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Abstract: Risk assessment is of great significance in industrial production and sustainable develop-
ment. Great potential is attributed to machine learning in industrial risk assessment as a promising
technology in the fields of computer science and the internet. To better understand the role of machine
learning in this field and to investigate the current research status, we selected 3116 papers from
the SCIE and SSCI databases of the WOS retrieval platform between 1991 and 2022 as our data
sample. The VOSviewer, Bibliometrix R, and CiteSpace software were used to perform co-occurrence
analysis, clustering analysis, and dual-map overlay analysis of keywords. The results indicate that
the development trend of machine learning in industrial risk assessment can be divided into three
stages: initial exploration, stable development, and high-speed development. Machine learning
algorithm design, applications in biomedicine, risk monitoring in construction and machinery, and
environmental protection are the knowledge base of this study. There are three research hotspots
in the application of machine learning to industrial risk assessment: the study of machine learning
algorithms, the risk assessment of machine learning in the Industry 4.0 system, and the application of
machine learning in autonomous driving. At present, the basic theories and structural systems related
to this research have been established, and there are numerous research directions and extensive
frontier branches. “Random Forest”, “Industry 4.0”, “supply chain risk assessment”, and “Internet of
Things” are at the forefront of the research.

Keywords: machine learning; industry; bibliometrics; knowledge mapping; risk assessment; safety

1. Introduction

A crucial role is played by industrial risk assessments in ensuring the safety of workers,
the public, and the environment, as well as in complying with regulatory requirements.
The number of risk assessment methods has grown, and the areas covered have expanded
since the 1960s when U.S. chemical companies began to conduct more systematic safety risk
assessments. Identifying, analyzing, and evaluating potential hazards and risks associated
with industrial processes or activities are involved in these assessments. Hazard and
Operability (HAZOP), Fault Tree Analysis (FTA), Safety Integrity Level (SIL), Event Tree
Analysis (ETA), and Quantitative Risk Analysis (QRA) are traditional methods of risk
assessment typically used. HAZOP is a structured inspection of a process or system
that systematically identifies potential hazards and deviations from normal operating
conditions. It is commonly used in industries such as chemistry, oil and gas, and nuclear [1].
FTA is a systematic approach used to identify and analyze the causes and consequences of
system failures, frequently employed in industries such as aerospace, national defense, and
nuclear [2]. Various other risk assessment methods are also widely utilized in industries
such as aviation, transportation, and energy [3]. However, with the popularization and
use of sensors, computers, and the Internet of Things in the industrial field, the amount of
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data has increased dramatically. Traditional methods are not effective in predicting future
events and processing large amounts of data. At the same time, the rapid development
of technology makes industrial processes more complex, interrelated, and precise, which
leads to new risks that are difficult to capture through traditional methods. In addition,
the industrial environment is dynamic and constantly changing, which makes it difficult
for static risk assessment to keep up with the pace of change. In view of these challenges,
industrial organizations must adopt new risk assessment methods that are more suitable for
the needs of modern industrial production, such as advanced machine learning technology.

Since 1991, when machine learning was first proposed as a tool for risk analysis and
quality assessment [4], with new developments in machine learning research driven by
advances in computer technology, artificial intelligence, and big data. This technology
offers numerous advantages, including the ability to quickly and efficiently process vast
amounts of data and identify potential risks before they occur, preventing accidents and
reducing downtime. Additionally, machine learning can be customized to meet the specific
needs of an organization, identifying unique risks to a particular industry or facility. By
utilizing probability theory, statistics, and computational complexity theory, machine learn-
ing can achieve real-time and accurate risk assessment, handling all possible variables and
predicting more potential risk factors than human evaluators. As an emerging computer
technology, machine learning is becoming an increasingly important part of risk assessment.
Examples of the use of machine learning for industrial risk assessment have increased in
recent years. In the construction industry, scholars have compared the prediction effects
of support vector machines, artificial neural networks, and kernel logistic regression on
shallow landslides [5]. Some scholars use computational models to simulate the behavior
of soil and fluid flow and evaluate the risk of failure or damage in structures built on or
near soil [6,7]. In the biomedical industry, scholars have used machine learning to study
the spread, diagnosis, and prevention of COVID-19 and fight the pandemic [8]. At the
same time, machine learning has also been used to predict drug toxicity [9,10]. In the
mechanical manufacturing industry, machine learning is used to diagnose rotating ma-
chinery faults [11], reduce the bullwhip effect in supply chains [12], implement predictive
maintenance for wind turbines [13], and monitor network intrusions in transportation
vehicles [14]. In the energy and chemical industries, machine learning has been used for
the risk assessment of oil pipelines and the investigation of self-ignition risks during coal
transportation [15–17]. In the fields of new energy vehicles and autonomous driving, some
scholars propose a fault diagnosis system for new energy vehicles’ electric drive systems
based on improved machine learning and several typical fault detection and diagnosis
methods [18].

The field of industrial risk assessment has seen significant advancements in recent
years, particularly with the increasing use of machine learning techniques. However, this
has also made it difficult to keep up with the evolving landscape and to identify the current
status and future directions of research. To address this challenge, it is necessary to explore
subjects such as (1) the integration of machine learning in industrial risk assessment, (2) the
historical development of the field, (3) changes in the metaknowledge and research areas,
and (4) the hot spots and trends in the field. One effective approach to gain insights into
these topics is through bibliometric mapping analysis. This approach allows scholars to
visualize the knowledge base, research hotspots, and development trends of a specific
field, which can help researchers quickly understand the research overview of a specific
area. Bibliometric mapping analysis has become increasingly popular in various research
fields. For example, in the occupational accident analysis field, bibliometric methods
have been applied to study the application of machine learning techniques [19], while in
engineering risk assessment, they have been used to investigate the adoption of machine
learning algorithms [20]. Bibliometric mapping analysis has also been utilized to exam-
ine the knowledge base and research hotspots related to the emergency management of
sudden public health events [21] and determine the current research status and trends of
emergency evacuation studies [22]. In this paper, we use bibliometric mapping analysis to
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investigate the relevant literature on the application of machine learning in industrial risk
assessment, employing software such as VOSviewer, Bibliometrix R, and CiteSpace. This
paper discusses the following topics: (1) a comprehensive understanding of the historical
development based on an analysis of the spatiotemporal distribution of related paper
outputs; (2) research hotspots and research frontiers of machine learning in industrial risk
assessment; (3) identifying potential future research directions in this field.

2. Materials and Methods
2.1. Data Collection

The literature on machine learning applied to industrial risk assessment can be re-
trieved from the Web of Science, which is widely considered one of the most comprehensive
and highest-quality databases of English literature [23]. Science Citation Index Expanded
(SCI-EXPANDED)-1900 and Social Science Citation Index (SSCI)-1900 from the Web of
Science Core Collection were selected as the target databases for this paper. The search
time ended on 15 December 2022, and the data retrieval process is shown in Table 1.

Table 1. List of search keywords used in the WOS.

No. Selected Search Keywords Number of Records Periods Dataset Used in Each Section

1 Machine Learning AND Industry AND
(Risk OR Safety) 1620 1991–2022 Not used

2 Deep Learning AND Industry AND
(Risk OR Safety) 733 1991–2022 Not used

3 Artificial Intelligence AND Industry AND
(Risk OR Safety) 1004 1991–2022 Not used

4 Merge & De-duplicate 3116 1991–2022 Sections 3.1–3.4

The disciplines of artificial intelligence, machine learning, deep learning, and big data
are interrelated and closely related, and the lack of standardized terms used for the fields of
risk assessment and security assessment has led to different definitions of risk and security.
To ensure that the literature search process captures all the relevant literature, different
keywords need to be combined for the search, and this is shown in Table 1. By adding up
the articles obtained from each keyword seen, a total of 3357 documents were obtained,
and the same articles were de-weighted to finally obtain 3116 documents. In this paper,
these 3116 articles are used as sample data for analysis.

2.2. Scientometric Methods

Due to the large number of documents analyzed, bibliometric methods are employed
in this paper to quantitatively analyze and visualize the literature related to machine learn-
ing and industrial risk assessment. An effective way to summarize the research status
of a particular field is provided via bibliometric mapping analysis. It can explore the
development of a specific research area through co-occurrence analysis, co-citation analy-
sis, and other methods. It can effectively analyze the quantity characteristics, structural
distribution, internal quantitative relationships, and change patterns in the literature in
order to determine the research trends, evaluate them, and predict the development of the
discipline [17,24,25].

