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Abstract: Under the background of global warming and the energy crisis, the Chinese government
has set the goal of carbon peaking and carbon neutralization. With the rapid development of machine
learning, some advanced machine learning algorithms have also been applied to the control and
prediction of carbon emissions due to their high efficiency and accuracy. In this paper, the current
situation of machine learning applied to carbon emission prediction is studied in detail by means
of paper retrieval. It was found that machine learning has become a hot topic in the field of carbon
emission prediction models, and the main carbon emission prediction models are mainly based
on back propagation neural networks, support vector machines, long short-term memory neural
networks, random forests and extreme learning machines. By describing the characteristics of
these five types of carbon emission prediction models and conducting a comparative analysis, we
determined the applicable characteristics of each model, and based on this, future research ideas for
carbon emission prediction models based on machine learning are proposed.
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1. Introduction

As the Paris Agreement proposes to curb global warming by controlling greenhouse
gas emissions, more and more people are beginning to pay attention to carbon emissions.
Robust regional changes in extreme temperatures and precipitation with cumulative CO2
emissions [1] and extreme climate can lead to a decrease in regional ecosystem carbon stocks,
which leads to an imbalance in the ecosystem [2]. Indeed, because of globalization, major
climate disruptions in some countries can strongly affect others owing to political unrest,
migration, impacts on global food production, supply chains and trade for instance [3–5].
Zhang et al. [6] analyzed the driving factors affecting China‘s carbon dioxide emissions by
using the LMDI method and concluded that energy intensity was the primary indicator
that reduced CO2 emissions. The carbon emission prediction model relies on converting
energy data, whether directly or indirectly, to estimate carbon emissions. This approach
not only helps us understand the impact of energy consumption on the environment, but it
also has the potential to drive innovation in the energy sector. By using carbon emissions
as a unified measure of various energy variables, we can gain a more comprehensive and
intuitive understanding of energy use, beyond what traditional monitoring methods that
focus on individual energy sources can provide. Studies have shown that effective policy
regulation can successfully control carbon emissions [7], and a precise and efficient carbon
emission prediction model can be a valuable tool in shaping government strategies for
future regulation.

We used the “carbon emission prediction model” as the primary search keyword on
the Web of Science and manually analyzed relevant papers from 1998 to 2021. Figure 1
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shows that the number of papers related to carbon emission prediction models has been
rapidly increasing each year, particularly since 2005 and especially in recent years.
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Figure 1. General trend of relevant papers on carbon emission prediction model (source: Web
of Science).

Currently, many experts and scholars are devoted to conducting carbon emission
calculations and creating prediction models. Several models have been proposed, includ-
ing the Kaya (Japanese scholar Yoichi Kaya) model [8], Computable General Equilibrium
(CGE) model [9], production function theory [10], Logarithmic Mean Divisia Index (LMDI)
method [11] and other carbon emission calculation models, as well as the GM (1,1) model
(GM (1,1), which refers to the first-order differential equation to establish a model for a
variable), multiple linear regression model, differential integrated moving average au-
toregressive model (ARIMA), scalable random environmental impact assessment model
(STIRPAT), system dynamics model (SD) and other carbon emission prediction models [12].
However, these models use traditional mathematical model methods to solve the problem
of carbon emissions, which are relatively poor in accuracy and efficiency and cannot be effi-
ciently used to achieve the established goals of carbon emission calculations and predictions.
A keyword search on the Web of Science core collection using the term “carbon emission
prediction model” and a keyword burst analysis performed through CiteSpace [13] re-
vealed that recent research on carbon emission prediction models has focused mainly on
four key areas: machine learning, renewable energy, carbon market and deep learning
(Figure 2). These are all currently hot areas of carbon emission research.

During the seventy-fifth session of the United Nations General Assembly, China
made a commitment to reach carbon reduction targets for the first time; namely, they
aimed to peak carbon emissions by 2030 and achieve carbon neutrality by 2060 [14]. As the
world’s largest emitter, accounting for approximately 30% of global carbon emissions, China
is under immense pressure to cut its carbon footprint. Fortunately, the development of
machine learning has led to the maturation of corresponding methods, which have extended
beyond the realm of computer science and found success in other fields. In particular, these
methods have shown promise in the field of carbon emission prediction, which provides a
valuable research direction for the global effort to reduce carbon emissions.
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1.1. Development Status

Traditional prediction models for carbon emissions can be broadly divided into several
categories, including the grey prediction model, time series model, multiple regression
model, logistic regression model, economic analysis model and others. Among them, the
grey prediction model is particularly effective in analyzing uncertain factors. Typically,
the GM (1,1) grey correlation model is used for carbon emission prediction, and the re-
sulting prediction curve is generally smooth. However, this model is unable to predict
nonsmooth, discrete curves. The time series method is another commonly used approach,
which reflects the time variation law of carbon emissions. This method is suitable for data
that are relatively stable and have roughly linear changes, but it cannot process nonlinear
data. The multiple regression model is one of the earliest models applied to the prediction
of carbon emissions. The core is to establish the relationship function between multiple
carbon-emission-influencing factors and carbon emissions, as shown in Equation (1) [12].
The logistic model is an advanced version of the multiple regression model, which can over-
come the defects of non-normal random error terms, heteroscedasticity and the regression
equation limitations of the multiple regression model, but the function interpretation is
poor. The economic analysis model mainly explores the relationship between the degree of
economic development and carbon emissions from an economic standpoint in order to facil-
itate carbon emission prediction. Of all the current models, only the grey prediction model
is still undergoing continuous optimization and application, while the other traditional
models are gradually being abandoned due to their high complexity and low efficiency:

y(t) = a0 + a1x1(t) + a2x2(t) + · · ·+ anxn(t) + a(t) (1)
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where y(t) is the predicted value of the carbon emissions and x1(t), x2(t) · · · xn(t) are
the factors that affect carbon emissions. a1, a2 · · · an are the regression coefficients of the
influencing factors. a(t) is a random variable, the mean value must be equal to 0 and the
variance must be constant.

