
Citation: Paulista, R.S.D.; de

Almeida, F.T.; de Souza, A.P.;

Hoshide, A.K.; de Abreu, D.C.; da

Silva Araujo, J.W.; Martim, C.C.

Estimating Suspended Sediment

Concentration Using Remote Sensing

for the Teles Pires River, Brazil.

Sustainability 2023, 15, 7049. https://

doi.org/10.3390/su15097049

Academic Editors: Majid Mohammadian

and Ozgur Kisi

Received: 30 January 2023

Revised: 18 April 2023

Accepted: 20 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Estimating Suspended Sediment Concentration Using Remote
Sensing for the Teles Pires River, Brazil
Rhavel Salviano Dias Paulista 1, Frederico Terra de Almeida 2,* , Adilson Pacheco de Souza 2 ,
Aaron Kinyu Hoshide 3,4 , Daniel Carneiro de Abreu 2,3 , Jaime Wendeley da Silva Araujo 2

and Charles Campoe Martim 5

1 Environmental Sciences, Federal University of Mato Grosso, Sinop 78557-287, MT, Brazil
2 Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso,

Sinop 78557-287, MT, Brazil
3 AgriSciences, Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso,

Avenida Alexandre Ferronato, 1200, Sinop 78555-267, MT, Brazil
4 College of Natural Sciences, Forestry and Agriculture, University of Maine, Orono, ME 04469, USA
5 Postgraduate Program in Environmental Physics, Federal University of Mato Grosso,

Cuiabá 78060-900, MT, Brazil
* Correspondence: fredterr@gmail.com or frederico.almeida@ufmt.br; Tel.: +55-66-99995-1315

Abstract: Improving environmental sustainability involves measuring indices that show responses
to different production processes and management types. Suspended sediment concentration (SSC)
in water bodies is a parameter of great importance, as it is related to watercourse morphology,
land use and occupation in river basins, and sediment transport and accumulation. Although
already established, the methods used for acquiring such data in the field are costly. This hinders
extrapolations along water bodies and reservoirs. Remote sensing is a feasible alternative to remedy
these obstacles, as changes in suspended sediment concentrations are detectable by satellite images.
Therefore, satellite image reflectance can be used to estimate SSC spatially and temporally. We used
Sentinel-2 A and B imagery to estimate SSC for the Teles Pires River in Brazil’s Amazon. Sensor
images used were matched to the same days as field sampling. Google Earth Engine (GEE), a tool
that allows agility and flexibility, was used for data processing. Access to several data sources and
processing robustness show that GEE can accurately estimate water quality parameters via remote
sensing. The best SSC estimator was the reflectance of the B4 band corresponding to the red range of
the visible spectrum, with the exponential model showing the best fit and accuracy.

Keywords: Amazonia; Google Earth Engine; hydro-sedimentology; reflectance; satellite imagery

1. Introduction

The search for environmentally sustainable production processes requires establishing
parameters to evaluate production systems such as those related to forestry and agriculture.
These factors can enable development while mitigating adverse environmental impacts.
Among them, suspended sediment concentration in water bodies is important for evaluat-
ing such land use and its impacts on water resources. Suspended sediment concentration
(SSC) is relevant to assess the quality of water bodies, as it is directly connected to the
morphology of channels and silting processes in reservoirs [1,2]. Although erosion and
particle sedimentation are natural phenomena, anthropogenic actions can enhance these
processes, causing loss of water quality, silting up of water bodies, and reducing the useful
life of reservoirs [3,4]. Although traditional methods for acquiring sedimentological data
are reliable, alternative techniques are needed to speed up and improve SSC quantification,
making it less costly [5]. Another problem of traditional methods is the difficulty in estab-
lishing continuous observations, impairing long-term SSC assessments. Furthermore, the
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site-specific nature of sampling makes these methods even more difficult to extrapolate
values to other locations along the water body [4].

Remote sensing is an alternative for SSC determination. At first, its application was
limited to oceans or large water bodies, but as higher spatial-resolution orbital sensors
emerged, remote sensing technology could be used for smaller bodies of water [6]. As SSC
increases, the surface reflectance of water bodies also rises, enabling the detection of its
variations along a water body [7]. One advantage of sedimentological monitoring using
satellite images is the potential to monitor sediment inflow sites in reservoirs, which are
hard to monitor [3]. Therefore, satellite imagery can be used to monitor several points of
water bodies simultaneously, including hard-to-reach areas. Satellites can provide temporal
resolution at a daily time scale which can vary depending on the type of sensor used.
Another benefit of remote sensing is the ease of accessing data from services such as the
U.S. Geological Survey (USGS)-Earth Explorer and the Copernicus Science Hub. These
platforms provide free satellite images to the scientific community. Another important
platform is Google Earth Engine (GEE) which, in addition to making data available, allows
data processing which has improved access to high-performance computing [8,9].

There are three main remote sensing approaches for water quality characterization,
namely: empirical, semi-empirical, and analytical approaches [10]. In an empirical ap-
proach, simple or multiple regressions are performed between reflectance values from
satellite images and water quality parameters. In a semi-empirical one, however, the
spectral behavior of parameters studied must be measured, in loco or in the laboratory,
with specific spectral bands being selected to capture such response. Finally, an analytical
approach is a physical evaluation in which specific inherent optical properties are studied
throughout the entire water column, and, subsequently, these characteristics are related to
the apparent optical properties of water quality parameters.

Several authors have used satellite images to quantify suspended sediment con-
centration (SSC) [11–16]. Using the empirical approach, previous research found strong
relationships between SSC and the Normalized Difference Water Index (NDWI) radiomet-
ric index for the Teles Pires River [17]. Another study applied this method to two different
orbital platforms, Landsat and Sentinel-2 A and B, and evaluated several spectral bands
and radiometric indices, finding good SSC estimators for the Doce River in southeast
Brazil [18]. Both authors faced the problem of synchronizing the dates of satellite images
with those for field sampling. Therefore, they opted to insert images from days after
and before sampling, even though there may have been variations in flow rates. Two
studies have successfully applied the semi-empirical method with good results relating
to responses obtained by spectrometers in the field with images from the Multi-Spectral
Instrument (MSI) and Moderate Resolution Imaging Spectroradiometer (MODIS) sen-
sors [19,20]. Another study applied this analytical process to understand the behavior
of the optical properties of water along the Amazon basin [4]. Using the same proce-
dure, other researchers built models to estimate suspended matter in Lake Frisian in the
northeastern part of The Netherlands [21].