In this study, bibliometric mapping analysis is employed to perform co-occurrence,
clustering, and overlapping analyses of the exported literature. The results were presented
in a visual form using the VOSviewer, Bibliometrix R, and CiteSpace software to help
understand the distribution, development process, research frontiers, and hot topics of
the combination of machine learning and industrial risk assessment. The specific research
process is illustrated in Figure 1.
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Figure 1. Procedures and methods used in research on the application of machine learning to
industrial risk assessment.

VOSviewer software was employed to investigate international cooperation rela-
tionships, organization cooperation relationships, author cooperation relationships, and
keyword cluster analysis of machine learning as applied to industrial risk assessment.
Visualizations generated by VOSviewer helped identify key nodes in the network maps.

The thematic evolution of the literature was explored using Bibliometrix R, which
computed various bibliometric indicators such as degree centrality, betweenness centrality,
and closeness centrality. Degree centrality measured the number of co-authorships or
citations of a node, while betweenness centrality gauged the number of shortest paths that
pass through a node. Closeness centrality, on the other hand, was defined as the inverse of
the average shortest path length.

CiteSpace utilized NLP techniques to extract keywords from article titles and abstracts,
followed by frequency analysis and clustering algorithms to group similar keywords based
on co-occurrence patterns. This clustering process identified clusters of related topics or
themes in the literature. Finally, CiteSpace reviewed the keywords within each cluster to
identify the common concepts or ideas they represent. This systematic approach provided
insights into the topics and trends present in the analyzed literature on machine learning
and industrial risk assessment.

3. Results
3.1. Temporal Distribution

In order to have a more complete and macroscopic view of the temporal distribution of
the literature, the trend of the application of machine learning to industrial risk assessment
research and the degree of interest in the last three decades can be visualized by the annual
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publication volume and the average citations per item analysis of the retrieved sample data
of the 3116 articles. Figure 2 shows the annual publication volume of the literature, the total
publication volume, and the average citations per item. It can be seen from the data that
the application of machine learning to industrial risk assessment research is increasing year
by year, and the number of publications is rising. The overall development process can be
divided into three stages: the initial exploration stage (1991–2006), the stable development
stage (2006–2017), and the high-speed development stage (2017–present).
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During the initial exploration stage (1991–2006), little attention was given to machine
learning due to limitations in computer hardware, resulting in a maximum of 10 relevant
publications annually. Most of the highly cited literature in this period relates to machine
learning for fault diagnosis and assisted production systems [26]. Moselhi et al. [27]
pioneered the use of artificial neural networks as a management tool in construction, which
compared favorably to traditional techniques such as probabilistic methods and expert
systems. Fewer operators and computers are required by artificial neural networks, and
they possess better decision-making and pattern-recognition capabilities. They are widely
used in all construction engineering and management-level tasks. Jenkinson et al. [28]
reviewed the use of artificial intelligence in fabrication yard operator support systems in
the UK, highlighting its potential for real-time decision-making in complex scenarios such
as planning, scheduling, and fault diagnosis. They believed that artificial intelligence had a
promising commercial future with the continuous development of computer hardware and
the potential to make industrial production safer and more efficient. In addition, the high
citation frequency of the literature in 2003 and 2006 indicates that the literature published
in these two years laid a foundation for subsequent research.

In the stable development stage (2006–2017), there was a continued rise in the number
of annual publications, and a wide range of fields was beginning to be covered by highly
cited literature on the application of machine learning to industrial risk assessment due
to the unprecedented development of computer processing power, memory, storage, etc.
Machine learning was widely used in the medical industry for assessing the risk of new
drugs in clinical trials and performing image recognition to promptly assess the risk of
patients suffering from cardiovascular diseases or tumors [29–31]. Risk assessment in
various fields of industry, including building construction; mechanical processing; the food,
energy, and chemical industries; transportation safety; and even the financial industry, was
penetrated by machine learning [32–35]. Machine learning was significantly segmented
in these fields, from risk identification at construction sites to risk prediction for natural
disasters in building construction [36,37]. The macroscopic real-time monitoring of vehicle
data flow in intelligent cities and the microscopic risk identification for autonomous driving
were covered in the transportation field [38–40]. Pipeline safety evaluation for oil and gas
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and advanced control systems in the power industry were covered in the energy and
chemical fields [41–43]. These examples illustrate the success of machine learning in
industrial risk assessment.

In the high-speed development stage (2017–present), the annual number of publi-
cations further increased, remaining above 150 per year, with a rapid rise in the annual
number of publications. Due to the rise and gradual maturation of new information and
communication technologies driving the industry’s shift toward intelligent monitoring,
data fusion, and machine learning applications, the concept of “Industry 4.0” is more
frequently mentioned during this period. A vital role is played by machine learning in
the effective prediction of abnormal behavior in industrial machinery, tools, and processes
to anticipate critical events and damage, prevent significant economic losses and safety
issues, and reduce environmental pollution from industrial activities. Therefore, significant
attention is paid to machine learning and artificial intelligence in this phase, and they
are considered to be of high importance, making them a vital part of the realization of
Industry 4.0 [44–46].

3.2. Spatial Distribution
3.2.1. Country/Region Distribution

The assessment of literature sources, through the analysis of their spatial distribution,
provides valuable insights into the strength and influence of research on related topics in
each country or region and can promote cooperation and communication among nations.
The level of attention and importance given to the topic can be reflected by the geographical
distribution of a field. In this study, an analysis of the publications on machine learning and
industrial risk assessment was conducted, which involved contributions from 102 countries
and regions. The top 10 countries were selected based on the total number of publications,
as outlined in Table 2. The findings were illustrated through a world map that depicted the
number of publications and collaborations (refer to Figure 3). The three leading countries
in terms of the number of articles published, with their total publications accounting for
over half (57.25%) of the literature analyzed, were China (856), the United States (640), and
the United Kingdom (288), as emerged from the analysis of the publications on machine
learning and industrial risk assessment.

Table 2. Top 10 productive countries/region, 1991–2022.

Rank Country Region TP Percentage ACI Total Link
Strength

1 China East Asia 856 27.47% 10.95 375
2 USA North America 640 20.54% 20.09 447
3 England Europe 288 9.24% 14.22 332
4 India South Asia 252 8.09% 8.76 216
5 Australia Australia 167 5.36% 17.70 231
6 Canada North America 151 4.85% 13.50 140
7 Italy Europe 144 4.62% 15.35 201
8 Germany Europe 138 4.43% 18.18 188
9 South Korea East Asia 132 4.24% 22.48 88

10 Spain Europe 124 3.98% 12.12 169
Notes: TP: total publications; ACI: average citations per item.

In terms of regional distribution, the ACI of articles in Europe and the US was generally
higher, which indicates that the overall quality of their publications was superior. This
suggests a closer integration of machine learning techniques with industrial risk assessment
and the production of more valuable and impactful research. Among the top 10 countries in
terms of publication volume, South Korea (22.48), the United States (20.09), and Germany
(18.18) had the highest ACI scores. This indicates that research from these countries is more
influential and that the national publication volume is not necessarily indicative of the
impact of the articles. Generally, the quality of articles published in developed countries
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in Europe and America is higher, and the research in this field is more valuable, widely
noticed, and cited.
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An in-depth analysis of the level of international collaboration between countries in
machine learning and industrial risk assessment research sheds light on the most active
collaborators and the country’s leading international research efforts in this field. Such
insights are vital in fostering academic collaboration and facilitating the exchange of ideas
and expertise on a global scale [47,48].

To analyze the data, the VOSviewer and Scimago Graphics software were combined
to create a network diagram illustrating the country/region collaboration network (see
Figure 4). The nodes are color-coded to represent clusters of countries that are collaborating,
with the thickness of the connecting lines between nodes denoting the strength of the
collaboration. The highest level of collaboration intensity is observed in countries with the
most posts, such as China, the United States, and the United Kingdom, as demonstrated
by the figure. The most extensive collaboration network is held by the United States,
which links to multiple countries across all continents. Additionally, the blue clusters
primarily consist of American countries and some Asian countries, while the red clusters
indicate countries that are territorially connected. Factors such as geography and history
significantly influence the clustering of countries.

