
forecasting is the boosting technique. P. Kumari and D. Toshniwal (2021) suggested an
ensemble model for estimating hourly global horizontal irradiance that integrates extreme
gradient-boosting forests and deep neural networks (XGBF-DNN). They used a framework
that incorporates feature selection and variety in base models, and the suggested model
outperforms other models in prediction error with a forecast accuracy score range of
33–40%, making it a reliable and appropriate model for solar energy system planning
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and design [196]. Al-Hajji et al. (2021) reported a comparative analysis of stacking-based
ensembles for predicting solar radiation one day ahead using ML. They explored three
stacking methods (feed-forward NN, SVR, and k-nearest neighbor) for merging base
predictors, and assessed their performance over a year. Their findings revealed that stacking
models, which combine heterogeneous models utilizing neural meta-models, outperformed
recurrent models [197]. Wind energy is also forecasted using ensemble learning. For
instance, Banik et al. (2020) created an accurate wind speed and wind power prediction
methodology using ensemble machine learning algorithms. The probabilistic nature of
wind power production makes it challenging to balance supply and demand in power
systems. The proposed approach helps minimize the need for auxiliary energy balancing
and reserve power [198]. Gomes da Silva et al. (2021) also developed a novel decomposition-
ensemble learning approach to forecast wind energy using complete ensemble empirical
mode decomposition (CEEMD) and stacking-ensemble learning based on machine learning
algorithms. The proposed model outperforms single and conventional models, with
a performance improvement ranging from 0.06% to 97.53%, making it an efficient and
accurate model for wind energy forecasting [199].

3.13. Transfer Learning (TL) for Renewable Energy Forecasting

TL is a ML approach in which a previously trained model is utilized as a reference
point for a new task rather than developing a new model from scratch. Typically, the
pre-trained model has been trained on a large dataset and has learned useful features
that can be applied to other related tasks. The TL process involves taking the pre-trained
model and fine-tuning it on a new dataset for the new task. The fine-tuning process entails
modifying the pre-trained model by adding new layers or modifying existing layers to
fit the new data. This approach assists in enhancing the efficacy of the pre-trained model
for the new task without the need to train a new model from scratch (Figure 10) [200].
TL has numerous benefits, one of which is that it uses less data and computer resources
while training new models. It also enables the use of pre-trained models that have already
learned features that are relevant to the new task, which can lead to better performance than
training a new model from scratch [201]. Several areas of ML have made extensive use of
TL, including computer vision, natural language processing, and speech recognition. TL has
been employed in computer vision to increase the performance of picture recognition tasks,
including object detection, classification, and segmentation. TL has also been employed
in natural language processing to increase the performance of tasks such as sentiment
analysis, language translation, and named entity recognition [202].
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In renewable energy forecasting, TL has been utilized to enhance the accuracy of
renewable energy forecasts by leveraging knowledge learned from related tasks. One
common approach to TL in renewable energy forecasting is to use pre-trained models from
other related forecasting tasks. For example, Sarmas et al. (2022) propose using TL with
stacked LSTM models to accurately forecast solar plant production in situations where
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there is a lack of data. They compared three TL models against a non-TL model and a
smart persistence model, with TL models achieving significant improvements in accuracy.
They conclude that TL is an effective tool for power output forecasting, particularly for
newly constructed solar plants, intending to achieve energy balance and manage demand
response [203]. Hu et al. (2016) also developed deep neural networks trained on data-rich
wind farms to extract wind speed patterns and transfer this information to newly built
farms, significantly reducing prediction errors [204].

3.14. Hybrid Model (HM) for Forecasting Renewable Energy

HMs in renewable energy forecasting are ML models that combine multiple techniques,
including ANN, SVM, and statistical models, to improve the accuracy of predictions [202].
HMs offer several advantages over individual models by leveraging the strengths of each
technique while compensating for their limitations [205]. In renewable energy forecasting,
HMs can be employed to enhance prediction accuracy and overcome some of the limitations
of classic ML models. For example, traditional models may struggle with capturing the
complex and nonlinear relationships between RES and their influencing factors. HMs can
address this challenge by combining multiple models and techniques to capture a wider
range of features and enhance forecast accuracy [205].