Regardless of the approach used, satellite imagery reflectance values need to be
referring to water quality parameters and not to noise caused by the atmosphere. The author
emphasized that there is a need for atmospheric calibrations, which seek to recover surface
reflectance by subtracting the atmospheric contributions from the reflectance at the top of
the atmosphere captured by the orbital sensors [6]. With the spread and popularization of
remote sensing data, atmospheric calibration algorithms were developed to minimize such
noise; among them is the atmospheric corrector Dark Spectrum Fitting [9]. Dark Spectrum
Fitting (DFS) was originally developed for images with metric resolution, but satisfactory
results have been obtained when implementing DFS in images from Landsat and Sentinel-2
satellites, which have decametric resolution [22]. DFS is contained within ACOLITE, a
multi-sensor atmospheric calibration processor developed by the Royal Belgian Institute of
Natural Sciences (RBINS) for aquatic satellite imagery applications.
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Another relevant factor is sun glint, which is the reflection of direct sunlight towards
remote sensors’ field-of-view, preventing proper capture of reflectance from water bod-
ies [23]. Sun glint is a recurrent problem in studies of water surfaces via remote sensing,
and some authors have been studying and proposing solutions [24–26]. One solution
was implemented in an ACOLITE processor using a sun glint extraction method for the
short wave infrared region (SWIR) based Multi-Spectral Instrument (MSI) sensor [27]. In
another study, sensors with the SWIR band facilitate atmospheric calibration because water
reflectance is equal to zero at this wavelength and under ideal conditions [28]. Moreover,
the use of the SWIR band as a parameter for sun glint extraction improves the accuracy of
remotely sensed data [27]. By synchronizing field data with satellite passes, remote-sensing
products can be validated to assess the presence of sediments [10].

The goal of our research was to evaluate the Google Earth Engine (GEE) platform, both
in terms of manipulation and image/data processing, through a semi-automatic method.
In doing so, we have three objectives. The first objective of our research was to evaluate
empirical models using spectral bands and radiometric indices obtained through images
from Sentinel-2 A and B sensors. Second, we sought to estimate the suspended sediments
concentration (SSC) in the Teles Pires River basin in Brazil. The third objective of our study
was to optimize monitoring mechanisms that help in the management of watersheds and
the implementation of public policies.

2. Materials and Methods
2.1. Study Area

Remotely sensed data were used, and field sampling was conducted in the Teles Pires
River. The Teles Pires River basin has an area of 141,524 square kilometers and is located
between south latitudes 7◦16′47′′ to 14◦55′17′′ and west longitudes 53◦49′46′′ to 58◦7′58′′.
The Teles Pires River basing watershed covers both of the Brazilian states of Mato Grosso
and Pará and is within the Amazon Hydrographic Region. Due to its great length, the Teles
Pires river basin is commonly divided into upper, medium, and lower regions. In the lower
and medium Teles Pires, the predominant biome is the Amazon forest, while the Cerrado
(i.e., savannah) is the predominant biome in the upper basin further south. The basin has
two climates according to the Köppen’s classification. In the upper region and most of the
medium basin, it is classified as Aw, which stands for tropical, with dry winters and rainy
summers. Meanwhile, the area near the Teles Pires River’s mouth, where it merges with
the Amazon River, has an Am climate, which is a humid tropical climate with short dry
seasons and higher amounts of rainfall [29]. The Teles Pires River currently houses four
hydroelectric plants (HEP), namely the São Manuel, Teles Pires, Colíder Pesqueiro do Gil,
and the Sinop plants (Figure 1).

The São Manuel hydroelectric plant is located in the lower basin, at coordinates
9◦11′11.06′′ South and 57◦3′1.13′′ West and has an installed capacity of 700 megawatts
(MW) and a reservoir area of 66 square kilometers (km2). The Teles Pires hydroelectric plant
is located at coordinates 9◦21′04′′ South and 56◦46′39′′ West and has an installed capacity of
1820 MW and a reservoir area of 150 km2. The Colíder Pesqueiro do Gil plant is located at
coordinates 10◦59′06.62′′ South and 55◦45′52.06′′ West with an installed capacity of 300 MW
and a reservoir area of 114.9 km2. Finally, the Sinop hydroelectric plant (11◦16′1′′ South,
55◦27′14′′ West) has an installed capacity of 401.88 MW and a reservoir area of 342 km2 [30].



Sustainability 2023, 15, 7049 4 of 22Sustainability 2023, 15, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 1. Maps showing the study area and dams for hydroelectric stations: (a) river basin high-

lighted (in blue), inserted in the state of Mato Grosso (in grey) in Brazil, (b) Teles Pires river basin 

upper, middle, and lower divisions from north to south and (c) location of dams/stations and in-

field sampling locations used for field research with respective codes. 

2.2. Suspended Sediment Concentration Data 

Suspended sediment concentration (SSC) data used in this study were obtained from 

two sources. The first data source is the authors themselves, who performed five data col-

lection campaigns on the same day the Sentinel-2 A and B satellites passed within a section 

near the Sinop power plant reservoir. The second data source is the National Agency for 

Water and Basic Sanitation (Agência Nacional das Águas e Saneamento Básico—ANA) 

[31]. A joint resolution known as ANA/ANEEL n° 03/2010 establishes the monitoring of 

several hydrological parameters by power utilities that operate the hydroelectric com-

plexes, one of which is a hydro-sedimentological survey. In addition to the operators, the 

Brazilian Geological Survey (Serviço Geológico do Brasil—CPRM) also monitors this pa-

rameter within a section of the Teles Pires River. Under these conditions, all stations in 

operation between 2016 and 2021 that had solid discharge data were selected. Table 1 

shows the information on the section of the Teles Pires River studied by the authors and 

on the seven stations used in this study that were obtained from ANA that met our re-

quirements. 