Figure 4 presents a graphical representation of the amount of literature published in
each country or region. The average years of publication in the corresponding country are
denoted by the color of the nodes, while the number of publications in the respective coun-
try or region is indicated by the size of the node. China stands out with significantly higher
publication rates than other countries. Meanwhile, countries such as the US, UK, France,
Germany, and Spain, along with other developed countries in Europe and North America,
have earlier publication years compared with their Asian and African counterparts.
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3.2.2. Institute Distribution

Scholars in related fields can benefit from analyzing research institution collaboration
in the literature, as it provides insight into collaboration habits, research directions, and
institutional results [49]. In this study, the retrieved data involved 3986 institutions, and
Table 3 outlines the top 10 institutions that published the most relevant papers. Nine out
of ten of these institutions are universities, highlighting that universities are the main
driving force behind research in this field. Sixty percent of the institutions belonged to
China, indicating that China is at the forefront of research in this field and is a significant
contributor to research in this area. Among the top 10 institutions, Tsinghua University (36),
the Hong Kong Polytechnic University (33), and the Chinese Academy of Sciences (31) had
the highest number of publications, and Huazhong University of Science and Technology
(23.50), the University of Illinois (20.00), and the Hong Kong Polytechnic University (18.76)
had the highest average citations. However, the number of articles issued and the number
of citations were not always correlated, as seen with the Wuhan University of Technology
in China, which had the eighth-highest number of articles issued but a low number of
citations, indicating low interest in its publications. Conversely, the University of Illinois
had the lowest number of articles but the highest average citations, indicating that its
published literature is of high value.

A collaboration graph of 59 major research institutions was generated using the
VOSviewer software (see Figure 5). The size of the nodes in the graph represents the num-
ber of their published literature volumes, and the connecting line indicates the existence
of cooperation between two institutions. The width of the connecting line indicates the
strength of cooperation, and the color indicates the clusters formed by institutions that
cooperate more closely. As shown in Figure 5, eight clusters were obtained based on the in-
tensity of cooperation between research institutions. The Chinese Academy of Sciences and
the University of the Chinese Academy of Sciences had the closest collaboration, with their
research focused on machine learning in fault detection in nuclear power plants [50–52],
which aligns with China’s policy of investing heavily in the nuclear power field. The Hong
Kong Polytechnic University and Huazhong University of Science and Technology were
ranked second in the intensity of collaboration, with their research primarily focused on
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using machine learning for construction risk and worker fatigue detection [53–55]. Monash
University and the University of Melbourne were ranked third in collaboration intensity,
with their primary research focusing on machine learning in image processing and intelli-
gent perception for building construction [56]. Generally, related research institutions could
be more aggregated, and the number of collaborative papers between institutions is low,
with a higher frequency of collaboration between institutions in the same country or region.
The main factors affecting inter-institutional academic communication and cooperation are
the geographical area and the application direction of the research.

Table 3. Top 10 organizations in machine learning in industrial risk assessment studies, 1991–2022.

Rank Organization Country TP STC ACI Total Link Strength

1 Tsinghua University China 36 456 12.67 58
2 The Hong Kong Polytechnic University China 33 619 18.76 87
3 Chinese Academy of Sciences China 31 362 11.68 77
4 Huazhong University of Science and Technology China 24 564 23.50 43
5 Shanghai Jiao Tong University China 23 219 9.52 31
6 Texas A&M University USA 20 195 9.75 22
7 Norwegian University of Science and Technology Norway 20 382 19.10 40
8 Wuhan University of Technology China 17 111 6.53 21
9 The Pennsylvania State University USA 17 155 9.12 18

10 University of Illinois USA 17 340 20.00 36

Notes: TP: total publications; STC: sum of the times cited; ACI: average citations per item.
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3.2.3. Author Distribution

In the realm of academic research, high-output authors are widely recognized as
influential leaders who make substantial contributions to the advancement of their respec-
tive fields. The research content of these authors not only embodies the substance and
methodology of the entire research domain but also exerts a critical impact on the process of
research development. In this study, we utilized the WOS core database to identify a total
of 11,377 relevant authors. Of these, Table 4 showcases the top ten authors based on their
countries and institutions, summarizing the main content areas covered by their articles
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and revealing the frequency of their collaborations with other authors. Of particular note,
Li Heng, with 11 publications and the highest average citation score of 31.55, emerges as
the most prolific author, specializing in the use of deep learning for building construction
safety inspection. Furthermore, his collaboration with other authors is the most frequent,
signifying the centrality of his research within the field.

Table 4. Top 10 authors in machine learning in industrial risk assessment studies, 1991–2022.

Rank Author Country Institute Links TP ACI Main Research Interests

1 Li, Heng China The Hong Kong
Polytechnic University 22 11 31.55 Deep learning building construction safety

2 Liu, Xiang China The State University of
New Jersey 6 7 10.14 Machine learning train derailment

prediction
3 Zhao, Jinsong China Tsinghua University 3 6 16.00 Intelligent process fault detection

4 Wang, Lei China Nanjing Tech University 4 6 4.67 Machine learning-based real-time visible
fatigue crack extension detection

5 Yu, Yantao China The Hong Kong
Polytechnic University 18 6 33.00 Worker construction activity identification

and monitoring

6 Umer, Waleed England University of Delaware 13 6 12.83 Machine learning-based body fatigue level
identification and classification

7 Takahashi,
Masakazu Japan University of Tsukuba 10 6 1.83

Validity detection for transportation
decision-making research mail order

industry

8 Arashpour,
Mehrdad Australia The Hong Kong

Polytechnic University 3 6 17.5
Machine learning 3D point cloud data

processing for construction and
infrastructure applications

9 Zhou, Jun China Ant Financial Services
Group 11 5 8.6 Distributed learning in e-commerce

10 Zhang, Wei China Northeastern University 3 5 28.6 Deep learning in the fault diagnosis of
rotating machinery

Notes: TP: total publications; ACI: average citations per item.

We employed VOSviewer to analyze the literature data, generating a collaboration
network graph to gain insights into author collaboration patterns within the research
field. After manually filtering 2400 author collaborations, we developed Figure 6, where
nodes represent authors, and the node size corresponds to the number of their published
works. The thickness of the node-to-node lines reflects the strength of author-to-author
collaborations. Our analysis of Figure 6 reveals that authors Zhang Hao, Ma Lei, and Liu
Yang, belonging to the dark blue cluster, concentrate on big data in data security and the
use of deep learning in software countermeasures [47–49]. The purple cluster, including
Lim, Ming, and Tseng Ming-Lang et al., focuses on the industrial Internet of Things and
machine learning in Industry 4.0 [50,51]. The green cluster comprises Shariatfar, Moeid, Lee,
Yong-Cheol, and others, who have studied intelligent noise identification and monitoring
in factories and construction sites more intensively [52,53]. Conversely, the yellow cluster,
centered on Li and Wei, concentrates on machine learning for industrial chemical toxicity
prediction [54]. Lastly, the red cluster, including Zhou, Jun, and Wang, Lei, focuses on
machine learning for risk prediction in the e-commerce and financial industries [55,56].

3.2.4. Journal Distribution

Academic journals serve as crucial platforms for disseminating academic knowledge,
publishing research results, and promoting communication between researchers [57]. The
selection of academic journals is indicative of the research areas and the literature quality
of academic research.

Table 5 presents a comprehensive list of the top ten journals based on the number of
publications, quantity, average citations (ACI), journal type (citation index), and impact
factor (impact factor). It is noteworthy that IEEE Access published 98 papers, outpacing
other journals in terms of publication quantity. Automation in Construction exhibited the
second-highest average citation rate of 26.85 and an impact factor of 10.517, suggesting a
significant influence on the research field. Hence, articles related to machine learning in
industrial risk assessment published in Automation in Construction are of considerable im-
portance and deserve the attention of scholars. Additionally, all relevant journals included
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in the Science Citation Index Expanded (SCIE) indicate that the research predominantly
falls within the natural sciences.
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Table 5. Top 10 journals in machine learning in industrial risk assessment studies, 1991–2022.