As a new topic in modern times, machine learning plays an important role in infor-
mation technology, especially in the field of artificial intelligence. Its essence is to guide
the machine with many data and rules so that it can judge and predict new data. It is
a model that imitates human learning behavior. The ability to analyze data determines
the accuracy of the prediction. Tracing the history of machine learning, it originated in
the 1940s. In 1943, neuroscientist McCulloch and mathematician Pitts published a paper
title “Logical Calculus of Inner Thoughts in Neural Activities” and first proposed the
MCP model. The principle was to transform various types of data into the information
that we need after weighing. The embryonic form of neural networks began to emerge,
which was also the earliest model of machine learning. After decades of development,
machine learning has evolved to a comprehensive and systematic system that includes
decision trees, K-nearest neighbor, logistic regression, BP neural network, perceptual vector
machines, long short-term memory neural networks, deep learning, transfer learning and
other methods, and new methods are still continuing to be derived. A back propagation
neural network (BPNN) is a concept proposed by Rumelhart and McClelland in 1986. It is
a multilayer feedforward neural network trained by an error back propagation algorithm.
Because of its simple, easy-to-use and efficient attributes, BP neural networks have been
widely promoted and applied. It can solve most of the problems in reality. However, it
also has the disadvantages of gradient disappearance and gradient explosion. The support
vector machine (SVM) proposed in the mid 1990s makes up for this defect well. An SVM
is a kind of generalized linear classifier that classifies data through supervised learning.
Its decision boundary is the maximum margin hyperplane of learning samples. SVMs
use the hinge loss function to calculate the empirical risk and add a regularization term
to the solution system to optimize the structural risk. It is a sparse and robust classifier.
An SVM uses one of the common kernel learning methods, and it can be used to classify
nonlinearly via the kernel method. Similar to an SVM, an extreme learning machine (ELM)
has been proposed to improve the learning efficiency of BPNNs. Different from SVMs, the
learning process of ELMs includes random weight and calculation weight. Although this
structure has poor interpretability, its prediction accuracy is relatively high. There are also
recurrent neural networks that belong to neural networks. The recurrent network has the
problem of gradient disappearance. Long short-term memory (LSTM) neural networks,
as an advanced stage of the recurrent network, solve the problem of the gradient disap-
pearance of the recurrent neural network. Because it is usually used to process serial data,
and most of the data related to carbon emissions are also time series data, many scholars
try to use LSTM to predict carbon emissions, which also has good results. Random forest
(RF) is a common application algorithm in the field of machine learning. It combines a
large number of decision trees to form a new model. By splitting and optimizing complex
data, each decision tree is independently calculated and analyzed. Finally, the analysis
results are synthesized. This method greatly improves the speed of the operation. However,
most of its current applications in the field of carbon emission prediction focus on data
classification, and there are relatively few applications at the prediction level.

The traditional model is less integrated with today’s emerging technologies. Most
of these models rely on artificial empirical formulas and mathematical model-based algo-
rithms for prediction, which are highly dependent on people and often have slow update
rates. However, the emergence of machine learning has given researchers a new direction.
Machine learning can perform self-learning based on actual case data, and its update
rate is much faster than that of mathematical models, which reduces the dependence
on people. A large number of new algorithms have been applied to the field of carbon
emission predictions and have shown great promise. Machine learning models not only
outperform traditional prediction models in terms of accuracy but also demonstrate sig-
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nificant advantages in terms of efficiency. Table 1 compares the traditional model with
the intelligent model and indicates that traditional models require significant experience
in carbon emission modeling, which makes it more demanding for people. In contrast,
intelligent models rely on data and algorithm improvements, which leads to an improved
fitting efficiency and accuracy.

Table 1. Comparison between traditional prediction model and intelligent prediction model.
Own elaboration.

Traditional Model Intelligent Model

Forecast
function

generation

Analyze, verify and modify all kinds
of data by using manual experience
and mathematical analysis methods

to obtain corresponding
prediction functions

Import the corresponding carbon
emission data into the program for

self-learning and finally generate the
corresponding prediction function

Application
difficulties

Highly demanding on the
experience of researchers, too

computationally intensive or even
unpredictable for some

complex problems

High accuracy requirements for data
samples, requiring personnel with the

appropriate level of programming

1.2. Mining Common Machine Learning Algorithms

Using ‘carbon emission’ and ‘prediction’ as keywords to search the core collection
of Web of Science, 144 papers related to carbon emission prediction published from
1 January 2015 to 1 September 2022 were manually selected. The results are presented
in Figure 3 (only the main keywords are shown). The most prominent keywords were
artificial neural network followed by extreme learning machines, support vector machines
and random forest.
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However, given the broad scope of artificial neural networks, we conducted a further
manual search using “carbon emission” and “prediction” as keywords in the Web of Science
and manually selected 112 articles related to carbon emission prediction published after
1 January 2020 to statistically analyze their topics (Figure 4). Our findings indicated that
LSTM has gained acceptance among many researchers, followed by BPNN, ELM, SVM,
SVR and RF. Please note that the “ANN” in Figure 4 refers to the general term of other
neural networks in addition to those already presented.
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After comparing the outcomes of using the paper retrieval software with the outcomes
when using manual retrieval, we observed that the results were largely similar. From
extensive literature reviews, we discovered that BP neural networks, support vector ma-
chines, long short-term memory neural networks, random forests and extreme learning
machines demonstrate superior prediction capabilities. Therefore, this paper principally
focuses on exploring the carbon emission prediction models related to these five machine
learning algorithms.

Our goal is to propose a comprehensive review that summarizes and evaluates the
current research on carbon emission prediction models based on machine learning. The
specific objectives of this review are as follows:

1. To compare the advantages and disadvantages of traditional carbon emission predic-
tion models with intelligent carbon emission prediction models based on machine
learning, and to indicate the significant advantage of machine learning in the field of
carbon emission prediction.

2. To identify and describe the characteristics of the five mainstream carbon emission
prediction models based on machine learning through extensive literature review, and
to clarify their applicable characteristics through a comparative analysis.

3. To provide insights into the current research status and application characteristics of
carbon emission prediction models based on machine learning, and to consider the
future development path of this field.

2. Driving Factors

When predicting carbon emissions, higher is required of the original data, so it is
crucial to carefully select and calculate the data used. An accurate and comprehensive
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variable data set will bring a qualitative leap to the accuracy of the final prediction results, so
knowing how to better determine the factors relative to carbon emissions is very important.
Nowadays, many carbon emission prediction models based on machine learning are
developed based on the basic theory and data of traditional models. The data generated
by traditional carbon emission models are used for autonomous learning so that the
prediction results are more intelligent, which greatly improves the prediction efficiency
and reduces the complexity. Therefore, both the traditional prediction models and the
intelligent prediction models need relatively complete original data to support.