  

Figure 1. Maps showing the study area and dams for hydroelectric stations: (a) river basin highlighted
(in blue), inserted in the state of Mato Grosso (in grey) in Brazil, (b) Teles Pires river basin upper,
middle, and lower divisions from north to south and (c) location of dams/stations and in-field
sampling locations used for field research with respective codes.

2.2. Suspended Sediment Concentration Data

Suspended sediment concentration (SSC) data used in this study were obtained from
two sources. The first data source is the authors themselves, who performed five data col-
lection campaigns on the same day the Sentinel-2 A and B satellites passed within a section
near the Sinop power plant reservoir. The second data source is the National Agency for
Water and Basic Sanitation (Agência Nacional das Águas e Saneamento Básico—ANA) [31].
A joint resolution known as ANA/ANEEL n◦ 03/2010 establishes the monitoring of several
hydrological parameters by power utilities that operate the hydroelectric complexes, one
of which is a hydro-sedimentological survey. In addition to the operators, the Brazilian
Geological Survey (Serviço Geológico do Brasil—CPRM) also monitors this parameter
within a section of the Teles Pires River. Under these conditions, all stations in operation
between 2016 and 2021 that had solid discharge data were selected. Table 1 shows the
information on the section of the Teles Pires River studied by the authors and on the seven
stations used in this study that were obtained from ANA that met our requirements.

For solid discharge collection, both authors and HEP operators used the equal width
increment (EWI) sampling method with vertically integrated samples [5]. According to
Oliveira Carvalho 2008 [5], the EWI represents the average suspended sediment concentra-
tion (SSC) in the river section studied. In this method, the section is divided into verticals
with the same distance between them. In each vertical, subsamples that integrate the SSC
from the surface to the river bottom are collected. All the subsamples are gathered to form
a single sample capable of representing the average SSC in the investigated section. This
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is commonly called a composite sample. Here, each composite sample is the sum of the
water sample volumes acquired in each vertical (Figure 2).

Table 1. Characteristics and location of the hydro-sedimentological monitoring stations used in
sampling of the Teles Pires River, Mato Grosso state, Brazil.

Code Name Operator
Location

South West

00000001 Section Curio Authors 11◦37′35′′ 55◦41′23.37′′

17277300 HEP Sinop upstream 1 HEP Sinop 12◦17′17′′ 55◦36′03′′

17390100 HEP São Manuel downstream 1 HEP São Manuel 09◦09′55′′ 57◦03′39′′

17307000 HEP Colíder Pesqueiro do Gil HEP Colíder 10◦58′59′′ 55◦46′06′′

17380000 Downstream the mouth of
Peixoto de Azevedo CRRM 09◦38′26′′ 56◦01′10′′

17381100 HEP Teles Pires upstream 2 HEP Teles Pires 09◦38′23′′ 56◦01′09′′

17382000 HEP Teles Pires upstream 1 HEP Teles Pires 09◦27′11′′ 56◦29′32′′

17384200 HEP Teles Pires downstream HEP Teles Pires 09◦19′52′′ 56◦46′41′′
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Figure 2. Description and details of the equal width increment (EWI) method.

With regard to operators, ANA/ANEEL resolution n◦ 03/2010 requires a quarterly
collection frequency, comprising four annual measurements in periods of drought and
flood, as well as rising and receding waters. Since stations downstream of the mouth of the
Peixoto de Azevedo (17380000) and the second upstream station of the Teles Pires River
(17381100) are at a similar location (Table 1), this provided a greater volume of data for
each location. The raw data used in this study can be found summarized in Appendix A.

2.3. Remote Sensing Data

Remote sensing images were processed in Google Earth Engine (GEE). GEE is a cloud
computing platform with a vast orbital data collection allowing for remote sensing data
to be processed [8]. GEE is a tool that allows for more open access to high-performance
computing and can process large amounts of remote sensing data. We used the Python-
based package geemap [32] to manipulate and visualize GEE data. One of the collections
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available in GEE is called COPERNICUS, which comprises images from Multi-Spectral
Instrument (MSI) sensor on board the Sentinel-2 A and B satellite.

This satellite is part of the COPERNICUS earth monitoring program, which is coor-
dinated by the European Commission (EC) and the European Space Agency (ESA). The
MSI sensor has a 5-day time resolution and 13 spectral band spans. However, we only used
bands B3, B4, and B8, which correspond to green, red, and infrared bands, respectively.
Such bands have a 10-m spatial resolution. Band B3 is centered at the 560-nanometer (nm)
wavelength and 35-nm width. Band B4 is centered at the 665-nm wavelength and 30-nm
width, while band B8 is centered at the 842-nm wavelength and 20-nm width [33]. The
main reason for choosing the sensor was its time resolution, which has a 5-day revisit
interval. This increases the chances of capturing images on the same day as field data
sampling. Bands were chosen based on the reflectance bands that capture the range of
suspended sediment concentration [34]. Low suspended sediment concentration (SSC)
increases green reflectance, while high SSC increases red and infrared reflectance values.

In addition to testing bands alone, two radiometric indexes that work within these
spectral bands were also tested. These were the Normalized Difference Vegetation Index
and Normalized Difference Water Index. The Normalized Difference Vegetation Index
(NDVI) is the normalized ratio between red and near-infrared bands [35]. We compared
the physical behavior of healthy and unhealthy plants within the electromagnetic spectrum
to determine vegetation status. The other index, the Normalized Difference Water Index
(NDWI), is similar to the NDVI and uses the green instead of red band in order to outline
aquatic environment features and highlight water bodies in satellite images [36]. NDWI
ranges from −1 to 1, with positive values corresponding to aquatic environments.

Satellite images are available in collections, each corresponding to a processing level.
We used the second level of processing; that is, products were geometrically corrected
and calibrated for the atmosphere to present surface reflectance. However, GEE images
were used only for exploratory analysis, identifying cloud-free images with all quality
parameters. Using station coordinates and in situ collection dates, an algorithm was
developed via the GEE platform, which verified Sentinel-MSI sensor images for the same
days of in situ collections. Of the 122 dates, the algorithm verified 31 images corresponding
to collection days. From visual inspection, clouds were verified in 16 images, with only
15 images not having cloud obstruction and fitting all quality parameters. The sum of these
images combined with those obtained during the in situ campaigns totaled 20 images. Of
these 20 images, 14 images were reserved for the creation of the model, with the remaining
6 images used for application of the model. The choice of images for model application
took into account the representativeness of the Teles Pires River, selecting at least one image
for each studied station. Figure 3 shows the satellite images used for this study, dates, and
respective tiles, as well as identifies which images were used to create and validate the
models that were developed.