Rank Journal Title TP ACI Citation Index Impact Factor (2022)

1 IEEE Access 98 29.12 SCIE 3.476
2 Sustainability 57 8.70 SCIE/SSCI 3.889
3 Sensors 49 8.27 SCIE 3.847
4 Applied Sciences–Basel 47 6.45 SCIE 2.838
5 Automation in Construction 40 26.85 SCIE 10.517
6 Safety Science 37 23.68 SCIE 6.392
7 Expert Systems with Applications 32 19.94 SCIE 8.665
8 Computational Intelligence and Neuroscience 28 1.36 SCIE 3.12
9 Energies 23 3.78 SCIE 3.252

10 IEEE Transactions on Industrial Informatics 22 23.45 SCIE 11.648

Notes: TP: total publications; ACI: average citations per item.

We analyzed the distribution of significant source journals in the research area by
using VOSviewer and retrieving data from 1680 journals. A network diagram of major
journals was exported, as shown in Figure 7, where each node represents a journal, its size
is proportional to its number of publications, and the width of the connecting lines between
nodes represents the cross-citation intensity between journals.

The analysis reveals that IEEE Access, Sustainability, and Sensors are the top three
journals in terms of the number of published articles. The inter-journal cross-citations
highlight the diverse research directions and the significant research value of IEEE Access.
The network diagram shows ten distinct clusters, each with its own specific research focus.
The dark blue cluster primarily focuses on machine learning applications for factory safety
and building construction. The Applied Sciences—Basel journal, the largest node in this
cluster, closely collaborates with journals in the red, yellow, orange, green, and purple
clusters, with the most substantial collaborations in the red cluster. The green cluster
emphasizes integrating machine learning and the internet for control and automation in
the context of building industrial risk monitoring systems through the industrial Internet
of Things. IEEE Access leads the number of publications and has the closest association
with the red and blue clusters. The red cluster, with the highest journal density, prioritizes
computer vision, image recognition, and artificial intelligence methods, with a focus on
building construction risk prediction and workers’ risk assessment. Safety Science and
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Automation in Construction are the leading journals in this cluster. The yellow cluster’s
leading journal is Sustainability, focusing on the multidimensional and cross-cutting impact
of digital intelligence on cities, transportation, Industry 4.0, and the future development
outlook. The orange cluster studies machine learning algorithms for security risk prediction
and optimization and explores the use of novel algorithms. This cluster needs to enhance
its collaboration with other clusters. The brown cluster’s leading journal is Computational
Intelligence and Neuroscience Energies, focusing on the use of artificial intelligence in
biomedicine, with a broad range of articles related to risk prediction in agriculture and
risk assessment in personal healthcare and sports. This cluster needs more inter-cluster
collaboration. The purple cluster’s leading journal is Sensors, focusing on machine learning
combined with various types of sensors for safety monitoring and real-time risk assessment
in various areas of industry. Sensors collaborates closely with the red and dark blue clusters,
as their subjects are rapidly gaining popularity in factories and construction sites. The
pink cluster has fewer journals, primarily focusing on insurance-related risk assessment
reviews. The leading journal in the light blue cluster is Expert Systems with Applications,
which provides practical guidelines for the development and management of expert and
intelligent systems in a wide range of areas.
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3.3. Research Knowledge Base

The knowledge base reflects the nature of the research field. There are multiple free
knowledge units in different kinds of literature. When the same literature cites different
kinds of literature, it represents a formal integration of multiple accessible units into a
new knowledge base. As the citation network continues to evolve, a knowledge base is
formed. Citation analysis of literature and journals can be an excellent way to tap into the
knowledge base of a field [57].

3.3.1. High-Cited Literature Analysis

The assessment of scholarly output has evolved into a crucial component of academic
inquiry. A popular tool for measuring academic impact has emerged in the form of
citation analysis, which gauges the influence and quality of a publication by counting
the frequency of its citations [23]. High citation rates often reflect the significance of the
research content and outcomes, thus enhancing their reference value to future research
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endeavors. Deliberate scrutiny and in-depth analysis of highly cited literature can provide
a comprehensive understanding of the core research content in a given field.

The essence of industrial risk assessment research involving machine learning tech-
niques is sought to be comprehended in this paper by selecting the 20 most cited related
publications, as presented in Table 6. The literature’s titles, authors, publication year,
journal name, literature type, citations (STC), number of institutions (IN), and number of
countries (CN) are itemized in the table. In co-authored works by over three authors, only
the first author is listed. It is revealed by the top 20 frequently cited documents that 9 of
them possess international collaborations, while 17 have institutional collaborations. This
highlights the frequent intersection of institutional research directions in this field and the
need for multidisciplinary teamwork to achieve effective research outcomes. A growing
trend toward collective research pursuits, which significantly contribute to advancing
scientific knowledge, is indicated by the prevalence of institutional collaborations.

Table 6. The top 20 papers with the most citations, 1991–2022.

Rank Title Journal Type Authors Year STC IN CN

1
A Review of Process Fault Detection
and Diagnosis Part I: Quantitative

Model-Based Methods

Computers &
Chemical

Engineering
Review Venkatasubra-

manian et al. [26] 2003 1606 4 1

2 The Internet of Things for Health Care:
A Comprehensive Survey IEEE Access Article Islam et al. [29] 2015 1203 3 2

3 Machine Learning in Medicine Circulation Article Deo et al. [30] 2015 1060 2 1

4
Artificial Intelligence for Fault

Diagnosis of Rotating Machinery: A
Review

Mechanical
Systems and

Signal
Processing

Review Liu et al. [11] 2018 868 3 3

5 ProTox-II: A Webserver for The
Prediction of Toxicity of Chemicals

Nucleic Acids
Research Article Banerjee et al.

[10] 2018 527 2 1

6
The Impact of Digital Technology and
Industry 4.0 on The Ripple Effect and

Supply Chain Risk Analytics

International
Journal of

Production
Research

Article Ivanov et al. [58] 2019 517 3 3

7

Sustainable Industry 4.0 Framework: A
Systematic Literature Review

Identifying the Current Trends and
Future Perspectives

Process Safety
and Environ-

mental
Protection

Review Kamble et al.
[44] 2018 429 2 2

8
A Digital Supply Chain Twin for

Managing the Disruption Risks and
Resilience in The Era of Industry 4.0

Production
Planning &

Control
Article Ivanov et al. [59] 2021 314 2 2

9

A Critical Review of Smart
Manufacturing & Industry 4.0 Maturity

Models: Implications for Small and
Medium-Sized Enterprises (SMEs)

Journal of
Manufactur-

ing
Systems

Review Mittal et al. [60] 2018 298 2 2

10
P4 Medicine: How Systems Medicine
Will Transform the Healthcare Sector

and Society

Personalized
Medicine Article Flores et al. [31] 2013 262 2 1

11
Data Fusion and Machine Learning for

Industrial Prognosis: Trends and
Perspectives Towards Industry 4.0

Information
Fusion Article Diez-Olivan et al.

[45] 2019 236 4 2

12

Rapid and Quantitative Detection of
The Microbial Spoilage of Meat by

Fourier Transform Infrared
Spectroscopy and Machine Learning

Applied and
Environmen-

tal
Microbiology

Article Ellis et al. [9] 2002 217 1 1
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Table 6. Cont.

Rank Title Journal Type Authors Year STC IN CN

13
A Survey on Industrial Internet of
Things: A Cyber-Physical Systems

Perspective
IEEE Access Article Xu et al. [61] 2018 213 2 1

14
From Experience: Harnessing Tacit

Knowledge to Achieve Breakthrough
Innovation

Journal of
Product

Innovation
Management

Article Mascitelli et al.
[62] 2000 208 1 1

15
Insights from Advanced Insights from
Advanced Analytics at The Veterans

Health Administration
Health Affairs Article Fihn et al. [63] 2014 194 6 1

16 Test Protocols for Evaluation of Spinal
Implants

Journal of
Bone and Joint

Surgery-
American
Volume

Article Goel et al. [64] 2006 193 1 1

17
Towards A Semantic Construction
Digital Twin: Directions for Future

Research

Automation In
Construction Review Boje et al. [65] 2020 188 2 2

18

Industrial Big Data in an Industry 4.0
Environment: Challenges, Schemes,

and Applications for Predictive
Maintenance

IEEE Access Article Yan et al. [66] 2017 186 2 1

19 The Neurobayes Neural Network
Package

Nuclear
Instruments &

Methods in
Physics
Research

Section A-
Accelerators

Spectrometers
Detectors and

Associated
Equipment

Article Feindt et al. [67] 2006 178 2 1

20 Occupation And Bladder Cancer
Among Men in Western Europe

Cancer Causes
& Control Article Kogevinas et al.

