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Abstract: Tea is one of the most consumed beverages in the whole world. Premium tea is a kind
of tea with high nutrition, quality, and economic value. This study solves the problem of detecting
premium tea buds in automatic plucking by training a modified Mask R-CNN network for tea bud
detection in images. A new anchor generation method by adding additional anchors and the CIoU
loss function were used in this modified model. In this study, the keypoint detection branch was
optimized to locate tea bud keypoints, which, containing a fully convolutional network (FCN), is
also built to locate the keypoints of bud objects. The built convolutional neural network was trained
through our dataset and obtained an 86.6% precision and 88.3% recall for the bud object detection.
The keypoint localization had a precision of 85.9% and a recall of 83.3%. In addition, a dataset for
the tea buds and picking points was constructed in study. The experiments show that the developed
model can be robust for a range of tea-bud-harvesting scenarios and introduces the possibility and
theoretical basis for fully automated tea bud harvesting.

Keywords: tea buds plucking; convolutional neural network; object detection; keypoint detection

1. Introduction

Tea is one of the most popular and most consumed beverages in the world [1]. Ac-
cording to the Food and Agriculture Organization of the United Nations, the total global
tea production in 2020 was 7.02 million tons. With the highest acreage and production
volume, China is the largest producer and consumer of tea worldwide. The yearly increase
in tea production poses a huge challenge to the labor force. At present, premium tea bud
harvesting relies on manual plucking. The manual plucking process has many disadvan-
tages, including a high work intensity and labor cost and strong subjective factors. More
importantly, the short tea-harvesting period results in a great shortage of labor. The limita-
tion and blockage of human movement during this COVID-19 pandemic has increased the
shortage of professional pickers.

Today, there are already many studies that use computer vision methods to detect
crops [2,3]. For example, Lin et al. proposed a detection algorithm based on color, depth,
and shape information to detect the spherical or cylindrical fruits of plants in natural
environments [4]. Liang et al. used the maximum interclass variance method for the target
fruit bunch segmentation, which is a fast parallel algorithm for extracting the fruit pedicel
skeleton, and the Harris corner point detection method for locating the keypoints of tomato
picking [5]. They correctly located the keypoints of picking with 90% accuracy. Meanwhile,
Liu et al. proposed a detection method based on the color and shape features of apples [6].
This method extracted color features from blocks by block mining, filtering candidate
regions with non-fruit block proportions to improve the detection accuracy. However,
the identified objects were significantly different from the background in terms of both

Sustainability 2023, 15, 6898. https://doi.org/10.3390/su15086898 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15086898
https://doi.org/10.3390/su15086898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8140-1022
https://doi.org/10.3390/su15086898
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15086898?type=check_update&version=1


Sustainability 2023, 15, 6898 2 of 16

color and shape, making it easier to extract features using these two factors. In the case of
tea-harvesting, the color and the shape of the tea buds and leaves are similar.

In recent years, related research has led convolutional neural networks (CNNs) to
show a remarkable performance in target detection for different crops [7,8]. Currently,
two types of methods can detect objects using CNNs. The first type includes single-
stage object detection methods, such as SSD [9] and YOLO [10], which can predict the
bounding box directly from the input image without a region-suggestion step. Onishi
et al. applied the SSD for apple detection and used a stereo camera to obtain three-
dimensional (3D) positions [11]. The second type comprises two-stage target detection
methods, such as R-CNN, Faster R-CNN, and Mask R-CNN. These methods generate
region proposals from images and extract features from these regions for classification and
positioning. Bargoti and Underwood used Faster R-CNN to detect apple and mango fruit
trees in orchards [12]. Yu proposed a strawberry fruit detection method based on Mask
R-CNN, which overcame the difficulties of using traditional machine-vision algorithms in
unstructured environments [13]. A method based on an improved Faster R-CNN using
color and depth images was also proposed for the robust detection of small fruits. The
single-stage detection methods usually have faster speeds, while the two-stage detection
methods have higher accuracies and can be used for difficult detection tasks.