2.4. Atmospheric Calibration

Atmospheric calibration seeks to recover surface reflectance by extracting atmospheric
contributions from reflectance at the top of the atmosphere [6]. To do so, we used the
Dark Spectrum Fitting (DSF) algorithm proposed by a previous study [9]. The DSF is
implemented in the ACOLITE processor and was initially developed for metric-resolution
satellite images. However, good results can be obtained by applying DSF to decametric-
resolution satellite images, where DSF is based on two assumptions for atmospheric
contribution estimation. The first assumption is that the atmosphere is homogeneous
and image reflectance is constant, or in part of it since the algorithm allows selection
of specific regions for correction. The second assumption is the occurrence of near-zero
reflectance values in at least one of the sensor bands, allowing estimation of atmospheric
reflectance [22].
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Based on these assumptions, top-of-atmosphere reflectance (ρT) is corrected for gas–
water interface [37]. After this, dark-object reflectance (ρ_dark) is defined by using the
regression intercept containing the lowest reflectance values in each band. Aerosol thickness
is calculated by comparing the ρ_dark values found in the previous step with aerosol models
created using a Look Up Table (LUT). This table is generated using the 6SV model [38] and
simulates spectral curves that vary with aerosol optical thickness (τa) at 550 nm. For each
aerosol model contained in the LUT, the band that provides the smallest τa is chosen. A
combination of a band and model with the smallest τa is finally used for calibration, and
the parameters required are imported from the LUT.

Another relevant factor in the study of aquatic environments using remote sensing is
direct sunlight reflection to the sensor’s field of view, known as sun glint. This phenomenon
produces anomalies in reflectance capture from water quality parameters by orbital sen-
sors [23]. The ACOLITE processor incorporates a method where a GRS algorithm is used
to correct sun glint contamination in SWIR band sensors [27]. The algorithm estimates
the bidirectional reflectance distribution factor (BRDF) for air–water interface at the SWIR
band and propagates it to visible and near-infrared (NIR) bands [23]. The images selected
during verification of intersection with field data were re-downloaded using the Sentinel
hub library at processing level 1C. Changes in image acquisition sources occur because
the ACOLITE requires auxiliary files for calibration. After atmospheric calibration, images
were imported into GEE for data processing.
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2.5. Data Processing

After importing images to Google Earth Engine (GEE), pixel values were extracted by
a semi-automatic process. For all stations, we manually drew a perpendicular line between
river banks. From this point on, the entire process was automated. First, a 30-m buffer zone
was established on the drawn line, and then a cut was made. To extract only water-related
pixels, we applied the modified normalized difference water index (MNDWI), a radiometric
index, which replaces the NIR band with the middle-infrared (MIR) band in the Normalized
Difference Water Index (NDWI). This alteration provides less interference from anthropic
objects and, due to greater energy absorption of MIR by aquatic environments, increases
efficiency in delineating water bodies [39]. Like the NDWI, the index varies from −1 to 1,
with 0 being the threshold between aquatic and non-aquatic environments and positive
values corresponding to water. In this way, a vector mask based only on pixels greater than
zero was created. A new buffer was established to minimize margin effects, reducing the
area by 10 m. For pixel value extraction, a 10 × 10 m sample mesh was created, considering
spatial resolution of images and avoiding unnecessary interpolations. Since EWI sampling
represents average suspended sediment concentration (SSC), pixels contained within the
mask were averaged for statistical analysis. Below, Figure 4 describes the entire process,
while Figure 5 shows the study design.

All statistics were performed using R 4.0.2 open-source statistical software. First, data
normality was verified by the Shapiro–Wilk test at 5% significance (p = 0.05). A Spearman
correlation matrix was used to assess which variables had the highest correlation with SSC
data, and two regression models were later adjusted. The HydroGOF package was used to
implement statistical parameters that measure model efficiency [40]. Estimated data were
compared with observed data using as parameters mean absolute error (MAE; Equation
(1)), root mean squared error (RMSE; Equation (2)), bias (BIAS; Equation (3)), Willmott
concordance index (d; Equation (4)), the Nash–Sutcliffe efficiency index (NSE; Equation (5)),
and the mean relative error (MRE; Equation (6)).

MAE =
1
N

N

∑
i=1
|Oi − Pi| (1)

RMSE = d 1
N

N

∑
i=1

(Oi − Pi)
2e0.5 (2)

BIAS =
1
N

N

∑
i=1

(Oi − Pi) (3)

d = 1− d ∑N
i=1(Pi −Oi)

2

∑N
i=1(|Pi −O|+ |Oi −O|)2 e (4)

NSE = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1(Oi −O)2 (5)

MRE =
1
N

(
N

∑
i=1

(Pi −Oi)

Oi
× 100

)
(6)

where Pi is the estimated suspended sediment concentration (SSC) estimated (milligrams
(mg)/liter (L)), Oi is the observed SSC (mg/L), O is the average of the observed SSC values
(mg/L), and N is the number of values in the sample. MAE and RMSE were used to evaluate
variation of errors in SSC estimates for spectral bands B3 and B4. Both indices showed
perfect model fit when their values were equal to zero [41]. Bias was used to verify whether
the model underestimates or overestimates. Positive values indicate underestimation,
while negative values mean overestimation. The Willmott concordance index (d) was
applied to evaluate model prediction performance with values ranging from 0 to 1. Here,
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a value of d = 1 indicates perfect agreement. Model performance was established using
the Nash–Sutcliffe efficiency (NSE) index, where NSE = 1 means a perfect fit of data by
the model, NSE > 0.75 suggests an adequate model, NSE between 0.36 and 0.75 indicates
a satisfactory model, and NSES < 0.36 indicates an unsatisfactory model [42]. The mean
relative error compares the observed values with the estimated ones and expresses the
differences in percentages. This parameter is useful when dealing with values with high or
low scales.
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Figure 4. Data processing with (a) vector drawn manually from one bank to the other, (b) 30-m (m)
buffer application from the line and cut, (c) MNDWI index application to extract only the aquatic
environment, (d) 10-m buffer application, (e) Sample grid of 10 × 10 m, and (f) average of values
captured by the sampling grid.
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Figure 5. Flowchart showing the methods used, from SSC data, satellite image selection, atmospheric
calibration, and data processing, using a semi-automatic method.