[68] 2003 177 7 7

Notes: STC: sum of the times cited; IN: institute numbers; CN: country numbers.

It is revealed by the analysis that 15 of the 20 most cited articles are research articles,
indicating that such studies are more representative and informative in this field. The
most cited article, “A Review of Process Fault Detection and Diagnosis Part I: Quantitative
Model-Based Methods” [26], has been cited 1606 times. Quantitative model-based methods
in artificial intelligence for process fault detection and diagnosis are focused on in this
review article, providing a valuable reference for industrial practitioners and technologists.
The progression of abnormal events can be avoided and productivity losses can be reduced
by the early detection and diagnosis of process faults, which is crucial for industrial risk
assessment. This is helped by this review.

The article by Islam, S. M. Rizal, “The Internet of Things for Health Care: A Com-
prehensive Survey” [29], is the second most cited article with 1203 citations. Security and
privacy concerns in the Internet of Things from a healthcare standpoint are discussed,
and an intelligent collaborative security model is proposed to reduce security risks. Addi-
tionally, state-of-the-art network architectures and platforms, as well as industry trends
in IoT-based healthcare solutions, are reviewed, providing avenues for future IoT-based
healthcare research.

In the third most cited position, the article “Machine Learning in Medicine” [30] has
been cited 1060 times. The problems in medicine that can be solved through large medical
datasets and various learning algorithms are explored in this article, and the meaningful
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contributions made by machine learning to clinical care over the decades are collated.
Statistical learning methods are used to conclude the article and identify possible barriers
to changing the practice of medicine, as well as discussions of how to overcome them.
Therefore, significant insights into the potential of machine learning to transform healthcare
have been provided by this article.

3.3.2. Dual-Map Overlays

A better understanding of the knowledge foundation of a research field can be pro-
vided by an analysis of the citation relationships and subject coverage of a journal, which
is helpful for conducting further in-depth research [69]. Using the CiteSpace software, a
dual-map overlay of journal citations and cited relationships was generated, as shown
in Figure 8. The citation relationships between journals are represented by the curved
lines between the left and right areas, and the strength of the citation relationship is repre-
sented by the thickness of the lines. Each cited journal in the right basic map is pointed
to by a curve starting from a citing journal in the left basic map. The number of citations
and references received by journals is indicated by the size of the circles representing
them. The corresponding subject areas of the citations are indicated by the labels at both
ends of the lines.
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The citation map is divided into two halves: the left half and the right half. Journals
such as Process Safety and Environmental Protection, the Journal of Cleaner Production, Trends in
Food Science & Technology, Computers & Chemical Engineering, etc., which cover disciplines
such as veterinary medicine, animals, and science, are contained in area 1 of the left half of
the citation map. Three disciplines, mathematics, systems, and mathematics, are covered
by three journals in area 2: Expert Systems with Applications, IEEE Transactions on Industrial
Informatics, and the Journal of Loss Prevention in the Process Industries. The disciplines of
environment, toxicology, and nutrition are covered by the more cited journals in Region 3
on the right half of the citation map: the Journal of Cleaner Production and IEEE Transactions
on Industrial Informatics. The disciplines of chemistry, materials, and physics are covered by
the Energies, Sensors—Basel, and Ocean journals, which encompass Region 4. The disciplines
of systems, computing, and computers are covered by Safety Science, Expert Systems with
Applications, and Future Technologies, which are included in Region 5. Automation in Con-
struction and the International Journal of Information Management are two journals in Region
6 that are related to psychology, education, society, economics, and politics.

Seven curves that illustrate the citation relationships between the journals are show-
cased in the diagram presented in the figure. Of the seven curves, five are represented in
red and are denoted as 2-3, 2-4, 2-5, and 2-6(2), while the remaining two are represented in
yellow and correspond to 1–3 and 1–5. The highest number of cited journals is displayed in
Region 2, with all five red lines directly connected to Regions 3, 4, 5, and 6. Mathematics
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is the primary discipline associated with Region 2. Machine learning is widely applied in
this industry, and its core algorithms continue to influence applied mathematics studies. A
strong relationship with the other Regions is exhibited by Region 2, as mathematics serves
as the foundation and core discipline of machine learning. Further mathematics research is
necessitated by the continued development of machine learning in various fields.

Disciplines such as veterinary medicine, zoology, and science are encompassed by
Region 1, and journals located in Region 3, which is focused on environmental science,
toxicology, and nutrition, and Region 5, which is concentrated on computer science, are pri-
marily cited. Integrating knowledge from toxicology, nutrition, environmental science, and
computer science will facilitate the development of drugs for artificial intelligence, health
monitoring, disease diagnosis, and environmental protection. Fundamental disciplines
such as chemistry, materials science, and physics, which form the basis for industrial risk
assessment, comprise Region 4. The incorporation of knowledge from these disciplines
is required by machine learning, as a method, to achieve applications. The study and
research of these fundamental disciplines are the foundation of industrial risk assessment,
and integrating machine learning into these fields can facilitate its application. Continuous
investment in these fundamental disciplines is necessary to deepen the application of
machine learning in the industry. The most prosperous disciplines, such as psychology,
education, society, economics, and politics, are encompassed by Region 6, and these are the
research fields of machine learning in areas besides industry.

Based on the analysis of the above-mentioned disciplines and related journals, we can
derive four knowledge bases for machine learning in industrial risk assessment: machine
learning algorithm design, applications in biomedicine, risk monitoring in construction
and machinery, and environmental protection.

3.4. Research Evolution and Research Hotspots Analysis
3.4.1. Keywords Co-Occurrence Analysis

Keywords can be considered a summary of the main content of an article, and the
time and frequency of the occurrence of various keywords and the changes they undergo
can be reflected in the research hotspots of that research area. Therefore, keyword analysis
can be used to identify the evolving research frontiers related to the field of knowledge.
A total of 5173 keywords were obtained from 3116 documents in the Web of Science core
database. The top 20 keywords in terms of frequency of occurrence and the year of their
first occurrence were taken to generate Table 7.

Table 7. The top 20 keywords of machine learning in industrial risk assessment studies, 1991–2022.

Rank Keywords Count Year Rank Keywords Count Year

1 Machine Learning 603 2007 11 Blockchain 47 2018
2 Artificial Intelligence 362 1992 12 Cloud Computing 46 2010
3 Deep Learning 286 2017 13 Convolutional Neural Network 78 2016
4 Big Data 212 2013 14 Risk Assessment 41 2010
5 Industry 4.0 198 2016 15 Privacy 40 2013
6 Safety 84 1994 16 Fault Diagnosis/Detection 66 2003
7 Internet of Things 153 2015 17 Feature Extraction 39 2013
8 Security 69 2004 18 Classification 38 2004
9 Risk Management 54 2004 19 Random Forest 36 2012

10 Data Mining 53 2008 20 Automation 35 2003

Year: When the keyword first appeared.

In the current study, a keyword co-occurrence network was generated by using the
CiteSpace software, as depicted in Figure 9. In this network, each circle denotes a keyword,
with its size reflecting the frequency of occurrence.
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Figure 9. Network map of co-occurrence keywords.

The clustering of keywords is based on their co-occurrence, As illustrated in Figure 9,
six clusters were identified, including Industry 4.0, deep learning, machine learning, process
safety, autonomous vehicles, and impact. The research trends in the field are accurately
reflected by the clustering topic terms, which provide guidance for future research. Of
note, #0 and #2 emerged as the most frequent clusters, indicating that they are the hot
topics of research in this field. Valuable insights for scholars and practitioners in the field
of safety science to identify and prioritize future research directions can be provided by
these findings.