Meanwhile, To solve the tea-harvesting problem, researchers have started to develop
tea-harvesting machines [14]. However, existing automatic tea-harvesting machines use
a large-scale “head-shaving” cutting method that destroys the buds and stems, causes
the loss of flavor substances, and reduces the economic benefits of tea. At the same time,
these traditional machine-learning detection methods based on a single feature or few
features (e.g., color and shape) as the basis for detection cannot identify tea buds in tea
bushes well. For these reasons, many experts and scholars have conducted a number of
deep-learning researches on tea bud detection [15,16]. At the same time, these traditional
machine-learning detection methods based on a single feature or few features (e.g., color
and shape) as the basis for detection cannot identify tea buds in tea bushes well.

In this study, an image dataset of tea buds and key picking points was constructed.
In addition, this study develops an algorithm that can accomplish tea bud detection in
the field with different backgrounds and environments and locate the bud keypoints.
The tea bud detection model used was based on Mask R-CNN. The Mask R-CNN model
was improved with a new method for anchor generation, a better loss function for bud
detection, and a new keypoint detection branch for locating the picking point. In an
actual tea garden environment, this developed model can accurately identify tea buds
and determine the keypoint of bud plucking. The remainder of this paper is structured
as follows: Section 2 introduces the materials and methods used in this work; Section 3
compares the general experimental specific method implementation details and presents an
analysis of the corresponding experimental results; and Section 4 discusses the experiment
results and draws the study conclusions.

2. Materials and Methods
2.1. Data Preparation

The harvested objects were a single bud, one bud and one leaf, and one bud and
two leaves of premium teas, including the Longjing 43 and Zhongcha 108 varieties. All
images were collected by this research during the harvest season at the tea plantation of
the Tea Research Institute, Chinese Academy of Agricultural Sciences, and taken from
15 March to 25 April 2022 between 8:30 and 17:30. The experimenter stood at a distance
from a tea bush and used a smartphone to capture images of the buds to be harvested from
that tea bush. The smartphone was held at 30–60◦ angles from the tea bush surface and
approximately 0.5 m from the bud targets. This distance ensured that each image contained
at least one clear, unobstructed set of bud targets for harvesting. The acquired images
(Figure 1) include simple and complex shooting backgrounds (i.e., simple and complex
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backgrounds) and different target numbers (i.e., few and many bud targets) and shooting
scenes (i.e., high-light and low-light scenes).

Sustainability 2023, 15, x 3 of 16 
 

least one clear, unobstructed set of bud targets for harvesting. The acquired images (Figure 
1) include simple and complex shooting backgrounds (i.e., simple and complex back-
grounds) and different target numbers (i.e., few and many bud targets) and shooting 
scenes (i.e., high-light and low-light scenes). 

 
Figure 1. Tea bush images acquired under various conditions: (a) background complexity; (b) tea 
leaf complexity; and (c) illumination. 

2.2. Image Labeling 
According to the number of buds and leaves of tea buds, detectable buds can be re-

garded as three types: single-bud leaf picking, one-bud-one-leaf picking, and one-bud-
two-leaf picking. According to the quality requirements, this study selected their optimal 
picking points as keypoints. The types of tea buds and the corresponding picking points 
are shown in Figure 2. In the Figure 2, (a) refers to the single bud and its picking point, (b) 
refers to the one-bud-and-one-leaf type and its picking point, and (c) refers to the one-
bud-and-two-leaves type and its picking point. In this study, the picking priority of single 
bud is better than one bud and one leaf, and one bud and one leaf is better than one bud 
and two leaves. Therefore, the visible picking point of single bud is the optimal choice for 
annotation and identification in the research. Moreover, picking point of one bud and one 
leaf is better than picking point of one bud and two leaves. 

Figure 1. Tea bush images acquired under various conditions: (a) background complexity; (b) tea
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2.2. Image Labeling

According to the number of buds and leaves of tea buds, detectable buds can be
regarded as three types: single-bud leaf picking, one-bud-one-leaf picking, and one-bud-
two-leaf picking. According to the quality requirements, this study selected their optimal
picking points as keypoints. The types of tea buds and the corresponding picking points
are shown in Figure 2. In the Figure 2, (a) refers to the single bud and its picking point,
(b) refers to the one-bud-and-one-leaf type and its picking point, and (c) refers to the
one-bud-and-two-leaves type and its picking point. In this study, the picking priority of
single bud is better than one bud and one leaf, and one bud and one leaf is better than one
bud and two leaves. Therefore, the visible picking point of single bud is the optimal choice
for annotation and identification in the research. Moreover, picking point of one bud and
one leaf is better than picking point of one bud and two leaves.