The typical driving factors of most carbon emission prediction models are mainly di-
vided into these categories: economic development level, industrial structure, urbanization
level, population size, energy consumption and technology development. There are also
some scholars that have expanded the driving factors, such as traffic load [15,16], import
and export scale [17], education level [18] and so on. In addition, there are some scholars
that have refined the typical driving factors, such as the level of economic development,
which is subdivided into GDP, per capita GDP, per capita disposable income, per capita con-
sumption expenditure and so on. These refinements improve the accuracy and reliability
of the basic data used in carbon emission prediction models.

When data are related on the national level, the drivers can be classified and obtained.
For example, data on GDP published by national and international organizations can be
directly used to determine the level of economic development, while data related to the
national census can be used to determine population size. National data are generally more
comprehensive and available. At the regional level, relevant data can typically be obtained
from state-published sources, but they may not always be comprehensive. In such cases, it
may be necessary to use data provided by unofficial organizations or institutions, which can
be obtained through screening and identification. At the family level, the data are typically
more refined, which makes it difficult to obtain them from official channels. Generally,
sample questionnaire surveys are used to obtain the required data, such as income level
and population composition. These three levels of data are usually not fused. On the one
hand, the sample size supported by the prediction model is limited, and excessive calls may
lead to some unpredictable problems. On the other hand, the three levels of data belong to
different dimensions, and there is a great correlation between the data. Mixed calls may
cause repeated calls, which makes the prediction results abnormal for the characteristics
of a certain type of data. The data corresponding to these factors were normalized and
imported into the intelligent prediction model as training samples and test samples, which
could speed up the generation of the prediction model. Equation (2) is the normalized
basic formula:

y =
x− xmin

xmax − xmin
(2)

where y is the normalized value, x is the prenormalized value, xmin is the minimum value
among values of the same type and xmax is the maximum value among values of the
same type.

Numerous scholars rely on the official statistical yearbook to obtain credible data
on carbon emissions and their driving factors, whether through direct or indirect means.
The primary source of carbon emission data is the official energy statistics, which are
then converted into carbon emissions using the calculation method outlined in the IPCC
Guidelines. This process ensures the reliability and accuracy of the data.

Some scholars have made unique innovations by bypassing numerous research ideas.
For example, Wen and Cao [19] focused on predicting the carbon emissions of single
buildings by collecting building data with sensors and converting them into corresponding
carbon emission values. They predicted and analyzed the carbon emissions of single
buildings to explore carbon reduction paths. Kong et al. [20], on the other hand, boldly
set aside the traditional independent variable–dependent variable data set by using an
ensemble empirical mode and variational mode decomposition to decompose the carbon
emission data into 11 IMF components. They then mined the law of components and total
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carbon emission, which had a good effect. These data-level innovations were based on
the high fitting of the final prediction model, which will provide future researchers with
inspiration and valuable insights.

3. Carbon Emission Prediction Model Based on Machine Learning
3.1. Prediction Model of Carbon Emission—BP Neural Network
3.1.1. Introduction

The backpropagation (BP) algorithm utilizes the gradient descent method to train
a neural network and employs empirical risk minimization. The error backpropagation
algorithm is a critical component of the BP neural network, which trains a multilayer feed-
forward neural network with an input layer, hidden layer and output layer. The BP neural
network minimizes the mean square error of the model via the gradient descent method to
meet the preset accuracy requirements. The BP algorithm involves two processes: First,
it uses forward propagation to calculate the difference between the actual and expected
output values, known as the output error. Then, the error reverse propagation process
assigns the output error to each layer of neurons, which corrects the weight and threshold
of each neuron. The BP algorithm is widely used to deal with nonlinear problems due to
its excellent nonlinear mapping ability. However, it has some limitations when applied
to carbon emission prediction models, such as a tendency to fall into the local minimum,
which does not guarantee that the final solution is the global optimal solution. Additionally,
it can have a slow convergence speed and a long training time due to a small learning rate.

The BP neural network is composed of three layers: the input layer, hidden layer,
and output layer. The input layer receives the necessary information and transfers it to
the active function in the hidden layer for processing. The processed results are then fed
back through the output layer. Figure 5 depicts the topological structure of the BP neural
network. The core component of this network is the hidden layer, which acts as a vital
bridge between the input and output layers and serves as a hub for processing various
types of information:

y = ω1x1 +ω2x2 + b (3)
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which are mainly used to process the input values to reach the predicted values; and b is
the offset, which is mainly used to fine tune the input values after weight conversion to
make them closer to the actual values.

The number of neurons in the hidden layer of a BP neural network influences the ability
achieve an optimal performance. Using too few neurons in the hidden layer can result in
underfitting, where the network fails to capture the complexity of the data. Conversely,
using too many neurons can lead to overfitting, where the network becomes too complex
and starts to memorize noise in the training data, which leads to poor generalization on the
new data. Therefore, finding the optimal number of neurons in the hidden layer is a critical
step in designing a BP neural network. By carefully selecting the number of neurons in the
hidden layer, we can strike a balance between the model complexity and generalization
performance, which will lead to a more effective and efficient network.

3.1.2. Application

The BP neural network is a multilayer feedforward network trained using the error
backpropagation algorithm. It is highly flexible and widely used in applications such as
damage detection, fault diagnosis and performance prediction. Recently, it has also been
increasingly applied to carbon emission prediction with great success.

From the analysis of the existing research (Table 2), the factors influencing carbon
emissions can be divided into four categories: population, economic, energy and resource.
To select appropriate indicator parameters, the correlation analysis method, the gray
correlation method or ridge regression method can be used. It is important to select the
right number of indicators to balance accuracy and computational efficiency. Typically, five
to eight factors with the greatest influence are selected, while the remaining factors with
less influence are taken into account through the error term in the prediction process:

m =
√

n + l + α (4)

where m represents the number of neurons in the hidden layer; n and l are the number of
neurons in the input layer and the number of neurons in the output layer, respectively; and
α is a range constant between 1 and 10.

In the analysis of the BP neural network, the hidden layer played a particularly
important role as it directly affected the accuracy of the predictions. Currently, when
establishing the structure of a BP neural network to solve specific problems, the number of
neurons in the hidden layer is mostly determined through experience. Based on existing
research, the most efficient method for estimating the number of hidden layer neurons is
through Equation (4), which provides a range of possible values. The optimal number of
hidden layers can then be determined step by step within this range through testing.