3. Results

Table 2 shows the results from all processing and indicates which data (spectral bands
and radiometric indices) were used to create and validate suspended sediment concentration
(SSC) estimation models. The values of spectral bands B3 and B4 and the Normalized
Difference Vegetation Index (NDVI) showed normality with p = 0.105, p = 0.283, and p = 0.059,
whereas the in-situ SSC, B8, and Normalized Difference Water Index (NDWI) showed no
normality with p = 0.002, p = 0.001, and p = 0.024 (Table 3). Of the analyzed variables,
band B4 had the highest correlation coefficient with Rho = 0.726, and B3 had Rho = 0.677
(Table 3). Therefore, there is a strong correlation between the red and green spectrums and
SSC. SCC was significantly different for B3, B4, and B8 spectral bands but not for NDWI
and NDVI (Table 3). Two regression models were fit to the B3 and B4 bands, which were
linear (Figure 6) and exponential (Figure 7).
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Table 2. Data from Agência Nacional de Águas’ (ANA’s) hydro-sedimentological stations specified as
codes, sediment collection dates, and images with their function of use in the models, reflectance values
from different spectral bands, radiometric normalized difference indexes of the Sentinel satellite imagery
for water (NDWI) and vegetation (NDVI), and suspended sediment concentrations (SSC).

Code Date Function Spectral
Band B3

Spectral
Band B4

Spectral
Band B8 NDWI NDVI SSC

17381100 29 October 2016 Validation 0.053753 0.038952 0.034259 0.250606 −0.08914 17.55
17381100 29 October 2016 Validation 0.053747 0.038953 0.034259 0.250555 −0.08915 17.55
17380000 11 July 2019 Creation 0.033997 0.018504 0.015644 0.37387 −0.08958 5.10
17380000 11 July 2019 Creation 0.033996 0.018503 0.015605 0.374827 −0.09063 5.10
17277300 4 September 2019 Creation 0.067924 0.053814 0.052215 0.130831 −0.0152 8.91
17381100 17 January 2020 Creation 0.04712 0.04482 0.067682 −0.17882 0.2029 9.82
17381100 17 January 2020 Creation 0.047095 0.044796 0.06767 −0.17899 0.20307 9.82
17382000 29 April 2020 Validation 0.03022 0.02803 0.013714 0.382123 −0.34932 9.39
17381100 1 May 2020 Creation 0.029089 0.025905 0.014683 0.327065 −0.27623 6.74
17381100 1 May 2020 Validation 0.029093 0.02591 0,.014682 0.327161 −0.27635 6.74
17277300 10 June 2020 Creation 0.051608 0.039467 0.017445 0.495145 −0.38752 14.42
17382000 10 July 2020 Creation 0.033754 0.018002 0.017074 0.329243 −0.02757 5.05
17277300 30 June 2021 Validation 0.050261 0.038579 0.02081 0.414598 −0.29942 5.00
17381100 8 September 2021 Creation 0.027345 0.010911 0.021023 0.133084 0.329158 6.28
17381100 8 September 2021 Creation 0.027333 0.010893 0.021005 0.133293 0.329555 6.28
00000001 5 February 2022 Creation 0.055942 0.060056 0.029518 0.309608 −0.34133 17.42
00000001 22 March 2022 Creation 0.05877 0.063464 0.046997 0.11156 −0.14925 24.37
00000001 6 May 2022 Validation 0.048097 0.03775 0.023068 0.352535 −0.24231 11.63
00000001 19 August 2022 Creation 0.037834 0.023956 0.041534 −0.04737 0.269369 6.53
00000001 24 August 2022 Creation 0.036101 0.016822 0.013989 0.443149 −0.09479 5.58

Table 3. Tests for normality, correlation, and significant differences a of suspended sediment concen-
trations (SSC) for the spectral bands and radiometric indices selected.

Element Normality
(Shapiro–Wilk) Correlation (Rho) Significance

(p-Value)

Suspended sediment concentration 0.002 ** - -
Spectral Band

B3 0.105 * 0.677 0.001 **
B4 0.283 ** 0.760 0.001 ***
B8 0.001 ** 0.359 0.017 **

Radiometric Index
Normalized Difference Water Index (NDWI) 0.024 * −0.097 0.683
Normalized Difference Vegetation Index (NDVI) 0.059 * −0.276 0.239

a Differences significant at a confidence level of 0.1 *, 0.05 **, and 0.01 ***, respectively.

In both models, band B4 had the best coefficients of determination (R2), which were
0.5849 for the linear and 0.7883 for the exponential; therefore, the exponential model
provides the best fit for band B4. In band B3, the same behavior occurred, with the linear fit
having an R2 of 0.4972 and the exponential an R2 of 0.7003. Table 4 shows the evaluation of
the linear and exponential models for bands B3 and B4. For band B4, the exponential model
showed the lowest mean absolute error (MAE) and root mean square (RMSE) indices. For
band B3, the MAE index indicated smaller errors for the exponential model, while the
RMSE index indicated the linear model as more accurate. The BIAS showed that only the
linear model with B3 underestimated the suspended sediment concentration (SSC). The
Willmott concordance index (d) found the highest concordance for the estimator for the B4
band, with the exponential model presenting a value closer to 1. The same combination
also presented the best result for the Nash–Sutcliffe efficiency index (NSE) (0.75), which
indicated that the model was satisfactory. For the two bands studied, the exponential model
generated the lowest mean relative errors; in particular, band B4 showed the best results
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for this parameter in both models. Figure 8 expresses the comparison between observed
and estimated data for the validation set.
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Table 4. Statistical evaluation of the models adjusted for spectral bands and suspended sediment
concentrations (SSC).