Labelme software [17] was used to label the bud objects and their keypoint. In Figure 3,
each bud object and keypoint to be picked in the picture was labeled with a rectangle and a
point. The rectangle labeled as ‘bud’ is the bud object to be plucked. The point labeled as
‘k’ is the best picking point on the tea object. The rectangular box and the marked point are
numbered separately to ensure that the picking points of the bud target can correspond to
each bud target. According to the statistics of the above three types of bud and leaf, the
number of the three bud leaf types was 2.4:4.3:3.3, respectively.
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The labeled Ground Truth consisted of the labels of the tea bud object and of their
keypoints. The label of a bud object contains four elements. The first and second elements
are the x- and y-axis co-ordinates of the lower left point of the frame. The third and fourth
elements are the length and the height in the x- and y-axis directions, respectively. Similarly,
the keypoint is labeled by three elements. The first and second elements are the x and
y co-ordinates, respectively. The third element is the visibility flag (v). When v = 1, this
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means that the keypoint does not exist, while v = 2 indicates that the keypoint exists and
is visible.

The collected pictures were sorted out, and some situations such as overexposure,
dark light, blurry, jitter, serious target blocking of buds and leaves, and occlusion of bud
and leaf picking points were screened out, which seriously affected the recognition results.
At the same time, a total of 1260 images were collected and adjusted to 1600 × 1200 pixels.
The dataset denoted a 5:1 ratio; 1050 images were used as the training set for training the
parameters of the keypoint detection model, and 210 images were used as the test set for
testing and evaluating this model. Data augmentation was used to randomly rotate, flip,
stretch the image, and mixup. The term mixup means to fuse the two images. The dataset
increased to 6300 after data augmentation.

2.3. Overall Approach

The stems, leaves, and buds of the tea bush were similar in color, depicting the
tendency to block each other. They are difficult to accurately identify using the traditional
threshold segmentation and color difference segmentation algorithms. To solve the problem
of identifying the tea bud keypoints, the proposed model must identify the bud targets
and complete the keypoint localization in the input image. Given that deep convolutional
models have the unique advantages of feature extraction and recognition, the Mask R-CNN
model [18] used here is an improvement on the Faster R-CNN [19] model. This model
consisted of four modules: a feature extraction network composed of Resnet50 feature
pyramid network (FPN); a region proposal network (RPN); an FC (full connected)-based
object detection branch; and a FCN-based keypoint detection branch. Figure 4 illustrates
the overall approach.
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The keypoint detection branch attempts to locate the bud keypoints as the basis of
inference for the later cutting points on a 3D space. This detection is very similar to
human pose estimation methods in computer vision research. Human pose estimation
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methods can detect a specific set of keypoints, including knee and shoulder points, for each
human object in an image [20–22]. Two types of keypoint detection both aim to detect the
corresponding keypoints of multiple identical objects (e.g., humans or tea buds) in an image.
This study accomplished the keypoint identification and localization for buds through
transfer learning of human pose estimation methods [23]. The constructed model was also
pre-trained by using the human pose estimation dataset in the Microsoft COCO dataset [24].
The pre-trained model laid a foundation for the bud target and keypoint detection.

2.3.1. Feature Extraction Network

The feature extraction network extracted the feature map from the input image
(Figure 4a). The improved model network used a cascaded network consisting of Resnet50
and an FPN. The Resnet part contained five convolution stages. The features extracted
from each convolution stage in the Resnet50 network were then fused by the FPN network.
Finally, the top-down feature fusion was completed by five upsampling layers. Each FPN
layer output the fused feature maps.

2.3.2. Improved Region Proposal Network

The RPN captures features from the feature extraction network by matching pre-
defined anchors. These matched anchors become the region of interest (ROI). In Figure 4b,
the model network consisted of an anchor generation module, a convolutional layer, and
two output layers.