Apart from improving the structure of the BP neural network to enhance the prediction
accuracy, optimization algorithms can also be used to optimize its weights and thresholds.
The commonly used optimization algorithms include particle swarm optimization (PSO),
genetic algorithms (GA) and others. With the use of these algorithms, the coefficient of
determination of the optimized prediction result can reach as high as 0.95, which indicates
a relatively high degree of fitting. However, in cases where some influencing factors are
relatively simple and not fully considered, the prediction accuracy may be low. Therefore,
the final results of the BP model are greatly affected by the selection of the influencing
factors and have higher requirements for the original data.

The carbon emission prediction model based on the BP neural network has been signif-
icantly enhanced and improved with the contributions of many researchers, particularly in
terms of accuracy and operational speed. Given the high demand for data accuracy in the
BP neural network prediction model, some scholars have implemented various approaches
to enhance the accuracy of the original carbon emission data. Specifically, the selection
method of the influencing factors is optimized, and the data selection of the identified
influencing factors is considered to ensure the authenticity and effectiveness of the model.
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With the optimization of the BP neural network structure and prediction algorithm, the
prediction accuracy was significantly improved.

Table 2. Research on carbon emission prediction model based on BP neural network (source: Web
of Science).

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[21]

Taking permanent resident population,
age of head of household, family income,
housing area and current housing value as
the indicators of household consumption
carbon emissions, a total of 307 samples of
14 household structures were selected as

the research objects.

The BP model. The
number of hidden
layer nodes is 8.

R2 = 0.9456,
MSE = 0.0223

[16]

The grey correlation method was used to
identify the main factors that influenced

each stage of the building’s life cycle,
which were then used to construct the

STIRPAT model. These influencing factors
included the size of the resident

population, the degree of urbanization,
per capita GDP, the added value of the

tertiary industry, the average distance of
steel production and road transportation

and the labor productivity of the
construction enterprises. Carbon

emissions were determined primarily by
the sum of energy-related carbon

emissions, electricity-related carbon
emissions and thermal-related

carbon emissions.

The GA-BP model.
The number of

hidden layer nodes
is 15.

R2 = 0.944,
MSE = 0.034694

[22]

Based on the industry’s attributes and
existing research results, the influencing
factors of carbon emissions in the heavy

chemical industry with a high carbon
emission factor were selected.

The PSO-BP model.
The number of

hidden layer nodes
is 9.

R2 = 0.9985,
MSE = 0.4139

[23]

The EEMD method was used to
decompose the daily calculated carbon
emission data into six modal functions

and a residual sequence.

The PSO-BP model.
The number of

hidden layer nodes
is 6.

R2 = 0.9507,
MSE = 0.1177,
MAPE = 0.093

[24]

After referring to the relevant literature,
five influencing factors related to carbon

emissions were established: coal
consumption, crude oil consumption,

natural gas consumption, population and
GDP. Carbon emissions were calculated

using data from the official
statistical yearbook.

The IPSO-BP model.
The number of

hidden layer nodes
is 5.

R2 > 0.9

[25]

The Building Energy Consumption (BEC)
and Building Environment Factor (BEF)
data for Central and Eastern Changxing

City, Northeast Zhejiang Province, China,
from 2018 were used. The BEF data

included buildings, blocks, population,
industry and information points provided

by various government departments
in Changxing.

The BP model. The
number of hidden
layer nodes is 10.

10% < MAPE
< 20%
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3.2. Prediction Model of Carbon Emission—SVM
3.2.1. Introduction

The support vector machine (SVM) is a powerful supervised learning method that
finds broad application in statistical classification and regression analysis. As a generalized
linear classifier, an SVM possesses the unique ability to minimize empirical error while
maximizing the geometric edge region. As a result, SVMs are often referred to as maximum
edge region classifiers.

SVMs map input vectors into a higher-dimensional space where a maximum margin
hyperplane is established. This hyperplane separates the data into two classes and is
defined by two parallel hyperplanes on either side. The SVM finds the hyperplane that
maximizes the distance between the parallel hyperplanes, which is called the margin. It
is assumed that a larger margin results in a better generalization performance. Figure 6
illustrates the structure diagram of a support vector machine.
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The main idea of an SVM can be summarized as two points:

1. It is analyzed for linearly separable cases. For linearly nonseparable cases, the linearly
nonseparable samples in the low-dimensional input space are transformed in the
high-dimensional feature space by using the nonlinear mapping algorithm so that they
are linearly separable, which makes it possible for the high-dimensional feature space
to use the linear algorithm to analyze the nonlinear characteristics of the samples.

2. Based on structural risk minimization theory, it is used to construct the optimal
partition hyperplane in the feature space so that the learner can be globally optimized,
and the expected risk in the whole sample space satisfies a certain upper bound with
a certain probability.

3.2.2. Application

An SVM is a powerful machine learning method rooted in statistical learning theory.
It is particularly effective in function approximation and regression estimation, and it has
found numerous applications in pattern recognition, including but not limited to portrait
recognition, text classification, handwritten character recognition and bioinformatics. SVMs
have low requirements for samples and they are suitable for limited samples. Theoretically,
they can obtain the global optimal point, and the computational complexity is independent
of the sample dimension.

The carbon emission prediction model based on SVMs is similar to the carbon emission
prediction model based on BP neural networks in terms of data selection, but it has great
adaptability when it comes to the selection of the number of influencing factors, which
ranges between two and nine (Table 3). In other words, it can handle a wider range of
data that a BP neural network cannot handle and still maintains a high level of prediction
accuracy. The prediction accuracy mainly depends on the selection of penalty factor C and
kernel function parameter γ. The value of penalty factor C is mainly determined by the type
of predicted data. For each misclassified point, C is used as the dimension for punishment.
When the C is larger, the number of misclassified points is less, and the fitting effect is
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improved. However, infinitely expanding C can result in overfitting. The Radial Basis
Function (RBF) is usually selected as the kernel function of the carbon emission prediction
model based on a support vector machine, and its overall prediction effect is better than the
prediction model using other kernel functions. Equation (5) is the basic expression form
of the RBF kernel function. The RBF function comes with the super parameter γ, which is
generally small, and similar to the role of penalty factor C, it is used to adjust the degree
of fitting. So, C and γ are usually adjusted simultaneously to find the optimal parameter
value. The initial range is 0.0001 < γ < 10 and 0.1 < C < 100. The optimal parameters can
be achieved through manual debugging or using corresponding tuning algorithms. At
present, most tuning parameters depend on relevant optimization algorithms, such as the
improved chicken swarm optimization algorithm (ICSO), sparrow search algorithm (SSA),
firefly optimization algorithm (FFA), etc. Through a literature search, it was found that the
prediction accuracy of the carbon emission prediction model based on a SVM was generally
controlled between 0.90 and 0.97:

K(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
) (5)

where xi and xj are the input vectors calculated from the data set; γ is the kernel function
parameter of RFB, which can be generally expressed as 1/2 ∗ σ2; and σ is the width
parameter of the function.