Spectral Band B3 Spectral Band B4

Statistical Parameter Linear Model Exponential Model Linear Model Exponential Model

Mean absolute error (MAE) (mg/L) 2.825193 2.7046560 2.251899 1.8859822

Root mean squared error (RMSE)
(mg/L) 3.881253 4.1712430 2.996691 2.7348836

BIAS −3.55 × 10−15 0.5354025 −8.2462 × 10−16 −0.3289959

Willmott’s concordance (d) index 0.8011445 0.7504934 0.9041224 0.9139091

Nash–Sutcliffe efficiency (NSE) index 0.497190 0.4192480 0.7002607 0.7503466

Mean relative error (%) 30.48 26.15 23.54 18.15%
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4. Discussion
4.1. Comparisons to Previous Research

Data on in situ suspended sediment concentration (SSC), Normalized Difference Water
Index (NDWI), and spectral band B8 were not significant for a normal distribution of the
data. This may be due to the limitation of observations to the intersection of in situ/satellite
collections. Both spectral bands B3 and B4 had significantly normal data distributions. The
latter spectral band B4 was the best estimator for both the linear and exponential models.
This result is in line with that of Marinho et al. [19], who found strong relationships between
SSC and spectral band B4 (red) of the Multi-Spectral Instrument (MSI) sensor used for
remote sensing of the Negro River in the northern Amazon forest in Brazil. Moreover,
Santos et al. [20] reached the same conclusion for the Purus River in Brazil’s eastern Amazon
forest using the MODIS sensor. This was also confirmed by Lobo et al. [15] for the Tapajós
River in the eastern part of the Brazilian Amazon using the Landsat-MSS/TM/OLI sensors.

These studies corroborated our results, where the spectral band B4 (red) explained
suspended sediments better, even at low concentrations. However, Jensen [34] makes
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a point that more collecting data on chlorophyll content may be needed to improve the
accuracy of the models that were used in all of these studies. This author explained that
such behavior is due to a link between reflectance shift from red and infrared to green
with chlorophyll content in the aquatic environment at low sediment concentrations. Thus,
the hypothesis that the Teles Pires River has low chlorophyll contents would explain why
band B4 (red) was more efficient in estimating SSC, even at low suspended sediment
concentrations. However, to validate this claim, chlorophyll concentrations along the Teles
Pires River should be measured in the future.

Radiometric indexes had no correlation with SSC data, especially the Normalized
Difference Water Index (NDWI), contradicting the findings of Simões et al. [17]. This
difference may have been due to the use of images from days after and before the days of
collection in the field. Another hypothesis was launched by McFeeters [36], who had already
warned that the broadband aspect of NDWI would increase efficiency in estimating general
turbidity. However, such efficiency would be lost when the index is related to isolated
variables, such as chlorophyll and suspended sediments. Krug and Noernberg [43] applied
NDWI to determine bathymetry and detected that the index also suffers interference from
depth variations. Since Simões et al. [17] used the index in two fixed sections, depth was
constant, and thus NDWI values were mostly affected by changes in suspended material,
which could explain the divergence between the results. The weak correlation of the
Normalized Difference Vegetation Index (NDVI) with suspended sediment concentration
(SSC) can be explained by very low reflectance values in spectral bands B4 and B8. The
genesis of the index indicates that satisfactory results are linked to significant differences
between the reflectance values of study objects [35]. SSC in the Teles Pires River provides
small reflectance in the red region. Such spectral behavior, combined with high infrared
absorption by water, makes the index ineffective in detecting sediments.

The mathematical model that presented the best fit and accuracy was the exponential
model, which presented the smallest errors. The combination of the exponential model
with the reflectance of the B4 band showed the best results in all the statistical indices that
we evaluated. Some stretches studied are at overlapping points of satellite images, which
provided two images for the same day, reinforcing the model. The average SSC for the Teles
Pires River is approximately 11 mg/L, and the SSC values used to create the model ranged
from 5.05 to 24.37 mg/L, demonstrating the feasibility of the model for this water body.
When evaluating the application of the model to the validation dataset, the model was able
to detect the variation in sediment concentration along the section. Figure 9 demonstrates
the potential of this methodology/model in the spatialization of information, as it converts
specific SSC information into regional SSC information.

The exponential model had the best fit and accuracy, showing the lowest errors
regarding the observed data. Some sections are at overlapping points of satellite images,
which provided two images for the same day, reinforcing the test of the model. The average
SSC for the Teles Pires River was about 11 milligrams (mg)/liter (L), with values used
for model creation varying from 5.05 to 24.37 mg/L. Therefore, the model is feasible for
sampling in this water body. No measurements could be evaluated for the last quarter
of 2019 or 2020. This situation is related to the rainy season, during which clouds are
common in satellite images for the study region. This difficulty can be minimized by using
other orbital sensors, increasing the likelihood of capturing images without clouds, as was
done in other studies [15,18]. Another solution was proposed by researchers who used
unmanned aircraft with onboard spectral sensors during field collections [44,45]. When
using the proper method, this approach would reduce impacts from the atmosphere and
give some freedom for planning field sampling.

The Google Earth Engine (GEE) tool proved to be flexible in processing images. By
applying this tool, several process settings are allowed without requiring an excessive
amount of labor. With a few lines of code, we could quickly and efficiently verify the
adequacy, occurrence, or lack of occurrence of any image without clouds or noise for the
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53 dates of our field sampling. The processing power and availability of remote sensing
data make GEE a robust tool for studying water quality parameters.
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4.2. Sustainable Agricultural Development Implications and Public Policy Recommendations

In addition to impacting the useful life of the reservoirs, estimating and/or moni-
toring suspended sediment concentration (SSC) sheds light on the erosive processes in
hydrographic basins. Erosive processes can generate several consequences and vary accord-
ing to the characteristics of the basin, such as vegetative cover, topography, precipitation
regime, and soil properties [46]. In particular, water erosion leads to soil degradation by
reducing nutrients and organic matter and favors the transport of fertilizers and pesticides,
directly impacting economic activities in these basins [47]. The intensification of erosion can
cause damage to the environment and agricultural production affecting food security [48].
Erosion is also intensified in hydrographic basins with a predominance of cultivated or
deforested areas [49]. Thus, obtaining SSC data and, consequently, erosion data are essential
for the proper management of soil and water in such watersheds.