One example of a HM used in renewable energy forecasting is the CNN and LSTM
model. In a recent paper, Lim et al. (2022) proposed the HM of a LSTM and CNN to
accurately forecast the power generation of photovoltaic (PV) systems [125]. The model
first classified weather conditions using CNN and then learned power generation patterns
using LSTM. The suggested model’s mean absolute percentage error was 4.58 on sunny days
and 7.06 on cloudy days, indicating the possibility of precise power generation forecasting
and optimization of PV power plant operations [125]. Another study by Mbah et al. (2013)
employed a HM for short-term power prediction for a photovoltaic plant. The model
combines SARIMA and SVM methods and is tested on a 20 kWp GCPV plant. Results
show good accuracy and outperform both SVM and SARIMA models [206]. Eseye et al.
(2018) employed HMs to forecast power for a real microgrid PV system over the short term
(one day in advance). In terms of predicting accuracy, the model, which integrates wavelet
transform (WT), particle swarm optimization (PSO), and SVM approaches, surpasses seven
other methods [207]. Likewise, H. Aly (2020) used HMs to improve wind speed forecasting
for better renewable energy integration. The proposed models combine WNN and ANN,
time series (TS), and recurrent Kalman filter (RKF) techniques. The best-performing models,
validated using unseen datasets, are WNN, TS, and RKF, in that order [208]. Table 2
summarizes various studies that investigated applying ML and DL models to forecast or
predict renewable energy sources such as wind and solar power.

Table 2. Literature related to solar and wind power forecasting using ML and DL techniques.

Algorithms Used Application Inputs Used Prediction Outputs Ref.

ANN and regression
models (LR, M5P, DT, and

Gaussian process
regression (GPR))

Solar Energy
Solar irradiance, ambient temperature,

relative humidity, PV surface temperature,
wind speed, and dust on PV panels.

The hourly power output
of the PV system [209]

MARS, CART, M5, and
random forest Solar Energy

Minimum, maximum, and average
temperature, wind speed, rainfall, dew point,
GSR, atmospheric pressure, and solar azimuth

One to six days’ worth of
hourly solar radiation [22]

ANN Solar Energy Pressure, relative humidity, wind speed,
ambient temperature, and sunshine duration Monthly average daily GSR [20]

ANN, DBN, autoencoder,
and LSTM Solar Energy Sunshine hours, daily average solar

irradiation, location, temperature, etc. Solar power [210]

SVM, ANN, DL, kNN Solar Energy
Local time, temperature, pressure, wind

speed, relative humidity, and past time-series
solar radiation

Hourly solar radiation [23]
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Table 2. Cont.

Algorithms Used Application Inputs Used Prediction Outputs Ref.

ANN Solar Energy
Global solar irradiance, direct beam solar

irradiance, time, and power generated from
the solar PV

Forecasting solar power [211]

Deep CNN Solar Energy
Longitude, latitude, time, and altitude;
humidity, temperature, wind velocity,

moisture, etc.
Solar power predictions [212]

ANN, kernel ELM Wind Energy Wind speed Short-term wind
speed forecasting [30]

BP network, RBF network,
and NARX models Wind Energy

Time series historical weather data for three
years in 15 min intervals: Wind direction and

speed, radiation, temperature, reflected
radiation, humidity, etc.

Prediction of wind speed [213]

2D-CNN Wind Energy Historical wind speeds Twenty-four-hour
forecasting of wind speed [15]

LSSVM, HM, LMD Wind Energy Five short-term wind speed datasets Short-term wind
speed prediction [33]

LASSO, kNN, RF,
XGBoost, SVR Wind Energy Daily wind speed, daily standard deviation,

and daily wind power
Long-term wind

power forecasting [29]

4. Challenges and Future Prospects

For predicting the output of RES such as solar and wind, there are several ML and DL
algorithms. Each method has its benefits as well as drawbacks. The best ML or DL method
for predicting RES depends on the specific application and available data. Linear regression
can be a good choice as a baseline model, while random forest, xgboost, and SVMs are
suitable for handling non-linear relationships and complex data. The variant recurrent
neural networks (RNNs) models in DL are particularly useful for time-series forecasting but
can be computationally expensive to train relative to classical ML models. The variability
of wind and solar poses a significant challenge to ensuring a reliable and steady electricity
supply that meets demand. ML and DL methods for renewable energy forecasting face the
challenge of intermittency, in which energy output varies based on environmental factors
such as weather and time of day. Traditional forecasting methods relying on historical data
and assumptions may not be sufficient for capturing the complex and dynamic nature of
renewable energy sources. To address this, advanced ML and DL techniques that learn
from real-time data and adapt to changing conditions can provide a potential solution.
For instance, RNNs and LSTMs neural network models have demonstrated efficacy in
forecasting renewable energy output using real-time weather data. These models capture
complex relationships between environmental factors and energy output and make accurate
predictions, even in the face of variability and unpredictability. Classical ML models can
also be used for forecasting, but they may not perform as well as specialized time-series
forecasting methods such as autoregressive models, moving averages, and RNNs [214,215].
The main reason for this is that classical ML models frequently assume independent and
uniformly distributed data points, which is often not the case with time series data. Time
series data is characterized by temporal dependencies, meaning that the values at one
time point are influenced by the values at previous time points. The assumption that the
input variables are independent of each other makes it challenging for classical ML models
to grasp the patterns and trends in the data. Furthermore, classical ML models are not
optimized for handling time-varying features or unevenly spaced time-series data, which
are common in time-series forecasting. For example, a classical ML model may not be able
to capture seasonality or trends in the data that occur over long periods.