Table 3. Research on carbon emission prediction model based on support vector machine (source:
Web of Science).

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[26]

The data set was derived from the
database provided by the World Bank
for EU countries. The input variables

included rural population growth, rural
population, urban population growth,
urban population and total population
growth. The output variables included
carbon emissions from three types of

sources: gases, solids and liquids.

The FFA-SVM
model depends on
three parameters of
C, ε and γ that have
a great influence on

the prediction
accuracy, and this

model is optimized
by firefly

optimization
algorithm.

The coefficients of
determination of

the predicted
carbon emissions
of gas, liquid and
solids were 0.9015,
0.9348 and 0.9261,

respectively

[18]

The data set was derived from the data
related to Shanghai from 2000 to 2016 in
the official statistical yearbook. Firstly,

the grey correlation method was used to
analyze the correlation between the

influencing factors and carbon
emissions, which resulted in the

selection of 18 preliminary indicators.
Then, four principal components

(economic level, living standard, social
condition and education level) were
extracted via a principal component
analysis as input indicators. Carbon
emissions were calculated from the

corresponding energy data and were
used as output indicators.

The ICSO-SVM
model uses the

improved chicken
swarm optimization

algorithm to
optimize the weight
and threshold of the

SVM. The
minimum fitness
was 0.0441, the
corresponding

penalty factor C
was 77.9690 and the

kernel function
parameter γ
was 0.1013.

MAPE = 1.21%,
RMSE = 0.4346
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Table 3. Cont.

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[27]

The data were derived from statistics
released by Henan Province covering

the years 1990 to 2015. The influencing
factors considered included the total
population of Henan Province, the

proportion of the secondary industry,
the ratio of coal consumption, the

urbanization rate and GDP. Carbon
emissions were calculated based on

the energy consumption data.

The SVM model.
The best optimized
parameter penalty

factor C was 9.18959
and kernel function

parameter γ
was 0.0358968.

The coefficients of
determination for
the training and

test sets were
0.9952 and 0.9543,

respectively.

[28]

The data used in this study were
obtained from the ‘China Statistical

Yearbook,’ ‘China Construction Industry
Statistical Yearbook’ and ‘China Energy
Statistical Yearbook’ from 1995 to 2016.

Based on a grey correlation analysis, the
completion area of the construction

projects, GDP, total output value of the
construction industry, labor productivity
of the construction industry, number of
employees in construction enterprises

and primary energy consumption in the
construction industry were selected as
the main influencing factors of carbon
emissions in the construction industry.

The FCS-SVM
model uses the

fuzzy cuckoo search
algorithm to
determine its

optimal parameters.

MAPE = 0.003
R2 = 0.9581

[29]

Through a Granger causality analysis,
the influencing factors of carbon dioxide
emissions related to primary industry,
secondary industry, tertiary industry

and residential consumption were
tested. Finally, four categories of carbon

dioxide emissions and the
corresponding influencing factors were

selected for a predictive analysis.

The LSSVM model.
The final optimized

regularization
parameter C and

kernel parameter σ2

were 152.469 and
0.027, respectively.

MAPE = 0.16%
MaxAPE = 0.204%
MDAPE = 0.189%

RMSE = 0.001

SVMs have a rigorous theoretical and mathematical foundation. They boast a stronger
generalization ability and are capable of achieving global optimal solutions, and they also
perform well in small-sample prediction. In the applications discussed above, researchers
have mainly focused on optimizing the SVM algorithm to improve the accuracy and
efficiency of the prediction model, while a minority of scholars have used combined models
to meet the accuracy improvement requirements.

3.3. Prediction Model of Carbon Emission—LSTM
3.3.1. Introduction

LSTM is a prediction tool based on time series. It is an advanced algorithm model of
RNN, which objectively makes up for the shortcomings of RNN in some aspects. With the
ability to predict relevant data for the next time period through a period of existing data,
LSTM has achieved good application results. Its selective memory function enables it to
handle data with a large sample size without the problem of RNN gradient disappearance
or gradient explosion.

In the structure diagram of long short-term memory neural networks (Figure 7),
the network is divided into the input gate, forget gate and output gate. The forget gate
automatically filters the information from the previous time period and selectively forgets
irrelevant information, retaining only the useful information. This operation significantly
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reduces the amount of information and thereby reduces the amount of computation needed.
The input gate combines the newly obtained information with the original information, and
the output gate processes the existing information and outputs the corresponding results.
The key to this structure is the forget gate, which distinguishes LSTM from RNN. The forget
gate allows the LSTM network to adjust the weights to stabilize the value obtained after
backpropagation in the normal range. This feature is crucial for ensuring the stability of
the network and preventing issues such as gradient vanishing or exploding.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 30 
 

sponding results. The key to this structure is the forget gate, which distinguishes LSTM 
from RNN. The forget gate allows the LSTM network to adjust the weights to stabilize 
the value obtained after backpropagation in the normal range. This feature is crucial for 
ensuring the stability of the network and preventing issues such as gradient vanishing or 
exploding. 

 
Figure 7. Structure diagram of long short-term memory. 1,t tC C−  is the cell state vector; 1,t th h−  is 
the hidden state vector; 1,t tX X +  is the input vector; σ is the sigmoid function. Own elaboration. 

3.3.2. Application 
The good performance of LSTM when dealing with gradient disappearance and a 

gradient explosion will cause it to gradually replace the original recurrent neural net-
work when predicting time series data. The most classic application is the prediction of 
stock trends, and of course, it has shown promising results in many other time-series-
related aspects. In recent years, researchers have used LSTM to predict carbon emissions 
with good success. 