#0 Industry 4.0: The characteristics of Industry 4.0 include the integration of various
sensors, controllers, and technologies such as mobile communication and artificial intel-
ligence that have sensing and monitoring capabilities. The production efficiency of the
manufacturing industry will be significantly improved while the risks associated with each
production step will be greatly reduced. An unparalleled upsurge in the use of machine
learning algorithms has resulted from the rapid establishment of Industry 4.0, coupled
with the emergence and utilization of the industrial Internet of Things. Crucial terms
such as “Internet of Things”, “supply chain”, “big data”, and “implementation”, which
are fundamental components of machine learning in industrial applications, comprise the
keywords included in this cluster [44,45].

#1 Deep Learning: The ideal of artificial intelligence is being brought closer to re-
alization by deep learning, a nascent research area within machine learning. The quick
identification of patterns within sample data is enabled by its sophisticated algorithms,
leading to the faster recognition of text, images, sounds, and more. A wider range of
problems across multiple domains, including complex industrial applications, can be ad-
dressed by deep learning as a result of its potential. Clustered keywords such as “anomaly
detection”, “rule”, “vision”, “fault diagnosis”, “recognition”, and “CNN” demonstrate that
deep learning is primarily used in the industry for fault diagnosis, defect detection, and
computer vision discrimination. These applications have proved invaluable in tackling
complex problems such as risk detection and risk assessment, which require real-time,
speedy identification and decision-making [70–73].

#2 Machine Learning: The discipline of machine learning is at the core of artificial
intelligence, encompassing statistics, complex algorithms, and related knowledge such
as the Alcoa wheel. Frequently occurring keywords, such as logistic regression, Random
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Forest, neural network, and support vector machine, among others, are featured in this
cluster. These algorithms are commonly utilized across a range of fields. For instance, Kibria
applied logistic regression to predict the risk of secondary cardiovascular disease [74], while
Liu and Tao used the Random Forest algorithm to analyze risk in financial markets [75].
Furthermore, Sresakoolchai utilized a neural network algorithm to detect DDOS attacks
on bank monitoring systems [76]. “Surveillance” and “classification”, which represent
the primary functions of machine learning for risk assessment through surveillance and
classification, are the most commonly used keywords in this cluster.

#3 Process Safety: Supervising complex industrial processes in the energy, chemical,
nuclear, and aerospace industries to prevent and manage accidental disturbances and haz-
ardous situations during industrial production, storage, and transfer is involved in process
safety. This aims to prevent harm to employees and community residents, as well as envi-
ronmental damage and property loss. In the central cluster, the most frequently mentioned
keywords are uncertainty, oil, abnormal situation management, and corrosion. Machine
learning methods that can be used to detect abnormal risks and diagnose faults during the
transportation and storage of oil, gas, and chemicals are represented by these keywords.
The corrosion and rupture of pipelines, storage tanks, transportation carriers, and other
facilities can be prevented by these methods, as reported in previous studies [15,77–79].

#4 Autonomous Vehicles: In recent years, autonomous driving has been a highly
debated research topic. Heavy reliance is placed on the utilization of machine learning algo-
rithms for the achievement of autonomous driving systems. Automated vehicle systems are
equipped with numerous sensors, which generate data that require real-time processing. In
order to detect and evaluate driving environments and risks in real-time, machine learning
algorithms are indispensable in ensuring the safety of autonomous driving [80,81].

#5 Impact: The impact of accidents or risks in various fields, including society, as-
sessment, mitigation, the economy, and the environment, is mainly elucidated by this
cluster. Within this cluster, Paes, Vanessa Marques, delves into how industrialization and
the development of artificial intelligence can contribute to the emergence of prejudice and
discrimination in society and the increased risk of harm to humans from autonomous
systems. Additionally, Santana, Julio Ariel Duenas, proposed a new economic loss index
for fires and explosions using machine learning algorithms. The sharing of resettlement
can be improved and guidance for accident prevention, mitigation, and risk management
can be provided by this method [82–84].

3.4.2. Combing Evolution Path

In the present study, the CiteSpace software was employed to examine the timeline
view analysis, and the generated keyword timeline view was subjected to appropriate
editing, as illustrated in Figure 10.

The illustration of the inter-cluster relationships and the historical span of keywords
in a specific cluster, showcasing the historical development of different research areas,
was facilitated by the timeline view. A time axis along the horizontal axis and the various
clusters of keywords along the vertical axis are featured in the keyword timeline view. A
unique keyword is denoted by each node, with the frequency of the keyword indicated by
the size of the node. The sudden change in the keyword from 1991 to 2022 is reflected in
the color of the node, ranging from dark to light. The node outlined in purple has a greater
centrality than 0.1. The earlier temporal suddenness is represented by a darker node color.
The co-occurrence relationship between two nodes is represented by the line connecting
them, with the level of co-occurrence indicated by its thickness. Thus, the relationship
between two nodes can be quantitatively evaluated using this approach.
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Six distinct timelines, each representing a unique research theme, can be broadly
classified based on the keywords associated with machine learning in the domain of
industrial risk assessment research, as depicted in Figure 10. Keywords such as “neural
network”, “support vector machine”, “model”, “performance”, and “analytics” are featured
in the first timeline, which spans from 1999 to 2022. This timeline is characterized by
research on the application of support vector machine (SVM)-based algorithms in fault
detection and diagnosis for process safety. SVM is a popular machine learning algorithm
used for classification and regression tasks. It works by finding the best possible decision
boundary, known as a hyperplane, that can separate data points into different classes or
predict numerical values. It offers higher fault diagnosis rates and shorter diagnosis times
than traditional artificial intelligence algorithms such as artificial neural networks (ANN),
K-nearest neighbors (KNN), and decision trees (DT).

The second timeline, featuring keywords such as “big data”, “industry 4.0”, “cloud
computing”, and “anomaly detection”, spans from 2016 to 2022 and focuses on integrating
machine learning into research related to industry 4.0. However, relevant research in this
area is still in its infancy, and this timeline was created relatively late.

The third timeline, ranging from 1997 to 2022, is based on keywords such as “industry”,
“systems”, “machine learning”, and “convolutional neural networks”. The research content
primarily revolves around the application of deep learning to the industrial sector. While
research in this area was carried out early, the research direction was relatively singular
initially due to the small research population for deep learning. It was not until after 2008
that the research directions related to deep learning began to diversify, the number of
application industries increased, and the types of algorithms became more diverse.

The fourth timeline is characterized by keywords such as “simulation”, “challenge”,
“impact”, and “behavior”, and is mainly focused on the prediction and assessment of supply
chain risks in the industrial system using machine learning. It spans from 2016 to 2022.

Spanning 2017 to 2022, the fifth timeline was based on keywords such as “classifica-
tion”, “big data analytics”, and “Random Forest” and focused on research on Random-
Forest (RF)-based algorithms for risk prediction. RF is a type of machine learning algorithm
that combines multiple decision trees to make predictions or classifications. It works by
building a collection of decision trees, where each tree is trained on a random subset of data
and features. The predictions from all the individual trees are then combined to produce a
final prediction or classification. By comparing the first timeline, we can see that support
vector machines were used earlier and are more mature in the field of risk assessment.
However, as Random Forest algorithms are better suited to handling large and complex
datasets, they can handle missing data and classification features well. Therefore, in the era
of big data today, Random Forests are starting to become more popular.
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Spanning 2017 to 2022, the sixth timeline is characterized by keywords such as “In-
ternet of Things”, “privacy”, and “blockchain technology”. The development of machine
learning in the Internet of Things is the focus of research in this area. Although the current
research is still in its early stages, a promising new direction is held by the use of machine
learning algorithms to realize the Internet of Things in the future.

3.4.3. Research Topic Evolution

It has been shown that clustering algorithms, when applied to co-occurrence networks,
are a useful tool for identifying and highlighting different topics within a domain. The
resulting output from these algorithms can be visualized in a topic graph, where the two
dimensions of centrality and density are used to provide insight into the structure of the
underlying dataset [85].

