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Abstract: Part of the Hang-Tai High-speed Railway (Hangzhou via Shaoxing to Taizhou in Zhejiang
Provence) in China passes through the diatomaceous earth area, which is the first time in the history
of Chinese high-speed railway construction. This type of soil has significant compressibility, swelling
and disintegration. Diatomaceous earth also shows a sharp reduction in strength when exposed
to water, which severely impacts the safety of the project. However, no studies have been carried
out on the engineering practice of building a high-speed railway in the diatomaceous earth area
in China. Moreover, there is limited experience in the construction of ballastless track through
the diatomaceous earth area. In order to ensure the stability of the high-speed railway subgrade
in diatomaceous earth area, and considering the high level of precipitation in the location of this
railway, a kind of waterproof and drainage subgrade (WDS) is proposed to reduce the influence
of precipitation on the strength of the diatomaceous earth foundation. The subgrade has a flexible
waterproof and drainage layer (WDL) inside, which consists of capillary waterproof and drainage
plates and medium-coarse sand. In the present study, field tests including immersion tests and
excitation test are carried out on a subgrade test section to verify the subgrade structure. The tests
mainly focus on construction technology, waterproof performance and dynamic characteristics. The
studies show that the subgrade bed with the WDL can effectively avoid the diatomaceous earth
foundation from rainfall interference and maintain the long-term stability of the subgrade. The
flexible WDL in WDS has a significant energy dissipation effect in comparison with the traditional
subgrade (TS) filler and can play a key role in vibration damping, promoting the attenuation of
dynamic response in the downward and cross-sectional directions within the subgrade. The dynamic
response of the WDS attenuates along the depth. In comparison with the existing high-speed railway
subgrade measured data, its dynamic response attenuation coefficient is within acceptable limits.
The laying of the WDL does not change the subgrade dynamic characteristics transfer law. The
proposed structure meets the requirements of ballastless track construction for high-speed railways,
and the WDL can be used in the design of high-speed railways for enhanced drainage protection in
diatomaceous soil areas or other special soil areas.

Keywords: diatomaceous earth; subgrade bed; waterproof and drainage structure; waterproof and
drainage performance; dynamic response; high-speed railway

1. Introduction

Ballastless track is widely used in high speed railways in Germany, Japan and China
due to its outstanding advantages such as its consistency of track geometry for long periods
and its significant reduction in maintenance and repair [1–3]. Hang-Tai High-speed Railway
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also uses ballastless track (CRTS double-block), and it is the first high-speed railway to
cross the diatomite region in China. As one of the important lower foundation types for
high-speed railways, the performance of the subgrade bed is important for maintaining
a smooth and stable ballastless track line. For example, the stiffness and strength of the
subgrade bed should meet the elastic deformation and bearing capacity requirements
under train load. Moreover, the subgrade bed structure should prevent surface water
intrusion which can avoid mud pumping and other damaging consequences. In addition,
high-speed railways have strict limitations in the post-construction settlement, such as the
Code for Design of High Speed Railway in China. This code stipulates that the ballastless
track subgrade post-construction settlement should be controlled within 15 mm and the
post-construction differential settlement at the joints between the subgrade and structures
such as bridges and tunnels should be less than 5 mm [4]. As per the studies conducted so
far, the post-construction settlement of the subgrade is mainly caused by the settlement
deformation of the foundation. Hence, a lot of attention is given to the selection and design
of high-speed railways to overcome the challenges posed by soft soil and other special soil
in ensuring the stability of the subgrade and for meeting the settlement deformation control
requirements. However, diatomaceous earth has high compressibility, obvious swelling
and disintegration characteristics, and its strength is obviously reduced in the case of
water [5,6]. There is no precedent for railway construction in China in diatomaceous earth
areas, and there is a lack of field tests and construction experience in such terrain. Therefore,
the special engineering characteristics of diatomaceous earth are a great challenge for the
Hangtai high-speed railway subgrade, which has strict settlement control requirements.

Diatomaceous earth is a kind of special earth formed by diatom shells interspersed
with other minerals such as montmorillonite, illite and kaolinite after prolonged deposition.
The properties of diatomaceous earth are closely related to its formation and internal
structure, type of diatoms, mineral composition and their constituents [7,8]. This earth
contains the diatom shells which are the outer cell-walls left behind after the decay of
the internal matter of the diatoms. Diatomaceous earth generally has high porosity, low
dry density, high water content and high compressibility [5,8,9]. Previous studies on
diatomaceous earth mainly focused on its physical and mechanical properties. However,
limited studies have been carried out on its engineering properties and effects. It is rare
to observe large-scale line construction in China in diatomaceous earth areas. One of the
exceptions to this general trend is the highway construction in the Tengchong area of
Yunnan Province. Evidence shows that the diatomaceous earth in Yunnan Province has
the characteristics of both diatomaceous earth and expansive earth, which is characterized
by high porosity, strong water absorption, high plasticity and obvious disintegration
characteristics, and is an extremely complex regional special soil [6,9]. It can also shrink
or swell under alternating wet and dry conditions, leading to geological disasters such
as landslides, which need special attention during waterproof and drainage design of
real-time projects [10]. As a result, waterproof and drainage measures should be taken for
high-speed railway subgrades in diatomaceous earth areas.

At present, there are two main types of subgrade waterproof and drainage structures:

• The structure laid on the surface of the subgrade as shown in Figure 1a, such as:

1. Polyurethane gravel waterproof seal layer [11];
2. Full-section asphalt concrete waterproof sealing layer [12];
3. Mastic asphalt waterproof layer for high-speed railways in cold areas [13], etc.