As outlined in Table 4, the optimization of the carbon emission prediction model 
based on LSTM mainly focuses on data mining. As it predicts time series data, it can rely 
on historical carbon emission data to make predictions. Generally, carbon emission time 
series data are predicted by analyzing the dates of several time series before the target 
time series, but such prediction results are often less convincing. Therefore, scholars 
generally combine relevant influencing factors or other optimization algorithms to im-
prove the prediction effect of the LSTM model. Since LSTM is a machine learning algo-
rithm that has emerged in recent years, the method of optimizing itself is still relatively 
rare. Hence, the prediction accuracy of LSTM mainly depends on the integrity and accu-
racy of the data, and the data should conform to the timing rules. The commonly used 
data analysis method of the carbon emission prediction model based on LSTM is mainly 
used to analyze the influence degree of the carbon emission influencing factors. Similar 
to the data processing method of most prediction methods, the original data predicted 
by LSTM needs to be simplified to reduce data redundancy. The verification of the pre-
diction accuracy by LSTM is generally conducted by other prediction algorithms as 
comparison objects. However, the prediction methods used for comparison are more 
commonly used, which are not targeted and cannot explain the actual utility of the pre-
diction. 

  

1tC −

1th −

tX

1tX +

orget tF gate（ ）f σ
 tUpdate gate（ ）i

σ

 tOut gate（ ）O

σtanh

tanh

tC

th

Figure 7. Structure diagram of long short-term memory. Ct−1, Ct is the cell state vector; ht−1, ht is the
hidden state vector; Xt, Xt+1 is the input vector; σ is the sigmoid function. Own elaboration.

3.3.2. Application

The good performance of LSTM when dealing with gradient disappearance and a
gradient explosion will cause it to gradually replace the original recurrent neural network
when predicting time series data. The most classic application is the prediction of stock
trends, and of course, it has shown promising results in many other time-series-related
aspects. In recent years, researchers have used LSTM to predict carbon emissions with
good success.

As outlined in Table 4, the optimization of the carbon emission prediction model based
on LSTM mainly focuses on data mining. As it predicts time series data, it can rely on
historical carbon emission data to make predictions. Generally, carbon emission time series
data are predicted by analyzing the dates of several time series before the target time series,
but such prediction results are often less convincing. Therefore, scholars generally combine
relevant influencing factors or other optimization algorithms to improve the prediction
effect of the LSTM model. Since LSTM is a machine learning algorithm that has emerged in
recent years, the method of optimizing itself is still relatively rare. Hence, the prediction
accuracy of LSTM mainly depends on the integrity and accuracy of the data, and the data
should conform to the timing rules. The commonly used data analysis method of the
carbon emission prediction model based on LSTM is mainly used to analyze the influence
degree of the carbon emission influencing factors. Similar to the data processing method of
most prediction methods, the original data predicted by LSTM needs to be simplified to
reduce data redundancy. The verification of the prediction accuracy by LSTM is generally
conducted by other prediction algorithms as comparison objects. However, the prediction
methods used for comparison are more commonly used, which are not targeted and cannot
explain the actual utility of the prediction.

The original data on the carbon emissions were obtained by converting the relevant
statistical data, and the different calculation standards of different researchers also led
to different data being obtained, which also caused corresponding differences in their
prediction results. Therefore, the previous improvement in carbon emission prediction
based on LSTM mainly focuses on data processing and integration.
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Table 4. Research on carbon emission prediction model based on long short-term memory (source:
Web of Science).

Reference Data Sources
Prediction

Method
Selection

Prediction
Accuracy

[30]

By referring to the existing literature and
STIRPAT model, six influencing factors were
determined as input variables: urbanization,
per capita GDP, industrial structure, energy

consumption, energy intensity and
population density. The research objects
were 30 provinces in China. The relevant

data were derived from the ‘China
Statistical Yearbook’ and the ‘China Energy
Statistical Yearbook’. The carbon emission

data were derived from the energy
consumption data combined with the ‘IPCC

National Greenhouse Gas Inventories
Guidelines (IPCC, 2006)’.

The LSTM-
STIRPAT
model.

MAPE of
carbon

emission
projection for
provinces is

between 2.1%
and 6.6%

[31]

The data used in this study were official
statistical data. The researchers employed a

quadratic assignment process regression
analysis (QAP) to analyze the influencing
factors of carbon emissions in the Yellow

River basin from the perspective of regional
differences. The analysis led to the

identification of five factors that affect
carbon emissions: population, GDP,

industrial structure, urbanization rate and
energy intensity. The estimation method

used for the carbon emissions is in line with
the recommendations of the

Intergovernmental Panel on Climate
Change (IPCC).

The
SSA-LSTM

model.

MAE = 30.90,
RMSE = 36.67,

MAPE = 0.0099

[32]

The data were sourced from the ‘China
Statistical Yearbook’, while the carbon
emission data pertained to the carbon

emission values of China from 1965 to 2014,
as released by the World Bank.

The KLS
model.

MSE = 0.0039,
MAE = 0.06,

MAXE = −0.089

[33]

The object of prediction was the carbon
emissions of the port of Los Angeles. By

referring to the STIRPAT model, researchers
have selected relevant indicators of carbon

emissions, including port throughput,
carbon emission intensity and historical

carbon emission data.

The STIRPAT-
ARIMAX-

LSTM
integrated

model.

RMSE = 0.0145,
MAPE = 7.9306,

MDA = 0.685

[34]

The AIS data of LNG carriers provided by
exactEarth were optimized by using the
cubic spline interpolation method. The

optimized AIS data were combined with the
program recommended by the International
Towed Tank Conference (ITTC) to calculate

the carbon dioxide emission of the ship.

The LSTM
model.

The difference
between the
actual and

predicted values
of total carbon

dioxide emissions
is 0.022.

3.4. Prediction Model of Carbon Emission—RF
3.4.1. Introduction

Random forest is an advanced extension of decision trees that utilizes multiple decision
trees to make more accurate predictions. Each decision tree in the random forest uses its
own decision criteria to make a prediction. The final decision is made by summarizing
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the predictions of all the decision trees in the forest. Each individual decision tree in a
random forest is generally divided into two types. On the one hand, there is data selection.
Generally, each decision tree will randomly select different sample sets from the total
samples for operation, so each decision tree has different characteristics. On the other hand,
there is feature selection. The efficiency and accuracy of the operation can be improved
through random sampling of the features in the feature set.