Recent measurements of suspended sediment concentration (SSC) in the Teles Pires
river basin show that SSC is higher in those parts of the basin that have more agricultural
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land and urban areas [50]. Therefore, it is important to develop public policies that can
engage agricultural producers and urban municipalities in the proposition, evaluation, and
codification of such policies to encourage the reduction of SSC in the Teles Pires River and
other rivers in Brazil. Despite the importance of monitoring solids in water resources, public
policies focused on SSC have been limited to monitoring the areas drained from the dams of
Hydroelectric Projects. This policy was established by ANA/ANEEL resolution n◦ 03/2010.
However, there is no specific limit to the concentration of solids in watercourses, possibly
due to the enormous cost of the necessary measures, a more detailed understanding of
erosion processes, and due to poor soil management and use.

Our research raises the possibility of establishing models for estimating the concentra-
tion of suspended sediments (SSC) with greater spatiality and temporality. This estimation
is possible throughout the water body studied and even over time. Therefore, it is possible
to determine the causes and effects of erosion along water resources. With more in-depth
studies in the future, different drivers of erosion can be more clearly connected to how they
contribute to soil loss and sediment suspension in water bodies. For example, previous
research verified how different tributaries contribute to erosion in urban reservoirs located
in Campo Grande, midwest Brazil [51]. Understanding where to limit erosion can not only
benefit urban areas but also reduce environmental impacts in agricultural areas in Brazil
and beyond.

5. Conclusions

Remote sensing is an efficient tool to estimate suspended sediment concentration
(SSC) since, even with low sediment concentrations from samples taken from the Teles
Pires River, the method can detect SSC variations in the sections studied. The isolated
bands provided stronger correlations when compared with radiometric indices, and the
B4 band (red) was the best SSC estimator. When the exponential model was used, this
band obtained the best results with a coefficient of determination equal to R2 = 0.7883 and
the Nash-Sutcliffe index with ENS = 0.7503, indicating the feasibility of the model for the
Teles Pires River. Google Earth Engine (GEE) has clearly made the exploratory analysis
more agile and efficient for image acquisition and method application. For future work,
the use of sensor harmonization products such as The Harmonized Landsat Sentinel-2
(HLS) may increase the probability of occurrence of orbital images on the same day of in
situ collections, in addition to minimizing efforts in pre-processing. Another approach
that could involve this type of study would be the execution of punctual samples of SSC,
allowing for the segmentation of variation of the SSC along the section. Moreover, the
application of sediment source fingerprint (SSF), associated with land use analysis, can also
be used to develop public policies to encourage more sustainable agricultural development.
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Appendix A

Table A1. Data used in the study, such as the code of the field measurement station (Code) and its
description (Name), the concomitant date of the field collection and the satellite image (Date), and
the concentration of suspended sediments (SSC).

Code Name Date SSC

17307000 HEP Colíder Pesqueiro do Gil 16 April 2019 15.40

17307000 HEP Colíder Pesqueiro do Gil 17 July 2019 2.40

17307000 HEP Colíder Pesqueiro do Gil 22 June 2021 3.30

17307000 HEP Colíder Pesqueiro do Gil 24 September 2021 2.00

17390100 HEP São Manuel downstream 1 5 February 2016 24.24

17390100 HEP São Manuel downstream 1 25 June 2016 12.61

17390100 HEP São Manuel downstream 1 2 September 2016 10.78

17390100 HEP São Manuel downstream 1 15 December 2016 25.64

17390100 HEP São Manuel downstream 1 15 February 2017 25.43

17390100 HEP São Manuel downstream 1 22 May 2017 10.96

17390100 HEP São Manuel downstream 1 7 August 2017 8.95

17390100 HEP São Manuel downstream 1 6 November 2017 9.95

17390100 HEP São Manuel downstream 1 31 January 2018 14.11

17390100 HEP São Manuel downstream 1 28 June 2018 12.55

17390100 HEP São Manuel downstream 1 3 September 2018 9.41

17390100 HEP São Manuel downstream 1 5 November 2018 10.35

17390100 HEP São Manuel downstream 1 20 February 2019 26.98

17390100 HEP São Manuel downstream 1 23 May 2019 11.43

17390100 HEP São Manuel downstream 1 21 August 2019 9.18

17390100 HEP São Manuel downstream 1 20 November 2019 14.56

17390100 HEP São Manuel downstream 1 4 February 2020 13.78

17390100 HEP São Manuel downstream 1 8 October 2020 11.21

17390100 HEP São Manuel downstream 1 26 November 2020 11.40

17390100 HEP São Manuel downstream 1 9 March 2021 10.11

17390100 HEP São Manuel downstream 1 23 May 2021 8.75

17390100 HEP São Manuel downstream 1 2 July 2021 9.25

17390100 HEP São Manuel downstream 1 2 December 2021 9.51

17390100 HEP São Manuel downstream 1 10 December 2021 10.60

dgp.cnpq.br/dgp/espelhogrupo/2399343537529589
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Table A1. Cont.