• The structure laid within the subgrade as shown in Figure 1b,c, such as:

1. Fully enclosed subgrade waterproof and drainage composite structure, composed
of geogrid and fiber glass fabric, laid between the bottom layer of the subgrade bed
layer and the foundation of the subgrade [14];

2. The waterproof and drainage structure consisting of three-dimensional earthwork
mesh geotextile, laid in the bottom of surface layer of the subgrade bed [15];
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3. Semi-rigid waterproof structure made of modified cement-based composite water-
proof material, laid in the bottom of surface layer of the subgrade bed [16].
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Figure 1. Different types of subgrade waterproof and drainage structures: (a) the structure laid on the
surface of the subgrade; (b) the structure laid between the bottom layer of the subgrade bed layer and
the foundation of the subgrade; (c) the structure laid in the bottom of surface layer of the subgrade;
(1) surface layer of subgrade bed; (2) bottom layer of subgrade bed; (3) foundation; (4) waterproof
and drainage structure.

Of the above measures, those relating to materials usually require strict composi-
tion ratios and specialized construction equipment. In addition, the waterproof and
drainage structure composed of geotextiles has the characteristics of untimely drainage
and poor durability.

The capillary waterproof and drainage plate (CWDP) is a kind of high-density PVC
polymeric material, with good toughness, acid and alkaline resistance, durability and anti-
clogging capability [17,18]. It has capillary grooves on its surface, which have a capillary
effect and allow the water in the soil to drain quickly. It is simple and quick to apply in
engineering and is commonly used in the design of waterproof and drainage for roadbed,
tunnels, gardens and other buildings [19–22]. Based on these advantages of the CWDP, a
new waterproof and drainage subgrade bed structure based on the CWDP was proposed,
fully considering the high standards set for the construction of high-speed railways and
the strong waterproof and drainage requirements of a diatomaceous earth subgrade. In
addition, a test section of the diatomaceous earth subgrade was selected to carry out
corresponding field tests to study its waterproof performance and dynamic characteristics,
which could, with respect to the Hang-Tai High-speed Railway, provide the necessary
technical support for the construction of a railway through the diatomaceous earth area.

2. Overview of Hang-Tai High-Speed Railway

The Hang-Tai High-speed Railway is located in the eastern central region of Zhejiang
Province, China, with a total line length of 226.369 km. The high-speed railway is connected
to Shaoxing North Station from the Hangzhou-Ningbo Passenger Dedicated Railway,
passing through Shaoxing City, Taizhou City and other districts and counties into Wenling
City, and then connecting to the Wenling Station of the Yong-Tai-Wen Railway (Ningbo-
Taizhou-Wenzhou Railway). There are eight stations on the way, namely, Shaoxing North
Station, Shangyu South Station, Shengzhou North Station, Shengzhou-Xinchang Station,
Tiantai Mountain Station, Linhai Station and Wenling Station. It is designed for operational
speed of 350 km/h on CRTS double-block ballastless track. Geological investigations
have discovered huge diatomite presence in the basaltic area of Shengzhou and Xinchang
County. The diatomite is distributed in the basaltic rocks and the layers of fluvio-lacustrine
sediments. It is mainly divided into white diatomite, blue diatomite and black diatomite in
layers ranging from 4 to 90 m thick. Among these three types of diatomite, black diatomite
has the highest water content (67.47%), liquid limit (81.1%), and void ratio (1.63), and
white diatomite has the highest compressibility coefficient (0.42 MPa−1), uniaxial saturated
compressive strength (0.99 MPa), free swelling ratio (59.2%) [23]. It can be seen that the
diatomaceous earth is characterized by high porosity and compressibility. In addition, it is
easy softening and disintegration when exposed to water, resulting in a sharp decline in
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its engineering properties [24]. In particular, the white diatomaceous earth is susceptible
to alternating wet and dry conditions due to the influence of moisture. Its mechanical
properties drop sharply due to the changes of soil structure caused by construction and
alternating wet and dry conditions, which can easily cause damage to the primary structure
and thus a loss of structural strength [25]. It may also lead to shear displacement within.
It is to be noted here that the engineering properties of white diatomaceous earth are the
worst among the three types of diatomaceous earth [26]. During the Hang-Tai High-speed
Railway route selection, the subgrade had to pass through the diatomaceous earth area for
a length about 3 km because of the location of stations.

The region of diatomaceous earth that the Hang-Tai High-speed Railway passes
through is located in an area with a subtropical monsoon climate. There are two rainy
periods throughout the year, March to June and September, and the rest of the year is the
low raining season. March to April is the spring rainy season, with monthly precipitation of
240~277 mm. May to June is the plum rain season (the climatic phenomenon of continuous
cloudy days with rainfall), with monthly precipitation of 348~377 mm. September is the
typhoon season, with precipitation of 130~190 mm. The average annual rainfall in this
region is around 1301~1465 mm.

Combining the engineering characteristics of diatomaceous earth and the climate and
geological conditions along the Hang-Tai high-speed railway, it is clear that an efficient
drainage design plays a vital role for the subgrade in the diatomaceous earth area of the
Hang-Tai High-speed Railway. If no engineering treatment is carried out, when water
penetrates into the diatomaceous earth foundation of the High-speed Railway, it will
inevitably cause a softening of the diatomaceous earth and a sinking of the foundation
under the combination of wet and dry cycles and the dynamic loading of the upper
trains, which will have an impact on the safety of the high-speed railway operation [27–29].
Therefore, the new WDS based on CWDP is proposed and it was tested in the diatomaceous
earth test section.