As shown in Figure 8, each decision tree in a random forest runs independently.
Because the data set or feature set of each decision tree in the random forest is smaller, its
operational efficiency is faster than that of a decision tree with a complete sample set and
complete feature set. Additionally, each decision tree has its own unique characteristics.
During the integration stage, the results of each decision tree are combined to determine
the final outcome. The structure diagram of a random forest reveals that it can simplify
complex problems by analyzing the characteristics of multidimensional data through each
decision tree. Finally, the final results are determined through comprehensive comparison
and screening, which results in a significantly improved accuracy and operational speed
with a high degree of interpretability. However, the results can be too general to identify
subtle changes or accurately detect abnormal points in the data.
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3.4.2. Application

From the existing research (Table 5), the carbon emission prediction model based on
random forest is widely used at the level of single buildings. Such refined predictions
involve many influencing factors, and the random forest algorithm is particularly suitable
for processing multidimensional data with high efficiency. However, when compared with
other prediction methods, its accuracy is slightly lower. Although its accuracy is not as high
as some existing high-precision models, its fast operation speed is particularly important in
the era of big data, which makes it highly promising for broad applications.

Furthermore, the random forest algorithm performs well when it comes to screening
influencing factors. Its multidecision tree structure enables the determination of the overall
feature contributions by integrating the contribution of each decision tree classification
feature. This makes it effective at identifying several types of influencing factors that have
a greater impact on carbon emissions and can serve the prediction model well.
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Table 5. Carbon emission prediction model based on random forest (source: Web of Science).

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[35]

The data used were obtained from the
Open Data Inventory of Anthropogenic
Carbon Dioxide (ODIAC) of the China

Environmental Research Institute, which
provided a global dataset of carbon

dioxide emissions resulting from fossil
fuel combustion. The three-dimensional
building information was obtained from
the Gaode map. A Pearson’s correlation

test was used to examine the
relationship between spatial factors and
carbon emissions, with relevant factors
being used as input variables and the

corresponding carbon dioxide emissions
being used as the output variable.

The RF model. The
baseline model, which

considers the
architectural structure

factors of previous
studies, was compared

with the improved
model, which took into

account both the
previous research and
potential architectural
structure factors. The

results showed that the
improved model had a

higher prediction
efficiency.

R2 = 0.9392,
RSE = 32.53%,
RAE = 28.50%

[36]

The data were derived from 38
buildings located in the Pearl River

Delta region of China. After analyzing
and screening the influencing factors of

carbon emissions during the
construction stage in the previous

literature, the final factors were
determined to be the foundation area,

ground area, underground area,
building height, number of floors on the

ground and basement depth. The
carbon emissions were calculated by

using the quota method.

The RF model. The
minimum number of
nodes (nodesize) in

each tree was set to 5.
The optimal number of

decision trees (ntree)
was determined to be

124, and the number of
randomly selected
variables (mtry) for

growing each tree was
set to 5.

R2 = 0.6403,
MSE = 0.7649

3.5. Prediction Model of Carbon Emission—ELM
3.5.1. Introduction

The extreme learning machine (ELM) was introduced in 2004 by Guang-Bin Huang,
Qin-Yu Zhu and Chee-Kheong Siew from Nanyang Technological University. Their paper
was published in the IEEE International Joint Conference [37]. Their aim was to enhance
the Backward Propagation algorithm to improve the learning efficiency and enact a sim-
pler learning parameter setup. The structure diagram of the extreme learning machine
(Figure 9) is distinct in that the weights of the hidden layer nodes are randomly or artifi-
cially assigned and remain fixed without any updates. During the learning process, only
the output weights were computed and optimized. The optimization objective is expressed
in Equation (6), and the optimal solution is attained through the least-squares method [38]:

argmin‖Hβ− T‖2 (6)

where H is the output matrix, T is the training target, || is the Frobenius norm of the matrix
elements and β is the output weight.
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3.5.2. Application

ELMs have numerous applications in computer vision and bioinformatics and are also
widely used to solve regression problems in Earth science and environmental science [39].
In the field of image processing, ELMs have proven to be effective at transforming low-
resolution images into high-resolution ones and identifying surface types in remote sensing
images. In the biological sciences, ELMs are utilized to predict protein interactions. Due
to their ability to generalize, ELMs have been employed to address prediction problems
involving nonlinear processes and insufficient observational data in Earth sciences. Suc-
cessful examples include predicting daily river runoff, wind speed, the drought index and
carbon emissions.

As shown in Table 6, data processing for the extreme learning machine typically
involves factor analysis. Due to the large size of the data processed by the extreme learning
machine, manually selected factors may exhibit some correlation, which could introduce
some deviations into the prediction results. Therefore, the data are generally classified using
factor analysis methods to reduce the correlation between the factors. This approach can
also simplify the input structure and improve the operational efficiency. In the algorithm
layer, the extreme learning machine is generally determined as the optimal algorithm by
comparing it with other prediction algorithms. In addition, in the process of comparison, the
prediction model is also optimized by optimization algorithms such as the genetic algorithm
and particle swarm optimization algorithm to improve the overall prediction accuracy.

In terms of the predictive accuracy, the current carbon emission prediction model
based on ELM achieved an average absolute percentage error and root mean square error
of approximately 1%, which demonstrated a reliable performance that ranked in the upper-
middle level among the other prediction models.
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Table 6. Research on carbon emission prediction model based on extreme learning machine (source:
Web of Science).

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[40]

The information was obtained from
relevant data in the China Energy

Statistics Yearbook and China
Statistical Yearbook covering the

period from 2000 to 2017. Thirteen
factors deemed to affect traffic
carbon dioxide emissions were

subjectively selected. Through the
factor analysis, the four main factors

of economic development, traffic
structure, energy consumption

structure and population size were
identified as the input variables.

Nine types of energy consumption,
including coal, gasoline, kerosene,

fuel oil, crude oil, liquefied
petroleum gas, natural gas and

electricity, were selected to calculate
the corresponding traffic carbon

dioxide emissions.

The GA-ELM model.
BPNN model, ELM

model, GA-BP model
and GA-ELM model

were used for
prediction, and the
predicted values of

each algorithm were
compared with the
actual values. The

results showed that the
fitting degree between
the predicted values

and the real values of
the GA-ELM model

was the highest.

MAPE = 1.4594%,
RMSE = 35.356

[41]

All the data on the
carbon-emission-influencing factors
from 2000 to 2017 were derived from

the ‘China Statistical Yearbook
(2018)’, and the corresponding

carbon emission data was obtained
from the IEA (2019) report. The

average influence value method was
used to analyze the degree of
influence of 13 preliminary

indicators. After adjusting the size of
the indicators in the same

proportion, the MRFO-ELM
prediction model was input.