For handling unevenly spaced time series data and identifying patterns and trends
to produce precise forecasts, specialized time-series forecasting techniques such as autore-
gressive models, moving average models, and RNNs are the best options [216]. Hybrid
models are becoming increasingly popular for forecasting RESs, as they can combine tradi-
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tional time-series analysis with ML algorithms to improve accuracy and reduce the risk
of overfitting or underfitting. RNNs, in particular, are specifically designed to handle
time-series data and can capture temporal dependencies to learn from long-term patterns
and trends, making them a popular choice for forecasting renewable energy sources. These
models have the potential to enhance the operation and development of renewable energy
systems as well as their grid integration. However, forecasting RES remains challenging
due to their variability and unpredictability, highlighting the need for ongoing research
and development of advanced forecasting techniques.

ML and DL models offer promising prospects for forecasting renewable energy sources.
These models can provide more accurate predictions by processing large amounts of
data and detecting complex patterns that humans may miss. These models also enable
real-time forecasting to adapt to changing weather conditions, improving grid stability
and enabling better decision-making. Accurate predictions also support better resource
planning, leading to more efficient operations and cost savings. Furthermore, improved
predictions can facilitate the integration of RES into the grid, reducing instability and
enhancing overall grid performance. With careful consideration of data quality, model
complexity, and validation, the use of ML and DL models has significant prospects for
optimizing renewable energy operations and improving grid stability.

5. Conclusions

Renewable energy sources, such as wind and solar power, are becoming increasingly
important for meeting the world’s energy needs. However, their variability and unpre-
dictability pose significant challenges for energy system operators. Accurate forecasting
of renewable energy generation is critical for ensuring the stability and reliability of the
grid. ML and DL algorithms have emerged as promising tools for renewable energy fore-
casting. This review provides an overview of the current state of the art and prospects of
ML and DL algorithms for renewable energy forecasting. Classical ML models, such as
linear regression, have been widely used for renewable energy forecasting and can be a
good choice for a baseline model. It is simple, easy to interpret, and requires fewer com-
putational resources. However, it may not be able to capture the non-linear relationships
and complex patterns in the data. Random forest, SVMs, and XGBoost models have been
shown to perform better than linear regression for renewable energy forecasting. These
models can handle non-linear relationships and complex data and can provide accurate
predictions even in the presence of noise and outliers. However, specialized time-series
forecasting methods such as autoregressive models, moving averages, and RNNs are ideal
for handling unevenly spaced time series data and capturing patterns and trends to provide
accurate predictions.

Hybrid models that combine traditional time-series analysis with ML and DL algo-
rithms have also been used for renewable energy forecasting. These models can capture
both the linear and non-linear relationships in the data and can provide accurate predic-
tions even in the presence of noise and outliers. However, the design of hybrid models is
a challenging task, as it requires a good understanding of both time-series analysis and
ML/DL algorithms. Despite the progress made in renewable energy forecasting with ML
and DL algorithms, there are still some challenges that need to be addressed. One of the
main challenges is the lack of high-quality data for training and validation. The data for
renewable energy forecasting is often sparse, noisy, and incomplete, which makes it difficult
to build accurate models. Another challenge is the lack of transparency and interpretability
of ML and DL models. Many ML and DL models are black boxes, which makes it difficult to
understand how they make predictions. There are several opportunities for future research
in the field of renewable energy forecasting with ML and DL algorithms. Further research is
required in the development of models that can handle multiple renewable energy sources
simultaneously. Another area is the development of models that can handle the uncertainty
and variability of renewable energy sources. The integration of weather data, grid data, and
other external data sources can also improve the accuracy of renewable energy forecasting.
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