3. Waterproof and Drainage Subgrade Bed

Based on the characteristics of diatomaceous earth and also the fact that this is the
first time it is being subjected to high-speed railway operations in China, in the present
study, the WDL consisting of capillary waterproof and drainage plates (CWDPs) was
added to the cutting bed design for improving the waterproof performance and avoiding
water penetration into the cutting bed and the diatomaceous earth foundation. The overall
structure of the diatomaceous earth subgrade is shown in Figure 2. The cutting bed is laid
on the pile raft. Its layers are, in descending order, 40 cm graded gravel, 20 cm coarse-
grained filler, 20 cm WDL and 80 cm coarse-grained filler. The WDL is located 0.2 m below
the bottom of the surface layer of the subgrade bed and consists of two layers of 10 cm
medium coarse sand. The WDL consists of two layers of 10 cm thick medium-coarse sand
interspersed with a layer made of waterproof and drainage plates. The particle diameter of
medium-coarse sand is less than 5 mm, and the grain size distribution is shown in Table 1.
Waterproof and drainage plates are CWDPs with dense grooves along the longitudinal
direction, resulting in the capillary effect, as shown in Figure 3a,b, and its performance is
shown in Table 2. Due to the existence of grooves on the surface of the CWDPs, the water
channel is formed. Compared with the traditional waterproof geomembrane, its drainage
effect is more obvious. When the bottom coarse-grained filler is filled to the design height,
a layer of 10 cm medium-coarse sand is first laid on top of it and rolled. After acceptance,
the laying of the CWDPs is started. The plates are laid horizontally along the line, keeping
the side with the drainage grooves upwards, as shown in Figure 3c, in order to allow the
water seepage from the surface of the subgrade to drain along the grooves towards the
subgrade and beyond. At the same time, the adjacent plates are laid in sequence, with the
lapped edges stacked above and below each other and completely covered, and the WDL
is set at a 4% slope along the cross-sectional plane of the subgrade.
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Table 1. Grain size distribution.

Grain Diameter (mm) 5 2 1 0.5 0.25 0.075

Percentage (%) 100.0 83.7 71.0 36.7 6.4 1.4
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The waterproof and drainage structure proposed in this study is different from the
rigid structure mentioned by Wang and Yang [30]. The setting of WDL will inevitably affect
the dynamic transfer characteristics of the subgrade. Therefore, considering the safety of
high-speed railways, it is necessary to study its dynamic characteristics and variation laws
under the action of dynamic train loads. Through the field testing of dynamic characteristics
under a varying service environment, the variation laws of dynamic stress and acceleration
along the depth of the subgrade are obtained to evaluate the dynamic stability of the
subgrade. In order to understand the performance of the WDS better, a TS section is also
selected for comparison tests. The research methodology for this study is presented in
Figure 4.
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Table 2. Performance of CWDP.

Number Item Index Test
Result

1
Tensile Strength

(kN/m)
LD 1 ≥12 20
WD 2 ≥5 12

2 Resistance to Puncture (N) ≥200 328

3 Fracture Elongation LD ≥70% 164%
WD ≥70% 144%

4 Right-angled Tearing
Strength (N) LD ≥60 64

5 Folding Endurance at Low Temperature No
Crack No Crack

6 Alkali Tolerance

Tensile Strength
(kN/m)

LD ≥11 17
WD ≥4 9

Fracture Elongation LD ≥60% 122%
WD ≥60% 104%

7
Artificial Weathering

Aging
Retention Rate of
Tensile Strength

LD ≥80% 89%
WD ≥80% 90%

1 Length direction. 2 Width direction.
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4. Waterproof Tests on WDS

The main structure that acts as a waterproof and drainage layer is the CWDP layer.
Due to the limited width of the plates, it is necessary to lap several pieces in sequence to
form a layer when used over long distances and large areas. If the lap is large, this will lead
to increased raw material usage and construction costs, while if the lap is small, there is a
risk of water penetration. In this test, a 15 cm lap area was set for the plates and then the
waterproofing performance of the lap joint was tested to verify the effectiveness of the lap
width. Immersion test was carried out on the WDS in a submerged condition to obtain
changes in the water content of the subgrade at different locations and for evaluating the
effectiveness of the waterproof and drainage performance. The flowchart of the immersion
test is shown in Figure 5.
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4.1. Waterproof Performance Test of CWDP Lap Joints
4.1.1. Test Program

As the main purpose of this test is only to test the waterproofing effect of the lap
joint, the coarse sand was replaced by fine sand during the test. As per the WDL design,
the waterproof performance of the CWDPs lap joint is tested as shown in Figure 6, which
consists of a 10 cm layer of fine sand interspersed with a layer of CWDPs. To test the
waterproof effect of the lap joints, four soil moisture meters (range: 0~100%, precision:
±3%) were inserted under the bottom layer of fine sand, located directly below the lap
joints (M1, M2) and on either sides (M3, M4), respectively, to observe the soil moisture
meter readings before and after the test. When laying the CWDPs, the 15 cm lap width
is fully lapped, and the lap joint is located directly above the soil moisture meter. After
the WDL has been laid, water is sprayed on the top fine sand and the surface wetness is
maintained throughout the test.
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Figure 6. Waterproof performance test of CWDPs at the lap joint: (a) sensor deployment; (b) model
test; (1) fine sand; (2) CWDP; (3) overlap region; (4) soil moisture meter.
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4.1.2. Analysis of Immersion Test Results

The variation of readings from the soil moisture meter before and after the test are
shown in Figure 7. It could be observed from the figure that the variation in the soil
moisture meter readings at the four points is considerably less. A decrease in the soil
moisture meter reading was observed at M4 on the side adjacent to the lap joint, which
could be attributed to the evaporation of water from the fine sand. The test results show
that water did not seep through the lap joints during the test, indicating that the 15 cm
CWDP lap width can meet the waterproof requirements of WDL.
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Figure 7. Soil moisture variation for lap joint test.