Based on the values of centrality and density, the topic graph can be divided into four
quadrants, each representing a different level of centrality and density. The importance
of a given topic in the broader field of study is reflected by the centrality measure, which
increases along the horizontal axis. The strength of word links within a given topic is
indicated by density, which increases along the vertical axis [86]. The higher the density of
links within a topic, the more coherent and complete the research questions corresponding
to that topic. The size of each domain on the graph is proportional to the number of articles
containing the respective keyword. The core of the database is represented by themes
located in quadrant 1 (top right), as they are both central to the public network and strongly
internally connected, indicating a high degree of development. Themes that are less central
but have a higher internal connection strength, suggesting that they are more mature as
standalone research content, are contained in quadrant 2 (top left). A marginal area of
research is indicated by themes located in quadrant 3 (bottom left), which has low linkage
strength both within and outside its themes. Themes with relatively low internal linkages,
which are gradually developing and still need to form a well-established research core,
comprise quadrant 4 (bottom right) [85]. It is worth noting that the adjacent themes in
the graph may not be linked and may only represent similar centrality and density data.
Valuable insights into the structure of a dataset can be provided by clustering algorithms
applied to co-occurrence networks visualized on a topic graph, and the resulting output
can aid in identifying areas of research that require further development.

The research landscape of machine learning applied to industrial risk assessment is
subject to temporal variability. To effectively capture and track the evolution of this field,
we leveraged the Bibliometrix R package to identify topic terms that occur more than
five times during three distinct phases of literature distribution. Utilizing these terms, we
constructed topic maps for each period, allowing for the visualization of research hotspots
and their temporal changes.

1991–2006: During the period of 1991 to 2006, the research landscape of industrial
risk assessment using machine learning was characterized by a scattered research system
with few related studies. As depicted in Figure 11, this topic is not located in the first
quadrant, indicating a lack of a stable and long-term research system for machine learning
in industrial risk assessment. Meanwhile, the research on process control and safety was
becoming a coherent system with strong inter-study links, albeit in a system of independent
research. Some scholars were also combining accident studies with algorithms, which are
located in quadrant 2. On the other hand, artificial intelligence, expert systems, and process
safety are positioned in quadrant 4, indicating that research, development, and applications
in these areas were progressing but that core theories had not yet been developed.



Sustainability 2023, 15, 6965 21 of 29

Sustainability 2023, 15, 6965 21 of 29 
 

constructed topic maps for each period, allowing for the visualization of research hotspots 
and their temporal changes. 

1991–2006: During the period of 1991 to 2006, the research landscape of industrial 
risk assessment using machine learning was characterized by a scattered research system 
with few related studies. As depicted in Figure 11, this topic is not located in the first 
quadrant, indicating a lack of a stable and long-term research system for machine learning 
in industrial risk assessment. Meanwhile, the research on process control and safety was 
becoming a coherent system with strong inter-study links, albeit in a system of independ-
ent research. Some scholars were also combining accident studies with algorithms, which 
are located in quadrant 2. On the other hand, artificial intelligence, expert systems, and 
process safety are positioned in quadrant 4, indicating that research, development, and 
applications in these areas were progressing but that core theories had not yet been devel-
oped. 

2006–2017: In the second phase, emergent grouping themes can be observed, as 
shown in Figure 12. The rapid advancement of machine learning has been facilitated by 
the development of increasingly sophisticated computers, which has enabled companies 
to utilize it for managing risks efficiently, accurately, and at low cost through a holistic 
and systematic approach. As a result, core areas of academic research have emerged in 
machine learning and risk management. During this period, a new industry has emerged 
in e-commerce, and different algorithms to monitor the possible risks faced by this indus-
try are being investigated through more studies. A research hotspot has emerged in the 
field of food safety, and the application of machine learning is increasingly required for 
the detection of food quality. Anomaly detection, cyber-physical systems, unsupervised 
learning, and construction safety are new emerging research topics located in quadrant 2, 
characterized by high density but low centrality and more mature yet independent re-
search content. Technical topics such as data security, data analytics, and risk assessment 
are positioned at the junction of quadrants 3 and 4, with related research moving from the 
margins to the mainstream and related theoretical systems gradually taking shape. In 
quadrant 4, the richest themes are at the next stage of popularity in research, with big data, 
artificial intelligence, deep learning, neural networks, cloud computing, and other related 
subjects closely linked. The number of papers produced by the related themes in this stage 
is the largest in terms of size, reflecting the popularity of this stage of research. However, 
it should be noted that the Hersing theory has yet to be fully developed and still holds 
great potential for further development. It is evident that digitalization and information 
technology are booming, and machine learning is becoming increasingly integrated into 
the industrial field. 

 
Figure 11. Thematic map based on co-word network analysis and clustering: 1991–2006.

2006–2017: In the second phase, emergent grouping themes can be observed, as shown
in Figure 12. The rapid advancement of machine learning has been facilitated by the
development of increasingly sophisticated computers, which has enabled companies to
utilize it for managing risks efficiently, accurately, and at low cost through a holistic and
systematic approach. As a result, core areas of academic research have emerged in machine
learning and risk management. During this period, a new industry has emerged in e-
commerce, and different algorithms to monitor the possible risks faced by this industry
are being investigated through more studies. A research hotspot has emerged in the
field of food safety, and the application of machine learning is increasingly required for
the detection of food quality. Anomaly detection, cyber-physical systems, unsupervised
learning, and construction safety are new emerging research topics located in quadrant 2,
characterized by high density but low centrality and more mature yet independent research
content. Technical topics such as data security, data analytics, and risk assessment are
positioned at the junction of quadrants 3 and 4, with related research moving from the
margins to the mainstream and related theoretical systems gradually taking shape. In
quadrant 4, the richest themes are at the next stage of popularity in research, with big data,
artificial intelligence, deep learning, neural networks, cloud computing, and other related
subjects closely linked. The number of papers produced by the related themes in this stage
is the largest in terms of size, reflecting the popularity of this stage of research. However,
it should be noted that the Hersing theory has yet to be fully developed and still holds
great potential for further development. It is evident that digitalization and information
technology are booming, and machine learning is becoming increasingly integrated into
the industrial field.

2017–2022: As depicted in Figure 13, machine learning and risk assessment, which
experienced rapid development in the previous phase, have become the focal point of
research in this phase. The independence of risk assessment and machine learning, which
was relatively established in the previous phases, is now closely intertwined. Research in
related fields has matured, and the use of machine learning techniques for industry risk
assessment has become the primary research objective. With the rapid development of the
new energy vehicle industry, new research topics such as autonomous driving, predictive
modeling, and data modeling have emerged. These topics are closely related and relatively
mature in independent research. However, the volume of articles is small, and their
centrality is low, indicating a considerable development potential (quadrant 2). As machine
learning becomes more intricate, algorithms such as convolutional neural networks reside
in quadrant 3. With more novel algorithms, their research is relatively marginal as these
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topics move closer to the center. In quadrant 4, big data, artificial intelligence, security,
and risk management are still popular research areas, and the output of related articles
remains high. It is worth mentioning that Industry 4.0 has become a new research hotspot
in this phase, indicating the gradual realization of the industrial sector’s informatization
and digitization. However, a perfect research core has not yet been formed for these topics,
and they still hold excellent development potential.
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The development of machine learning in the industrial field can be summarized as
follows: from being an auxiliary tool or system for single-domain production to multi-
domain risk assessment, safety management, and the informationization and digitization of
Industry 4.0. The evolution of research topics in the field of machine learning, from its initial
applications as an aid in single-domain production to its current role in supporting broader
industrial risk management and safety, is highlighted in this overview. Additionally, the
growing importance of the Industry 4.0 system, which emphasizes the use of advanced
technologies to improve industrial processes, is a prominent theme in this field. The
need for continued research into the application of machine learning in industrial settings,
as well as its potential to support broader industrial transformation, is underscored by
these developments.
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4. Discussion

In this study, 3116 relevant publications were extracted from the Web of Science core
database using VOSviewer, Bibliometrix R, and CiteSpace for the application of machine
learning in industrial risk assessment, and the keywords were analyzed via co-occurrence
analysis, cluster analysis, and dual-map overlays. An overview of the development history,
topic evolution, relevant knowledge base, current research hotspots, and future research
trends in the application area of machine learning in industrial risk assessment is presented.
The main content is presented below:

The number of articles on machine learning in industrial risk assessment has increased
year by year, indicating a growing interest in the field. The overall development process
of machine learning in industrial risk assessment can be divided into three stages: the
initial exploration stage (1991–2006), the stable development stage (2006–2017), and the
high-speed development stage (2017–present), as shown in Figure 2 in Section 3.1. During
the initial exploration stage (1991–2006), fewer than 10 relevant publications per year
were produced. As machine learning was a relatively cutting-edge technology at the
time and was limited by computer hardware, it did not receive widespread attention.
However, an increase in the number of publications per year was observed during the
stable development stage (2006–2017). With the improvement of computer processing
capabilities and the arrival of the information age, machine learning was required to handle
more complex learning tasks and was successfully applied to risk assessment in various
industrial fields. In the high-speed development stage (2017–present), a rapid increase
in the number of publications was indicated by the annual publication volume, which
remained above 150 papers per year. During this period, due to the rise and gradual
maturity of information and communication technologies, there is a need to establish big
data prediction models, the Internet of Things, and autonomous driving and promote the
Industry 4.0 model transformation toward intelligent monitoring and data empowerment,
which are more complex tasks. As a result, widespread attention and high regard have
once again been received by machine learning and artificial intelligence.