Anchor generation mainly provided several anchors for the subsequent matching.
The bud objects were generally very dense with small aspect ratios; hence, the bud target
interval was smaller than the step size of the generation function. The generated anchor was
too sparse to match the appropriate bud objects. With reference to the anchored generation
strategy proposed in the textbox++ model of M. Liao [25], an anchor generation algorithm
was proposed in this research to better fit the tea bud detection task, specifically for specific
bud object characteristics. Figure 5 shows that the algorithm used in this work generates
additional box sets in the horizontal direction to better match the buds in the image.
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The convolutional and output layers in the RPN comprised a convolutional layer with
a 3 × 3-pixel kernel and two output layers with 1 × 1-pixel kernel, respectively. The first
output layer determined the current bounding box class. The second layer calculated the
determined bounding boxes of the proposal anchor.
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2.3.3. Object Detection Branch

Mask R-CNN identified the ROI as a bud object using an object detection branch.
The proposed region feature of different sizes was adjusted to a 7 × 7 size using the ROI
align layers and sent to this branch. In the object detection branch (Figure 3c), the aligned
features were calculated by two fully connected networks (FC). These FCs inferred the
bounding boxes of the ROIs and determined the bounding box category.

2.3.4. Improved Keypoint Detection Branch

Mask-RCNN can be implemented with different functions by adding different branches.
This part of the task was accomplished herein by adding a keypoint detection branch after
the RPN network. The keypoint detection branch accepted the 14 × 14 ROI features aligned
by the ROI align layers to locate the tea bud keypoints. All keypoints of buds were con-
verted into the heatmap-offset format proposed by Google [26]. The first element indicates
the probability. The second and third elements indicate the offset from the Ground Truth.

The keypoint detection branch proposed in this study mainly consisted of a fully
convolutional network. Figure 6 depicts the FCN structure used in this work. The model
used convolutional layer for completing the convolution operation and the bilinear interpo-
lation method for generating the upsampling feature. Different upsampling multipliers
can affect the test results. The most suitable configuration for the keypoint detection of the
tea buds was found by comparing four upsampling multipliers (i.e., 4, 8, 16, and 32) in the
FCN networks.
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2.4. Evaluation Indicators

The same standard assessment metrics from the human estimation model were in-
troduced to evaluate the performance of the present model and verify the feasibility of
this study.

2.4.1. Average Precision and Average Recall of Object Detection

The COCO dataset previously defined Intersection over Union (IoU) for calculating
the object detection precision. AP50 treats the prediction with an IoU greater than 50% as a
correct prediction and calculates the proportion of correct predictions in the total number of
predictions. Average precision (AP) refers to taking IoU threshold of every 0.05 from 0.50 to
0.95, calculating the average of 10 ranges. These will be referred to as AP50

bbox and APbbox
It calculated the proportion of correct prediction with IoU in the total number of

Ground Truth. It will be referred to as ARbbox
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2.4.2. Average Precision and Average Recall of Keypoint Detection

The COCO dataset previously defined a threshold for calculating the keypoint de-
tection precision. This threshold is called the object keypoint similarity (OKS). The OKS
can normalize the distance between the predicted and target points by using detected bud
areas of different sizes and is calculated as follows in Equation (1):

OKS =
∑i exp

{
−d2

pi /2S2
pσ2

i

}
δ(VPi > 0)

∑i δ(VPi > 0)
(1)

where P is the bud object ID in the Ground Truth; i is the keypoint ID; Pi is the keypoint
i of the bud object P; dPi is the Euclidean distance between a detected keypoint and its
corresponding Ground Truth; VPi is the visibility flag of this keypoint; Sp is the scale of the
bud object; σi is the key control constant related to the keypoint type; δ(∗) means “only
calculate the keypoint marked in the Ground Truth”. This σi value represents the standard
deviation of the labeling process, and the larger the σi value, the more difficult the label.
Thus, the values of the different kinds of points in the tea bud are not the same. For each
keypoint, Equation (1) produces a similarity score between 0 and 1. These similarities
were averaged over all the labeled keypoints. The unlabeled prediction keypoints did not
affect the OKS score. OKS score participates in the assessment as a threshold value. The
APkpt and ARkpt metrics of the average precision and recall vary across thresholds of 0.5
to 0.95 with a 0.05 interval. The AP50

kpt value at a single OKS of 0.5 was also calculated,
corresponding to the AP50

bbox metric. It calculated the proportion of correct prediction
with OKS in the total number of Ground Truth. It will be referred to as ARkpt.