4.2. Waterproof and Drainage Performance Tests
4.2.1. Test Setup

The performance test is mainly carried out to verify the waterproof and drainage effect
of the WDS for investigating water penetration into the diatomaceous earth foundation
during rainfall. In order to simulate the most unfavorable situation due to the impact
of rainfall on the subgrade, the tests were carried out by pouring water on the subgrade
surface. Various tests on the subgrade test section were conducted from 17 October 2019
to 14 November 2019. The waterproof and drainage performance test set up is shown in
Figure 8. In order to ensure that water accumulates on the subgrade surface to form a
continuous flooding condition, a water barrier was constructed on the subgrade surface.
The water barrier of size 7 m × 4 m × 0.3 m was placed along the cross-section of the
subgrade. A waterproof cloth was placed around the water barrier and compacted with
fine soil to prevent water seepage through the water barrier. During the test, water was
pumped into the water barrier at all times for maintaining the submerged state of the
subgrade surface, as water may seep and spread from the soil layer of the subgrade to
the surrounding area. For testing purpose, the soil moisture meters (WDM1~WDM6)
were used for monitoring the change in soil moisture levels at different locations in the
subgrade bed during the test, as shown in left part of Figure 9a. Moreover, for facilitating
the comparison of the waterproof and drainage performance of the WDS, a comparison
test was carried out on TS, by placing the sensors (TM1~TM6) in test section, as shown
in the right side of Figure 9a. A sample photograph of the sensors set up during the field
testing is shown in Figure 9b.
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4.2.2. Analysis of Test Results

Figure 10 shows the variations in the soil moisture meter readings at different locations
of the WDS and TS beginning from the construction period of the subgrade to the end of the
test. The site was going through the rainy season caused by a typhoon during construction.
On 1 October 2019, due to Typhoon Mina, the area where the test section was located
was under rainstorm, and the cumulative rainfall for 3 h was 51.3 mm in the local part of
the city. Because of the heavy rainfall, the water content of the soil at the bottom of the
previously completed subgrade bed increased quickly. This resulted in a rapid increase in
the soil moisture meter reading at the location 1.6 m below the subgrade surface, as shown
in Figure 10 Area I.

For the WDS, as shown in Figure 10a, the soil moisture meter reading of WDM1
increased abruptly due to the accumulation of pumped water at the subgrade surface. At
0.4 m below the subgrade surface, the sudden increase in moisture observed was slightly
later than that observed on the surface due to the deeper position of WDM2 and WDM3.
The soil moisture meters were all located above the WDL, and their values attained steady
state as the test progressed. The values of soil moisture meters WDM4, WDM5 and WDM6
at the locations below the WDL did not change significantly after the water immersion test,
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indicating that the WDL provided good isolation from water infiltration and that it was
suitable for diatomaceous earth subgrade. For the TS, as shown in Figure 10b, the values of
soil moisture meters TM1, TM2 and TM3 increased rapidly at 0.4 m below the surface since
the water accumulated at the surface of TS, while the values of soil moisture meters TM4,
TM5 and TM6 increased below 0.4 m of the surface due to water seepage into the bottom
of subgrade as a result of the absence of the WDL. The most significant increase was seen
at TM4. However, the increase in moisture content at TM5 and TM6 was obvious due to
the heavy rainfall before the test. This, in turn, reduced effect of the water immersion test
on soil moisture content and it can be seen that the increase in moisture content of the soil
after the test at the same location is comparatively small.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 23 
 

4.2.2. Analysis of Test Results 
Figure 11 shows the variations in the soil moisture meter readings at different loca-

tions of the WDS and TS beginning from the construction period of the subgrade to the 
end of the test. The site was going through the rainy season caused by a typhoon during 
construction. On 1 October 2019, due to Typhoon Mina, the area where the test section 
was located was under rainstorm, and the cumulative rainfall for 3 h was 51.3 mm in the 
local part of the city. Because of the heavy rainfall, the water content of the soil at the 
bottom of the previously completed subgrade bed increased quickly. This resulted in a 
rapid increase in the soil moisture meter reading at the location 1.6 m below the subgrade 
surface, as shown in Figure 11 Area I. 

For the WDS, as shown in Figure 11a, the soil moisture meter reading of WDM1 in-
creased abruptly due to the accumulation of pumped water at the subgrade surface. At 
0.4 m below the subgrade surface, the sudden increase in moisture observed was slightly 
later than that observed on the surface due to the deeper position of WDM2 and WDM3. 
The soil moisture meters were all located above the WDL, and their values attained steady 
state as the test progressed. The values of soil moisture meters WDM4, WDM5 and WDM6 
at the locations below the WDL did not change significantly after the water immersion 
test, indicating that the WDL provided good isolation from water infiltration and that it 
was suitable for diatomaceous earth subgrade. For the TS, as shown in Figure 11b, the 
values of soil moisture meters TM1, TM2 and TM3 increased rapidly at 0.4 m below the 
surface since the water accumulated at the surface of TS, while the values of soil moisture 
meters TM4, TM5 and TM6 increased below 0.4 m of the surface due to water seepage into 
the bottom of subgrade as a result of the absence of the WDL. The most significant increase 
was seen at TM4. However, the increase in moisture content at TM5 and TM6 was obvious 
due to the heavy rainfall before the test. This, in turn, reduced effect of the water immer-
sion test on soil moisture content and it can be seen that the increase in moisture content 
of the soil after the test at the same location is comparatively small.  

 
(a) 

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 
(b) 

Figure 11. Moisture changes in the waterproof and drainage performance tests: (a) WDS; (b) TS. 

A comparison of the soil moisture content (WDM4) at 0.2 m below the WDL of the 
WDS with the corresponding position in the TS (TM4) is shown in Figure 12. It can be seen 
that the soil moisture at this location in the WDS remained unchanged at around 13% 
before and after the water immersion test, whereas in the TS, it changed from 25% to 70%. 
This is indicative of the fact that there was no infiltration of water into the lower layer of 
the WDL during the water immersion test. However, in the TS, the water infiltrated from 
the surface to the bottom due to the absence of the WDL. 

 
Figure 12. Comparison of waterproof and drainage performance of WDL. 