Code Name Date SSC

17277300 HEP Sinop upstream 1 5 March 2019 36.10

17277300 HEP Sinop upstream 1 13 June 2019 10.66

17277300 HEP Sinop upstream 1 4 September 2019 8.91

17277300 HEP Sinop upstream 1 11 December 2019 42.17

17277300 HEP Sinop upstream 1 18 March 2020 34.59

17277300 HEP Sinop upstream 1 10 June 2020 14.42

17277300 HEP Sinop upstream 1 9 September 2020 6.77

17277300 HEP Sinop upstream 1 15 October 2021 2.00

17277300 HEP Sinop upstream 1 30 June 2021 5.00

17277300 HEP Sinop upstream 1 4 December 2021 12.00

17277300 HEP Sinop upstream 1 2 April 2021 25.56

17277300 HEP Sinop upstream 1 12 December 2020 17.36

17381100 HEP Teles Pires upstream 2 3 February 2016 29.22

17381100 HEP Teles Pires upstream 2 10 May 2016 16.97

17381100 HEP Teles Pires upstream 2 19 July 2016 13.31

17381100 HEP Teles Pires upstream 2 29 October 2016 17.55

17381100 HEP Teles Pires upstream 2 25 January 2017 19.93

17381100 HEP Teles Pires upstream 2 17 April 2017 13.77

17381100 HEP Teles Pires upstream 2 27 July 2017 12.30

17381100 HEP Teles Pires upstream 2 30 October 2017 12.01

17381100 HEP Teles Pires upstream 2 24 January 2018 17.81

17381100 HEP Teles Pires upstream 2 15 April 2018 12.15

17381100 HEP Teles Pires upstream 2 5 July 2018 9.60

17381100 HEP Teles Pires upstream 2 31 October 2018 14.31

17381100 HEP Teles Pires upstream 2 18 January 2019 9.43

17381100 HEP Teles Pires upstream 2 24 April 2019 4.91

17381100 HEP Teles Pires upstream 2 20 July 2019 6.29

17381100 HEP Teles Pires upstream 2 31 October 2019 6.52

17381100 HEP Teles Pires upstream 2 17 January 2020 9.82

17381100 HEP Teles Pires upstream 2 1 May 2020 6.74

17381100 HEP Teles Pires upstream 2 11 July 2020 56.40

17381100 HEP Teles Pires upstream 2 16 September 2020 5.64

17381100 HEP Teles Pires upstream 2 30 January 2021 12.66

17381100 HEP Teles Pires upstream 2 13 May 2021 9.64

17381100 HEP Teles Pires upstream 2 8 September 2021 6.28

17381100 HEP Teles Pires upstream 2 24 November 2021 10.96

17381100 HEP Teles Pires upstream 2 22 October 2020 4.28

17382000 HEP Teles Pires upstream 1 3 February 2016 25.13

17382000 HEP Teles Pires upstream 1 13 May 2016 17.26

17382000 HEP Teles Pires upstream 1 15 July 2016 12.79
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Table A1. Cont.

Code Name Date SSC

17382000 HEP Teles Pires upstream 1 21 October 2016 14.04

17382000 HEP Teles Pires upstream 1 28 January 2017 18.49

17382000 HEP Teles Pires upstream 1 15 April 2017 16.44

17382000 HEP Teles Pires upstream 1 24 July 2017 10.39

17382000 HEP Teles Pires upstream 1 28 October 2017 11.43

17382000 HEP Teles Pires upstream 1 26 January 2018 17.08

17382000 HEP Teles Pires upstream 1 16 April 2018 15.50

17382000 HEP Teles Pires upstream 1 7 July 2018 10.04

17382000 HEP Teles Pires upstream 1 2 November 2018 18.02

17382000 HEP Teles Pires upstream 1 17 January 2019 11.43

17382000 HEP Teles Pires upstream 1 23 April 2019 7.18

17382000 HEP Teles Pires upstream 1 23 July 2019 5.97

17382000 HEP Teles Pires upstream 1 1 November 2019 3.75

17382000 HEP Teles Pires upstream 1 21 January 2020 5.87

17382000 HEP Teles Pires upstream 1 29 April 2020 9.39

17382000 HEP Teles Pires upstream 1 10 July 2020 5.05

17382000 HEP Teles Pires upstream 1 17 September 2020 3.12

17382000 HEP Teles Pires upstream 1 22 October 2020 3.48

17382000 HEP Teles Pires upstream 1 30 January 2021 12.92

17384200 HEP Teles Pires downstream 11 February 2016 10.35

17384200 HEP Teles Pires downstream 26 June 2016 10.85

17384200 HEP Teles Pires downstream 20 July 2016 11.62

17384200 HEP Teles Pires downstream 2 November 2016 11.42

17384200 HEP Teles Pires downstream 27 January 2017 13.50

17384200 HEP Teles Pires downstream 18 April 2017 10.41

17384200 HEP Teles Pires downstream 28 July 2017 8.59

17384200 HEP Teles Pires downstream 3 November 2017 9.26

17384200 HEP Teles Pires downstream 29 January 2018 10.02

17384200 HEP Teles Pires downstream 17 April 2018 8.93

17384200 HEP Teles Pires downstream 3 July 2018 11.30

17384200 HEP Teles Pires downstream 1 November 2018 12.66

17384200 HEP Teles Pires downstream 16 January 2019 2.63

17384200 HEP Teles Pires downstream 22 April 2019 4.17

17384200 HEP Teles Pires downstream 19 July 2019 11.88

17384200 HEP Teles Pires downstream 1 November 2019 2.64

17384200 HEP Teles Pires downstream 20 January 2020 3.27

17384200 HEP Teles Pires downstream 28 April 2020 4.19

17384200 HEP Teles Pires downstream 9 July 2020 5.88

17384200 HEP Teles Pires downstream 18 September 2020 2.91
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Table A1. Cont.

Code Name Date SSC

17384200 HEP Teles Pires downstream 21 October 2020 0.45

17384200 HEP Teles Pires downstream 1 February 2021 6.20

17380000 Downstream the mouth of Peixoto de Azevedo 24 August 2016 5.80

17380000 Downstream the mouth of Peixoto de Azevedo 30 November 2016 19.90

17380000 Downstream the mouth of Peixoto de Azevedo 2 May 2017 8.00

17380000 Downstream the mouth of Peixoto de Azevedo 24 July 2017 3.10

17380000 Downstream the mouth of Peixoto de Azevedo 31 October 2017 6.10

17380000 Downstream the mouth of Peixoto de Azevedo 20 July 2018 4.60

17380000 Downstream the mouth of Peixoto de Azevedo 25 October 2018 9.80

17380000 Downstream the mouth of Peixoto de Azevedo 6 May 2019 13.30

17380000 Downstream the mouth of Peixoto de Azevedo 11 July 2019 5.10

17380000 Downstream the mouth of Peixoto de Azevedo 30 October 2019 13.80

17380000 Downstream the mouth of Peixoto de Azevedo 16 November 2021 26.80

17380000 Downstream the mouth of Peixoto de Azevedo 27 April 2022 16.30

17380000 Downstream the mouth of Peixoto de Azevedo 26 July 2022 8.90

00000001 Section Curio 19 August 2022 6.53

00000001 Section Curio 5 February 2022 17.42

00000001 Section Curio 24 August 2022 10.74

00000001 Section Curio 22 March 2022 24.37

00000001 Section Curio 6 May 2022 11.63
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