The higher these values, the better the keypoint detection results.

2.4.3. Model Complexity

The model complexity is usually referred to as the number of parameters of the total
computation process. This is a measure of how many parameters were computed by
the model and how much storage space was spent to store the model parameters. The
total number of model computations usually determines the model’s speed during the
detection process and is often measured using floating point operations (FLOPs) (i.e.,
1 GFLOP = 109 FLOPs). This metric gives a good indication of how much computation is
needed to run the current model.

2.5. Experimental Process Design

The bud image data were captured from the smartphone at the same settings. The
length of the long side of the image was standardized to 640 to complete the size uniformity
for the input image. The COCO human pose keypoint dataset was employed to pre-train
the built model using the pre-training parameters to continue the following training:

PyTorch was used as the framework for the entire experiment. Nvidia RTX3070 was
utilized for training. The cross-entropy function was used as the loss function in the FCN
of the keypoint detection branch to calculate the loss between the predicted and Ground
Truth keypoints. The initial learning rate was set to 0.0004. The batch size was 2. This
experiment trained 30,000 iterations. The learning rate completed two decreases at 15,000
and 20,000 iterations. Learning rate and loss changes during model training are shown in
Figure 7.
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3. Results and Discussion
3.1. Target Area Identification Performance of Tea Buds

The trained bud target detection model aimed to accurately locate the bud object
keypoints and was particularly important for obtaining an accurate bud region. Different
backbone networks for feature extraction will obtain different feature results, affecting the
bud object detection. Table 1 compares the effects of several popular backbone networks
on the experimental results at this stage.

Table 1. Test results and model characteristics under different backbone networks.

Backbone APbbox AP50
bbox ARbbox Params GFLOPs

ResNet34 55.3 71.8 66.9 157M 15.4
ResNet34-FPN 60.8 75.2 73.4 165M 17.5

ResNet50 70.2 79.4 78.5 217M 20.2
ResNet50-FPN 74.3 86.6 88.3 234M 22.5

ResNet101 73.4 80.2 76.4 298M 37.6
ResNet101-FPN 75.6 87.5 78.5 315M 48.3

As a backbone network, ResNet50-FPN showed a higher AP score for bud detec-
tion compared to ResNet50. The models with ResNet34-FPN and ResNet101-FPN as the
backbone networks both showed improved bud detection results compared to those with
ResNet34 and ResNet101, respectively. This result was attributed to the fact that FPN
networks can combine the advantages of different feature scales to obtain both small infor-
mation in small-scale features and larger semantic information in large-scale feature maps
and can fuse to generate semantic-information-rich and spatially accurate feature maps
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with less computational effort. The comparison of the effects of the ResNet network depth
on the detection effect showed that ResNet50-FPN significantly improved the detection
accuracy, but correspondingly increased the amount of model computation compared to
the ResNet34-FPN network. The ResNet101-FPN network with a convolutional depth
of 101 layers required much more flops to be calculated compared to the ResNet50-FPN
network, nearly twice as much as 50 layers. However, it did not have a correspondingly
significant gain in the detection results.

After comparing the different backbone networks, ResNet50-FPN has the better AP
performance; at the same time, the parameters and flops of this ResNet50-FPN are both not
too large. Therefore, ResNet50-FPN was selected as the backbone network for the feature
extraction.

3.2. Keypoint Positioning Performance of Buds

The keypoint detection branch consisted of an FCN with an upsampling module. The
different upsampling multipliers of the FCN will gain features at different scales in the
keypoint localization process, affecting the network effects on positioning the keypoints.
The same test set was used to examine the ability of the different upsampling multipliers of
the FCN to locate the keypoints. Table 2 shows a comparison of the performances of the
four trained FCN models after the evaluation.

Table 2. Performances of the FCNs with different upsampling multipliers.

Model APkpt AP50
kpt ARkpt

FCN-4 54.3 68.3 62.5
FCN-8 62.8 75.9 78.3

FCN-16 55.9 69.6 74.5
FCN-32 41.3 64.5 68.7

As a small object, the keypoint feature is not always obvious enough to be recognized.
Therefore, the keypoint localization may have a higher upsampling multiplier. Compared
to FCN-4s, FCN-8s can produce features of a more suitable size scale after upsampling. In
contrast, the upsampling multipliers of FCN-16s and FCN-32s were too large, resulting in a
coarse feature map and much noise. Therefore, the identification of the extracted regions
was not satisfactory. FCN-8s were used in the final model.