In order to improve the effectiveness of waterproof and drainage effect testing for 
WDS, the adjacent side of the subgrade was excavated after the water immersion test, as 
shown in Figure 13. The coarse-grained filler of the subgrade has good permeability 
(about 10−6 m/s). This results in rapid infiltration of the water on the surface of the sub-
grade as soon as the water immersion test begins, further leading to an increase in the 
wetness of the graded gravel layer, the coarse-grained filler layer and the upper medium 
coarse sand layer. When the water penetrates into the WDL, a major quantity of water 
seeps out along the surface of the CWDPs due to its impermeability. As can be seen in 
Figure 13, the excavated edges of the coarse sand in the upper part have been eroded by 
the seepage of water, while the coarse sand below the CWDPs has not seen any underwa-
ter seepage. No observable change was observed in the moisture content.  

WD T
0

20

40

60

80

M
oi

stu
re

 (%
)

Type of Subgrade

 Before Immersion
 After Immersion

Figure 10. Moisture changes in the waterproof and drainage performance tests: (a) WDS; (b) TS.

A comparison of the soil moisture content (WDM4) at 0.2 m below the WDL of the
WDS with the corresponding position in the TS (TM4) is shown in Figure 11. It can be
seen that the soil moisture at this location in the WDS remained unchanged at around 13%
before and after the water immersion test, whereas in the TS, it changed from 25% to 70%.
This is indicative of the fact that there was no infiltration of water into the lower layer of
the WDL during the water immersion test. However, in the TS, the water infiltrated from
the surface to the bottom due to the absence of the WDL.
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Figure 11. Comparison of waterproof and drainage performance of WDL.

In order to improve the effectiveness of waterproof and drainage effect testing for
WDS, the adjacent side of the subgrade was excavated after the water immersion test, as
shown in Figure 12. The coarse-grained filler of the subgrade has good permeability (about
10−6 m/s). This results in rapid infiltration of the water on the surface of the subgrade
as soon as the water immersion test begins, further leading to an increase in the wetness
of the graded gravel layer, the coarse-grained filler layer and the upper medium coarse
sand layer. When the water penetrates into the WDL, a major quantity of water seeps out
along the surface of the CWDPs due to its impermeability. As can be seen in Figure 12, the
excavated edges of the coarse sand in the upper part have been eroded by the seepage of
water, while the coarse sand below the CWDPs has not seen any underwater seepage. No
observable change was observed in the moisture content.
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The above analysis shows that the moisture content of the soil below the WDL of the
WDS remained unchanged before and after the water immersion test. This indicates that
the moisture did not seep down through the WDL during the test, and that the WDS has an
effective waterproof and drainage performance, which can prevent rainwater from seeping
into the diatomaceous earth foundation during rainfall and can maintain the stability of
the subgrade.

5. Dynamic Characteristics of WDS

The laying of WDL changes the structure of the subgrade. As the physical and
mechanical properties of this layer differ significantly from those of the subgrade filler,
there may be differences between the mechanical properties of the WDS and those of the
TS. Therefore, it is necessary to carry out excitation tests on WDS under different service
conditions (natural and immersed) and to analyze the dynamic transfer characteristics of
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WDS with the TS in the immersed condition as a control group, thus providing a reference
for the design and construction of WDS in diatomaceous earth areas. The flowchart of
excitation tests is also shown in Figure 5.

5.1. Experiment

The dynamic characteristics of the subgrade bed were tested under natural and im-
mersed conditions, and under immersed conditions for the traditional subgrade bed, in
order to investigate the dynamic characteristics of the WDS under various service condi-
tions. The differences between the WDS and the TS under immersed conditions were also
tested. During the tests, the WDS was first excited in its natural state for 2 million cycles,
followed by 2 million cycles in the immersed state, while the TS was first excited in its
natural state for approximately 0.45 million cycles to simulate the relative stability of the
subgrade under the cyclic train loading during operation, followed by 2 million cycles in
the immersed state.

The cyclic excitation load Is generated by two eccentric blocks on the excitation
equipment rotating in opposite directions. This can simulate the moving train load with
cyclic loading, resulting in a sinusoidal curve. The maximum excitation load generated by
the eccentric blocks can be calculated using Equation (1):

Fmax = m0e(2π f )2 (1)

where m0 is the total mass of the two eccentric blocks, e is the eccentric distance of the
eccentric block assembly and f is the motor operating frequency.

According to the Code for Design of High Speed Railway [4], the design dynamic
stress of the subgrade bed is calculated as per Equation (2):

σd = 0.26 × P × (1 + αv) (2)

where α is the speed influence coefficient, considered as 0.003 for train speeds of 300 km to
350 km per hour, P is the static axle weight of the train, considered as 200 kN, and (1 + αv)
is the impact coefficient, the maximum value for passenger dedicated lines having a value
of 1.90.

As per Equation (2), the stress generated by the train through the subgrade consists
of two parts: (1) the static stress σj caused by the self-weight of the line upper struc-
tures; (2) the dynamic stress ∆σ caused by the load of the moving train, as mentioned in
Equations (3) and (4).

σj = 0.26 × P (3)

∆σ = 0.26 × P × αv (4)

The analysis shows that σj = 52 kPa and ∆σ = 46.8 kPa result in dynamic stress of the
subgrade for design consideration as σd = 98.8 kPa. The variation of σd with time is shown
in Figure 13.

Corresponding to the field excitation test, the static stress σj generated by the self-
weight of the line upper structure is achieved by the self-weight of the excitation equipment
and the lower connected concrete bed. The additional dynamic stress ∆σ generated by the
moving train load is simulated by cyclic variation of vertical dynamic load generated by
the eccentric block.