By selecting the top 20 most cited relevant articles, we have gained a deeper under-
standing of the research essence of using machine learning technology for industrial risk
assessment. It was shown by the analysis results that research articles are more representa-
tive and informative in this field, with 15 of the top 20 most cited articles being research
articles. The focus of the most cited articles is on model-based quantitative methods in
artificial intelligence for process fault detection and diagnosis. The security and privacy
issues of the Internet of Things from a healthcare perspective are discussed in the second
most cited article. The potential of machine learning to solve medical problems using
large media datasets and various learning algorithms, thereby transforming healthcare, is
explored in the third most cited article. Various aspects within the industry are shown to
be covered by research on machine learning in the world through the analysis of highly
cited literature. Of the 20 articles, 9 were produced through international collaborations,
and 17 were the result of multi-institutional collaborations, demonstrating the close collab-
orations between scholars in the field across institutions and regions, as well as the closely
interdisciplinary nature of the research content.

By using CiteSpace to analyze the keywords in a dual-map overlay, we found that
mathematics and computer science are the most important fields for research into how
machine learning is used in industrial risk assessment. These two disciplines provide
the basis for the development and optimization of a wide range of algorithms, from
theory to application. In addition, this research incorporates knowledge from a number
of disciplines, including chemistry, physics, materials science, nutrition, environmental
science, toxicology, finance, and sociology, for its application in a variety of fields, including
construction, energy, chemical engineering, and biomedicine. Based on the analysis in
Section 3.4.2, we can derive four knowledge bases for machine learning in industrial
risk assessment: machine learning algorithm design, applications in biomedicine, risk
monitoring in construction and machinery, and environmental protection.
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Using CiteSpace for keyword timeline analysis, we have obtained six timelines with
two main directions: algorithms and applications for risk assessment. Three clusters were
included in the algorithms for risk assessment: “support vector machines”, “Random
Forests”, and “deep learning”, while three clusters were included in the applications for
risk assessment: “Industry 4.0”, “supply chain risk assessment”, and “Internet of Things”,
as shown in Figure 14. High keyword frequencies were observed in the period of 2017–2022
for four clusters, namely, “Random Forests”, “Industry 4.0”, “supply chain risk assessment”,
and “Internet of Things”, indicating that they are currently at the forefront of research.
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By analyzing the three stages of the theme using Bibliometrix R, the development of
machine learning in the industrial field can be summarized as follows: from the initial use as
a production assistant tool in a single field of industry to achieving real-time risk monitoring
and assessment in multiple fields and then to realizing the informatization and digitization
of Industry 4.0. Of these, the concept of Industry 4.0 is becoming increasingly important,
emphasizing the use of advanced technologies to improve industrial processes, which is a
prominent theme in this field. The necessity of continuing research on the application of
machine learning in industrial environments is emphasized by these developments, as well
as its potential to support broader industrial transformation.

Based on the evolution of time and topics, we have identified three current hotspots of
machine learning in industrial risk assessment research: Firstly, the research on machine
learning and deep learning algorithms themselves. Secondly, machine learning risk man-
agement in the Industry 4.0 system. Thirdly, the application of machine learning in the
field of autonomous driving technology. In the era of the Internet of Things and big data,
it is necessary to continuously explore machine learning algorithms, integrating various
sensor information at the microlevel and integrating information from various fields at
the macrolevel, achieving the informatization and digitization of the Industry 4.0 model.
Additionally, researchers also need to use machine learning and deep learning to address
more complex security issues, of which autonomous driving technology is one application.

The future research direction for machine learning applied to industrial risk assess-
ment is expected to focus on several key areas. Firstly, further research on machine learning
and deep learning algorithms themselves is anticipated, with the aim of developing more
advanced and efficient algorithms for risk assessment in industrial settings. This could
involve exploring new machine learning techniques, optimizing existing algorithms, and
integrating different approaches to improve the accuracy and reliability of risk assessment
models. Secondly, machine learning risk management in the context of Industry 4.0 is likely
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to be a significant research area given the increasing emphasis on the use of advanced tech-
nologies to improve industrial processes. This could involve developing machine learning
models that can effectively manage risks in complex and dynamic industrial environments,
where data from various sources and sensors are integrated to enable real-time risk mon-
itoring and assessment. Additionally, the application of machine learning in the field of
autonomous driving technology is expected to be another important research direction.
As autonomous vehicles become more prevalent in industrial settings, machine learning
algorithms can play a crucial role in enabling these vehicles to assess and manage risks
in real-time, ensuring safe and efficient operations. Overall, the future research direction
for machine learning in industrial risk assessment is expected to focus on advancing algo-
rithms, integrating technologies in the context of Industry 4.0, and addressing complex
security issues in emerging applications such as autonomous driving technology.

However, there are several challenges faced in using machine learning in industrial
risk assessment, although it has the potential to improve accuracy and efficiency. The relia-
bility of machine learning models can be affected by limited data availability and quality,
algorithmic and data bias, and a lack of interpretability. To overcome these challenges,
issues related to data quality and bias need to be addressed and the interpretability of
machine learning models needs to be ensured while human expertise is incorporated into
the risk assessment process. More robust and transparent machine learning models that can
be validated and interpreted by human experts should be developed in future research [87].
The interpretability challenge may be addressed by recent advancements in explainable
AI techniques. The limitations of data availability and quality can be overcome by efforts
to improve data collection and sharing [88]. The future of machine learning in industrial
risk assessment looks promising, but overcoming the challenges and limitations associated
with its use requires continued research and development.

5. Conclusions

Using bibliometric mapping analysis, the research on the application of machine
learning in industrial risk assessment was reviewed in this paper, with a focus on time
distribution, highly cited literature, the research knowledge base, the evolutionary path,
research hotspots, and frontier areas. Based on this analysis, three main conclusions are
drawn by the paper.

The research history of machine learning applied to industrial risk assessment is
broadly divided into three phases: the initial exploration phase (1991–2006), the stable
development phase (2006–2017), and the high development phase (2017–present). The
application of machine learning in industrial risk assessment research is increasing year
by year, and the number of publications is rising. The years of publication in European
and North American countries are significantly earlier than those in Asian and African
countries. The highest number of publications are in China, the US, and the UK, the three
countries with the highest intensity of collaboration. The highest number of publications
and author collaborations are from Tsinghua University and Li, Heng, respectively, and
IEEE Access, the journal most cited and published within, is the primary carrier of the
literature in this research area.

Based on the citation relationships in the literature, the application of machine learning
to industrial risk assessment is a multidisciplinary research field that requires a foundation
in mathematics and computer science. It also necessitates the integration of knowledge
from various disciplines, such as chemistry, materials science, physics, environmental
science, nutrition, and toxicology, depending on the application area. The key technology
in this field is the monitoring and diagnosis of process failures [26]. The knowledge
base in the field of applying machine learning to industrial risk assessment is machine
learning algorithm design, applications in biomedicine, risk monitoring in construction
and machinery, and environmental protection.

Currently, three hotspots have been formed in the industrial field by machine learning
research: the study of machine learning and deep learning algorithms themselves, the
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risk management of machine learning in the Industry 4.0 system, and the use of machine
learning in the direction of autonomous driving technology. The four research frontiers
are “Random Forests”, “Industry 4.0”, “supply chain risk assessment”, and the “Internet
of Things”. The trend in research content is for the application of machine learning in
industry to range from a single production aid to risk assessment in several areas to the
informatization and digitization of Industry 4.0 systems.
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