The heatmap channel of the keypoint detection branch can be converted into a visual
image to intuitively compare the importance of the upsampling multipliers on feature
extraction. Figure 8 illustrates the heatmap results of the keypoints. The heatmap values
indicate the probability of a keypoint at that location. The higher the probability value in
the heatmap, the warmer the color shown in the plot. In (a), the overall probability value
of the response area is small and depicted as a yellow block covering the area around the
point. In (b), the response region has a higher probability; hence, the heatmap color also
changes from yellow to a warmer and more concentrated orange. In (c), some orange blocks
can be seen on the heatmap, albeit being much less concentrated than in (b). Figure 8d
clearly shows the regions with cooler colors and even less concentrated response regions,
indicating that the overall probability is relatively small. Visualization heatmap images
also proved that FCN-8s is a better choice.
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3.3. Relevant Experiments

During the overall model construction, some experiments showed that many modules
of this model can have different effects on the final results. These effects were compared to
investigate the effects of different module changes on the results.

3.3.1. Experiments of the Anchoring Generation Method

In the RPN of this model, the improved anchoring generation method adjusted the
aspect ratio and generated additional anchor sets in the horizontal direction. Three an-
chor generation methods for the ablation experiments were compared to complete the
experimental comparison. The three anchor generation methods are as follows: (a) original
anchor generation; (b) the method adjusting the aspect ratio of the anchor during the anchor
generation and generating the anchor with aspect ratios of 0.2, 0.3, 0.5, 0.8, and 1; and
(c) the anchor generation in this study. Different anchor generation methods have different
effects on the subsequent matching. The performances of the anchor generation methods
for bud detection were examined herein. Table 3 presents the results of the three methods.

Table 3. Comparison of the detection performance results of different anchor generation methods.

Method APbbox AP50
bbox ARbbox

(a) Original anchor generation 65.3 77.4 80.1
(b) Adjusted aspect ratio 73.8 80.7 81.3
(c) Anchor generation in this study 79.6 85.4 84.5

Note that the bud objects are usually slim and elongated in shape and have a small
aspect ratio. The adjusted aspect ratio showed a better performance than the original
anchor generation. The anchor generation algorithm used in this study was adopted by
adjusting the aspect ratio of the anchors and adding a horizontal anchor. This algorithm
exhibited the best performance among the three. Therefore, there is reason to believe that
this algorithm can better match the bud recognition and the keypoint localization.

3.3.2. Experiments of the Loss Function

In the original model, the smooth L1 function was used as the loss function in the RPN
and the FC. The smooth L1 Loss function calculates the Euclidean distance between the
co-ordinate values of the predicted Bounding Box and the Ground Truth box as a deviation.
In order to determine the precise cause of the loss, this study attempts to use IoU as the
loss value of the model and apply the GIoU loss function and the CIoU loss function [27] in
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the object detection model. The GIoU loss function used the loss of IoU as the regression
loss of the detection process in this research. The CIoU loss function, which is optimized
for GIoU, takes into account the distance between the prediction box and the Ground Truth
box, the length–width ratio of the prediction box and the Ground Truth box, and the bud
size scale. Table 4 presents the performance of the models with the three methods.

Table 4. Comparison of the detection performance of models with different loss functions.

Loss Function APbbox AP50
bbox ARbbox

(a) Smooth L1 loss 71.3 78.4 82.1
(b) GIoU loss 75.6 79.8 83.4
(c) CIoU loss 79.6 85.4 84.5

The four points of the Bounding Box are independent of each other. The correlation
of the four co-ordinates is not considered in the smooth L1 loss, causing the model to be
significantly worse for detecting small objects.

Compared to the GIoU loss function, the CIoU loss function can provide the movement
direction for the bounding box, to make the prediction box regression robust. At the same
time, this function adds multi-factor considerations by the length–width ratio, which can
improve the performance of the model.