The self-weight of the excitation equipment is 175 kN and the self-weight of the
concrete bed underneath is 50.58 kN. Contact area between the concrete bed and the
subgrade surface is 1.8 m × 1.8 m. The static stress produced by these at the subgrade
surface is σj = 69.62 kPa. The additional dynamic stress ∆σ is provided by cyclic variation
of vertical load generated by the eccentric block. As can be seen from Equation (1), the
excitation force generated by the eccentric block can be adjusted by varying the excitation
frequency. During the field tests, it was found that when the excitation frequency is
15 Hz, the dynamic stress ∆σ on the subgrade surface varied from 38 to 49 kPa. By
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considering σj and ∆σ, the dynamic stress σd on the subgrade surface is found to vary from
107 to 118.62 kPa, which is slightly greater than 98.8 kPa as per the requirements. This can
used for field tests.
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In line with the objective of the present experiment, the sensors used in the test are
mainly deployed for collecting the dynamic response data of the subgrade. The sensor
deployment, which mainly includes dynamic soil pressure box, accelerometer and ve-
locimeter, is shown in Figure 9. In addition, more details of the sensors are shown in Table 3.
There are three groups of dynamic sensors. The purpose of two of these groups is to test
the distribution of the dynamic characteristics of the subgrade bed along the cross-sectional
direction: one group is located below the surface and above the WDL; the second group
is located on the surface of the raft slab at the bottom of the subgrade bed. And the third
group is set up at the central line along the vertically downward direction in order to
test the distribution and variation of the dynamic properties of the subgrade bed in the
downward direction.

Table 3. Sensor Features.

Type Range Notes

Resistance-strain Dynamic Soil Pressure Box 0.1 MPa Resolution Ratio: 0.0001 MPa;
Sensitivity Coefficient: 2.0

Piezoelectric Accelerometer 50 m/s2 Frequency Range: 4~1000 Hz
Piezoelectric Velocimeter 25 m/s Frequency Range: 4~1000 Hz

5.2. Analysis of Excitation Test Results
5.2.1. Dynamic Stress

1. Variation of dynamic stress with loading times

Figure 14 shows the variation of dynamic stresses with the loading times in the WDS
and the TS, and Figure 15 shows the excitation test under water immersion conditions. As
can be seen from Figure 14a, the dynamic stresses of each layer of the WDS fluctuate at
the beginning of the excitation test in the natural state. Later, the dynamic stress gradually
increases and stabilize with the increase in loading cycles. It attains stability when the
loading times reach about 0.6 million. After immersion, a considerable change in the
dynamic stress is observed. The most evident variation in stress was observed on the
surface layer of subgrade bed. As the excitation test continued, the particles inside the
subgrade bed continuously re-adjusted themselves under the action of the excitation load
until they reached a stable state. It was observed that during the tests, the dynamic stresses
above the WDL reached a stable state much later than those below the WDL. Moreover, it
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was noted that the dynamic stress at the subgrade surface gradually stabilized after about
0.7 million times of loading. Under the condition of water immersion, the dynamic stress
value at different depths of the subgrade increased significantly at the subgrade above the
WDL. However, less variation was observed in the dynamic stress of the subgrade below
the WDL. The increase in stress for the subgrade surface (WDD1) is highest from 38.61 kPa
under the natural condition to 47.50 kPa under the water immersion, with a growth rate
of about 23%. This is due to the fact that the subgrade surface has been in the immersed
state for prolonged durations and the soil above the WDL is maintained in a saturated
state. Under the action of the excitation force of high-speed cyclic loading, the pore water
pressure is unable to dissipate in time. This, in turn, generates super-static pore water
pressure, and a relative increase in the stiffness of soil in the surface layer of subgrade bed
is observed at macroscopic levels. It was noted, however, that the effective internal friction
angle of the soil in the surface layer of the subgrade bed decreased after the immersion and
caused the stress diffusion angle to reduce. Under the condition that the overlying load
remains unchanged, the volume of the soil that can withstand the load is reduced. The
combined effect of these two factors leads to an increase in dynamic stress at the subgrade
surface. Similar to the WDS, the dynamic stress of the subgrade fluctuated considerably at
the beginning of the TS excitation test, as shown in Figure 14b, and showed an increasing
trend after immersion. When the loading times reached 1.2 million, the dynamic stresses at
different depths of the subgrade gradually stabilized. The dynamic stress at the subgrade
surface (TD1) after stabilization was 46.50 kPa, which is comparable to the dynamic stresses
of the WDS in the immersed state.
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2. Variation of dynamic stress along the depth direction

The variation of dynamic stress in the downward direction for WDS and TS is shown
in Figure 16. Vibration energy absorption and the damping effect of the subgrade filler [31]
results in the gradual reduction of the dynamic stresses in both subgrade beds from the
subgrade surface along the downward direction. The dynamic stresses reduce quickly at
the surface layer of the subgrade bed, which is consistent with the study findings obtained
by Kong, X, et al. [32]. This could be attributed to the fact that the surface layer of the
subgrade bed consists of coarse-grained graded gravel, which has a better dispersion effect
on the dynamic stresses [33].
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The attenuation coefficient of the dynamic response in the downward direction could
be computed by Equation (5).

ηz = ϕz/ϕ0 × 100% (5)

where ηz is the attenuation coefficient of the subgrade dynamic response along the depth
direction, which can represent the attenuation coefficient of dynamic stress and acceleration;
ϕ0 is the dynamic response at the subgrade surface, which can represent the dynamic stress
(kPa) and acceleration (m/s2) at the surface; ϕz is the dynamic response at depth z (m) from
the subgrade surface, which can represent the dynamic stress (kPa) and acceleration (m/s2)
at depth z (m) from the surface.

The attenuation coefficient of the dynamic stresses along the depth for the WDS and
the TS is shown in Figure 17. It could be observed from this graph that the dynamic
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stresses on the surface of WDS under the natural and submerged conditions and of TS
under submerged conditions reduced to 34.1%, 36.5% and 32%, respectively, at a depth
of 1.6 m in both of the subgrades. This shows a slight increase in the overall attenuation
rate of the TS. For the WDS, the WDL is located between 0.4 m~0.8 m below the subgrade
surface. In this depth range, a reduction in the attenuation coefficients ηz by 31.57% and
23.09% in the natural state and immersed state, respectively is observed. On the contrary,
the reduction of ηz in the corresponding position of the TS is 16.99%. It could be concluded
that the attenuation of dynamic stresses in the depth range where the WDL is located is
significantly higher than that of the TS. This indicates that the WDL, as a flexible structural
layer, has a stronger energy dissipation effect than the coarse-grained filler, and can play a
major role in vibration damping and accelerate the attenuation of dynamic stresses. The
attenuation coefficient under submerged conditions is considerably smaller than that under
natural conditions, which indicates an increase in the dynamic stress attenuation rate after
immersion of water. There is no water permeating into lower levels due to the WDL; hence,
the difference between WDS and TS in the attenuation coefficient is almost insignificant.
It indicates that the dynamic stress transfer process of the subgrade is influenced by the
service condition, and the attenuation of dynamic stress can be promoted once the subgrade
is submerged under water.
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The dynamic stress attenuation coefficients of the WDS and the TS in the current
study were compared with the dynamic stress attenuation coefficients of the Qin-Shen
Line (Qinhuangdao-Shenyang high-speed railway) [34], the Wu-Guang Line (Wuhan-
Guangzhou high-speed railway) [35] and the Sui-Yu Line (Suining-Chongqing high-speed
railway) [36,37], as shown in Figure 17. The results show that the dynamic stress attenu-
ation coefficient of the surface layer of the WDS is slightly more than the value of stress
obtained from field testing, while for other locations, it is within the acceptable range for
the measured attenuation coefficient. In general, the attenuation law of dynamic stress
along the depth of the WDS is similar to that measured during the field tests. This indicates
that the laying of WDL does not significantly alter the dynamic transmission characteristics
of the subgrade.

3. Variation of dynamic stress along the cross-sectional direction

Figure 18 shows the distribution of dynamic stresses along the cross section at a depth
of 0.4 m and 1.6 m below the subgrade surface. The dynamic stresses reach their maximum
value at identical depths below the loading center, both at the WDS and TS, and gradually
attenuate along the cross section as the distance from the loading center increases. It could
be observed that attenuation is high near the loading center.
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Figure 18. Distribution of dynamic stresses along the cross-sectional direction: (a) 0.4 m below the
subgrade surface; (b) 1.6 m below the subgrade surface.

The rate of attenuation of the dynamic response along the cross-sectional direction
could be computed from Equation (6):

βh = (ϕh0 − ϕh)/ϕh0 × 100% (6)

where βh is the rate of attenuation of the dynamic response of the subgrade in the cross-
sectional direction, which represents the rate of attenuation of dynamic stress and accelera-
tion; ϕh0 is the value of the dynamic response at the loading center at varying depths, which
can express the dynamic stress σh0 (kPa) and acceleration αh0 (m/s2); ϕh is the dynamic
response at h (m) from the loading center, which represents the dynamic stress (kPa) and
acceleration (m/s2) at h(m) from the loading center.

From Figure 18, it can be seen that the variation region of dynamic stress in the cross-
sectional direction is mainly concentrated in the range from 0 m to 2.4 m from the loading
center, and this range is defined as the transverse main attenuation zone. The attenuation
rate in this range is 88.98~99.34%. For the WDS, at various depths, the dynamic stress
along the cross section at the same position from the loading center is generally higher
than that in the natural state, but the attenuation rate along the transverse direction is
almost the same. Under the submerged condition, the dynamic stress values at the loading
centers 0.4 m and 1.6 m below the surface of the WDS (WDD2 and WDD7) are 12.9% and
16.53% larger than those at the same position in TS (TD2 and TD7), respectively. Within
the transverse main attenuation zone, the attenuation rates of dynamic stresses along the
transverse direction in the WDS are higher than those in the TS, indicating that the WDS
can play a vital role in energy dissipation during the lateral transfer of dynamic stresses
and promote its attenuation.

5.2.2. Acceleration

1. Variation of acceleration with loading times

Figure 19 shows the variation of acceleration with the number of loading cycles at
different depths of the subgrade. The acceleration curves for all layers of the subgrade in
the early stage of the excitation test fluctuate sharply under different service conditions,
similar to the pattern of dynamic stress changes. The acceleration curves are also gradually
stabilized with the increase in loading times. It was observed that in the submerged state,
the subgrade below the WDL reached the stable state after about 0.55 million loading times,
which is significantly faster than for the position above the WDL. This could be attributed
to the fact that there is no water infiltration in this position due to the laying of the WDL,
because of which it takes less time to reach the stable state than the subgrade bed above the
WDL which is immersed in water. For the position above the WDL, the acceleration value
at stabilization is significantly higher in the immersed state than in the natural state, while
the acceleration value below the WDL does not show significant variation between the two
states due to the absence of water infiltration, indicating that different service conditions
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can cause changes in the vibration degree of the subgrade filler. The acceleration at the
subgrade surface (WDD1) under the natural condition is 8.42 m/s2 after stabilization, while
the acceleration at the submerged condition is 9.33 m/s2, indicating an increase of 10.81%.
This could be attributed to the fact that after immersion, the subgrade surface particles are
completely submerged in water. Both subgrade surface particles and water vibrate together
under the vibration loading. The vibration severity is more intense under water immersion
conditions than under the natural conditions, thus causing an increase in the acceleration
at the subgrade surface. At the initial stage of the TS excitation test, the acceleration curves
fluctuate violently. As shown in Figure 19b, the acceleration curves of the TS between
0 m~0.4 m below the subgrade surface fluctuate more significantly than those of the WDS
during the entire excitation test. The acceleration curves in the range 0.8 m~1.6 m below
the subgrade surface are relatively stable, and the acceleration value at the surface (TD1)
after stabilization is 8.85 m/s2, which is comparatively less than that of the WDS.
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Figure 19. Variation of acceleration with loading times: (a) WDS; (b) TS.