Compared to the original loss function, it can be seen from Table 4 that the AP50

and the AP for tea bud detection both increase by about 7% when using the CIoU loss
function. Therefore, it is proven that modifying the CIoU loss function can optimize the
object detection performance.

3.3.3. Study for Detecting the Number of Keypoints

In the keypoint detection branch, this model was designed to detect a single key-
point. The collection dataset was re-labeled by following the priority order described in
Section 2.2 (i.e., (a), (b), and (c) for the three labeling methods) to complete the experimental
comparison: (a) labeling only the single optimal keypoint, the keypoint constant σ was set
as 1; (b) labeling two optimal visible keypoints on the bud objects, the keypoint constant
was set as 0.7 and 0.9; and (c) labeling three cutting points of the single buds, the key
control constant was set as 0.65, 0.7, and 0.8. The model to be trained three times on the
three different training datasets obtained from the three annotation methods was adjusted.
The results of the localization task using the three methods were then evaluated. Table 5
presents the keypoint detection results of the three methods.

Table 5. Comparison of the detection performance results for different numbers of critical point
detections for calibrated frames.

Label Methods APkpt AP50
kpt ARkpt AP50

bbox

(a) 61.2 75.9 84.1 86.2
(b) 58.2 71.9 76.4 78.3
(c) 42.5 72.6 74.5 75.9

Theoretically, an increased number of inference points in a candidate region will yield
a good performance in the evaluation metrics because the detected points can interact with
each other and consider more contextual semantics. However, as seen in the visualization
results of the three methods in Figure 9, methods (b) and (c) illustrate the final output that
may not be as good as earlier thought. The dense branches and leaves of the tea bush made
it difficult to fully capture a complete object that contains three or two key points in one
shot of a bud object. As a result, the keypoints detected by method (b) were intersected
and the keypoints detected by (c) were in the wrong place.
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Therefore, this model finally only detects one tea-picking point as in method (a).

3.4. Overall Model Performance

A final model combined with a Mask R-CNN network and the FCN-8s for the keypoint
localization was constructed. The final model’s performance was evaluated using the test
set. This model achieved 86.6% AP50 and 88.3% AR for the bud detection, and 85.9% AP50

and 83.3% AR for the keypoint localization.

3.4.1. Visualization Result Analysis

Figure 10 is a visual presentation of the detection results. The images illustrate the
method applied to images obtained with different backgrounds (a), leaf complexity (b),
and lighting conditions (c). The image background complexity varied depending on the
angle and perspective. The final model showed an excellent performance in images with
complex or simple backgrounds (a). A variation in the number of tea buds in the image can
also be observed due to the variation in the distance between the camera and the tea bush.
The model can locate bud objects and keypoints in images with different numbers of buds
(b). The tea garden illumination was not controllable. The final model performed well on a
large number of images, including those in low-illumination and high-illumination cases
(c). This result indicates the robustness and adaptability of the final model.
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3.4.2. Comparison with State-Of-The-Art Methods

In this section, these state-of-the-art keypoint detection methods were compared with
the proposed model on the keypoint dataset of this study, and its performance is evaluated.
The results are shown in the Table 6.

Table 6. Comparison of the keypoint detection performance results for different models.

Model APkpt AP50
kpt ARkpt

Simple Baseline 59.2 78.5 69.5
HRnet 76.8 83.6 79.8

2-Stage Hourglass 67.2 78.0 75.6
Original Mask R-CNN 61.3 78.5 68.7

Our model 78.9 85.9 83.3
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4. Conclusions

This study modified a stable model for the detection of tea buds and picking points
in the field to solve the various problems faced by tea-picking machines. A Mask R-
CNN-based object detection model was improved for the bud detection by a new anchor
generation method and the CIoU loss function. It obtained an 86.6% precision and 88.3%
recall after transfer learning. Adding a new keypoint detection branch led to the accurate
detection of the keypoints in the bud region. The proposed final model yielded an 85.9%
precision and 83.3% recall for the keypoint localization. The experimental results also
showed that the model has the potential to detect tea buds and picking points in multiple
scenarios and can be used to locate keypoints under different lighting scenarios and
backgrounds based on its output. The modified model provides the basis for a machine
that can automatically locate the cutting position of tea buds to complete a fully automated
mechanical plucking operation.
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