2. Variation of acceleration along the depth direction

Figures 20 and 21 show the acceleration and attenuation coefficients along the depth
for the two types of subgrades, respectively. The acceleration of both WDS and the TS
are attenuated along the depth of the subgrade. The acceleration at the WDS surface
reduces to 2.21 m/s2 after 1.6 m filler under the natural condition, and 2.40 m/s2 under
the immersed condition. It is found to be 3.01 m/s2 under the immersed condition of
the TS, with attenuation coefficients of 26.24%, 25.72% and 34.01%, respectively. From
these data, it can be seen that the acceleration attenuation of WDS under both the natural
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conditions and the immersed conditions is higher than that of the TS. The acceleration
value in the immersed state between 0.4 m~0.8 m below the surface of the WDS is reduced
from 7.62 m/s2 to 4.81 m/s2, and the attenuation coefficient is reduced by 30.12%. The
acceleration value in the TS is reduced from 6.99 m/s2 to 4.87 m/s2, and the attenuation
coefficient is reduced by 23.95%. The reduction is smaller than that of the WDS. This
indicates that the WDL can play a significant role in vibration damping and promote
the attenuation of acceleration along the depth of subgrade. Whether above the WDL
or below it, the variation in acceleration attenuation coefficients of WDS under different
service conditions is minor. This indicates that the change in the service conditions during
this test is the main reason for the change in acceleration values, and it has no evident
effect on the attenuation law of acceleration. The attenuation coefficients of acceleration
of the subgrade in the vertical direction during the test were compared with those of the
Wu-Guang Line [35] and the Sui-Yu Line [36], as shown in Figure 21. This showed that
the attenuation coefficients of acceleration along the depth during the test were within the
acceptable range of field measurements, indicating that the laying of WDL did not change
the transmission law of the vibration characteristics of the subgrade in the vertical direction.
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3. Variation of acceleration along the cross-sectional direction

The distribution of acceleration in WDS and TS at various depths along the cross-
section is shown in Figure 22. From Figure 22, it can be seen that the closer the location
is to the loading center, the higher the acceleration at different depths for both types of
subgrades. The acceleration decreases gradually with the increase in the distance from the
loading center, which is similar to the distribution of dynamic stresses in the cross-sectional
direction. At a depth of 0.4 m below the surface of both subgrade types, there is also a
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transverse main attenuation zone of acceleration in the range from 0 m to 2.4 m from the
loading center, with the attenuation rate of 65.67~89.63%. In general, the attenuation rate
along the transverse direction of the subgrade under immersion conditions is higher than
that under natural conditions. Comparing the WDS with the TS, both in the submerged
state, it is found that the acceleration in TS is higher than that for WDS except for the
corresponding position of WDD2. However, its acceleration attenuation rate along the
transverse section is comparatively less than that of the WDS. This indicates that the WDL
can also play a major role in promoting the acceleration attenuation in the transverse
direction. It could be noted that at 1.6 m below the surface, the variation of acceleration is
more uniform than the variation of dynamic stresses along the transverse direction of the
subgrade, which may be related to the location near raft with greater stiffness.
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6. Conclusions

The Hang-Tai High-speed Railway is the first railway in China to pass through the
diatomaceous earth area. Diatomaceous earth foundation has stability problems when
exposed to moisture. To solve it, the WDS based on CWDP is proposed. In addition,
immersion and excitation tests were carried out to examine the waterproof performance
and dynamic characteristics thereof. The following conclusions were obtained:

1. The lap joint is a key element in the waterproof performance of the WDL. From the
lap joint waterproof performance test, the effectiveness of the 15 cm lap joint width is
verified. The experiment shows that if lap joint between adjacent CWDPs is ensured,
it can exhibit a positive waterproof effect. The width could meet the waterproof
performance requirements of the WDL;

2. Compared to the TS, there was no obvious change in the moisture content of the soil
below the WDL after the immersion test of the WDS, indicating that the WDS can
provide a good waterproof and drainage effect and can effectively be used for railway
construction in diatomaceous earth areas;

3. The WDL is a flexible structure, with a more significant energy dissipation effect which
can promote the attenuation of dynamic response in the depth direction. The result
of the excitation test shows that within the depth range of the WDL, the reduction
of dynamic stress attenuation coefficient and acceleration attenuation coefficient of
the WDS are 23.09% and 30.12%, respectively, which are 6.11% and 6.16% higher
than that of the TS. In addition, compared with the measured data of the existing
high-speed railway subgrade, the WDL did not change the transfer behavior of
dynamic characteristics;

4. The service condition can affect dynamic response of the WDS. The dynamic stresses
and accelerations in the natural state are comparatively less than those in the immersed
state. In addition, the dynamic stress is significantly more influenced by the service
condition than the acceleration;
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5. During the construction, there will be a series of behaviors that cause disturbance
to soil structure, such as excavation and filling. In addition, the diatomaceous earth
has the characteristics of softening, swelling and disintegration when exposed to
water. With due consideration of these challenges, during the construction of line
engineering in diatomaceous earth area, the diatomaceous earth foundation should
be reinforced in addition to the adoption of well-designed waterproof and drainage
measures to ensure the long-term stability of the structures.

The present study could provide a reference for the design and construction of
drainage protection for later projects in diatomaceous earth areas or other special soil
such as soft soil. However, due to time constraints, the work in this paper is limited and
further studies can be carried out on the diatomaceous soil subgrade as follows:

1. Only one type of waterproof and drainage structure has been studied in this paper.
In the future, other types of waterproof and drainage structures can continue to be
studied in in diatomaceous earth area;

2. The load in the dynamic characteristics tests in the study is a simulated train load,
which differs from the real moving train load. Therefore, dynamic tests under a
moving train load can be carried out on this subgrade section after the line is in
operation to analyze the dynamic response of the new subgrade.
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