The MRFO-ELM model.
The optimal fitness of
MRFO-ELM decreased
from 0.0583 to 0.0186 in
20 iterations, which had

a faster optimization
speed and higher

accuracy.

MAPE = 1.25%,
RMSE = 11.34%

[20]

This paper selected China‘s daily
carbon emission data from 1 January
2019 to 18 June 2021 as a sample set
for empirical analysis. The data were

derived from “https://
carbonmonitor.org.cn/downloads/

(accessed on 28 June 2021)”. The
daily carbon emission data were

decomposed via ensemble empirical
mode decomposition, and then the

possible input variables were
screened by using a partial

autocorrelation coefficient method.
Finally, the ReliefF algorithm was
used to determine the five highest

weight sequences as the final
input variables.

The ISSA-ELM model.
Through a comparison
of the results obtained

by using various
models including BP,

PSO-BP, ELM,
PSO-ELM, SSA-ELM,

ISSA-ELM,
EMD-ISSA-ELM,

EEMD-ISSA-ELM,
ICEEMDAN-ISSA-

ELM and ISSA-ELM, it
was demonstrated that
the ISSA-ELM model

was the most
appropriate for
predicting daily

carbon emissions.

R2 = 0.9968,
MAPE = 0.0040,
RMSE = 174.759

https://carbonmonitor.org.cn/downloads/
https://carbonmonitor.org.cn/downloads/
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Table 6. Cont.

Reference Data Sources Prediction Method
Selection

Prediction
Accuracy

[15]

Based on the data from the China
Statistical Yearbook and Hebei
Economic Yearbook, this paper

analyzed the carbon dioxide
emissions and its influencing factors
in Hebei Province from 1995 to 2014.
In view of the factors affecting CO2

emissions in Hebei Province,
considering the economy, energy

and other aspects, 22 indicators were
preselected, and 6 categories

(actually 8 categories) were obtained
by factor analysis as the input of the

prediction model, which were
output value factor F11, export
factor F12, energy consumption

factor F2, general investment factor
F31, pollution investment factor F32,
consumption factor F4, city factor F5

and traffic factor F6. According to
the coefficients published in the

‘National Greenhouse Gas
Inventories Guide (IPCC, 2006)’, the
CO2 emissions were calculated per

unit of different energy consumption
types converted to standard coal.

The PSO-ELM model.
The PSO-ELM model
has 20 hidden layer

nodes. Compared with
the forecasting results
of the BPNN and ELM,
the proposed PSO-ELM

model had the best
fitting curve.

RMSE = 91.63
(million tons),

MAPE = 0.31%

4. Applicable Characteristics of Common Intelligent Prediction Models

In the field of machine learning, BP neural networks were early algorithms. After
continuous development, they have been applied in many areas, including function approx-
imation, pattern recognition, classification and data compression. In the context of carbon
emission prediction, the BP neural network is primarily used for function approximation.
However, it still has some drawbacks, such as a slow learning speed, a tendency to fall into
a local minimum and the absence of a theoretical basis for the number of neurons. To some
extent, the support vector machine can make up for the shortcomings of the BP neural
network. It has the advantages of having a faster operation speed and wider data types
while retaining the strong nonlinear processing ability of the BP neural network. Moreover,
since the prediction process requires the feature vector to be filtered, the data-size require-
ment was not particularly significant, and an SVM can provide better prediction results
regardless of whether the data are small or large. LSTM is a recurrent neural network,
which solves the problem of gradient disappearance by increasing weight, and the existence
of a forgetting gate can make it more efficient at processing data. It performs well when
the data have time characteristics, which makes it particularly useful with carbon emission
data, which typically exhibit temporal characteristics. Random forest is a combination of
multiple decision trees that randomly select data samples or features, which makes it useful
to identify the feature weight. This approach can be used to analyze the factors affecting
carbon emission or as a prediction algorithm for carbon emissions. ELMs use a random
mapping method to convert the input layer to the hidden layer, which makes it distinct
from the other four algorithms. The weight from the hidden layer to the output layer is
then calculated, and the prediction effect is mainly due to its unique structure. Although
the results may be less interpretable, various studies have shown that the prediction effect
is not inferior to or even better than other prediction models.
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The data structure of the prediction model consists of independent and dependent
variables, with the dependent variable relying on data from multiple dimensions. When
the research focuses on the optimization of the algorithm, the independent variables are
typically based on the traditional carbon emission prediction model. The causal index
of the data layer is established by the influencing factor information of the traditional
model, and then the optimization of the algorithm is used to improve the prediction
accuracy. When focusing on the data layer, each traditional model can serve as a reference
point. By analyzing the factors used in various traditional models, factor selection and
data optimization can be combined to improve the data layer. Additionally, some studies
determine the appropriate method by selecting the best model for different types of data
to achieve the desired prediction effect. Table 7 shows the data types that have a good
application effect for the five commonly used prediction models.

Table 7. Comparison of intelligent prediction models. Own elaboration.

BPNN SVM LSTM RF ELM

Data Type

Medium-size
samples and

high-precision
data

Large and
small

sample
data

Large
sample

data based
on time
series

Complex multidi-
mensional

data

Large sample
data with

clear causal
relationship

Data
Sources

At present, the most common data sources are official statistical data, and some
data sources are research and investigations, data integration, internal supply of

the industry, data monitoring websites, etc.

Prediction
Accuracy

R2 is generally
around 0.95,
and MSE is

generally less
than 0.8.

R2 is
between
0.90 and

0.95,
RMSE < 0.5.

MAPE is
between 2%

and 3%.

The prediction
accuracy varies
greatly, and the

overall
prediction

performance is
poor.

MAPE is
between 0.3%

and 1.5%.

All prediction models share many commonalities at the data-processing level, such
as conducting a correlation analysis between factors and an analysis of the degree of
influence between factors and carbon emissions, to determine the final input parameters.
Regarding the input parameters, good prediction results can only be obtained when the
parameters fall within a certain influence range and are suitable for the model, and the
choice of data analysis methods will differ. Typically, available combinations of influencing
factors are screened, with higher-influence factors being selected. When factors have a large
correlation, a factor analysis is used to reduce the impact of the correlation on the prediction
results. Table 8 summarizes the main optimization methods used at the data layer.

At the algorithm optimization level, the focus is mainly on optimizing each variable
that determines the final prediction result, such as the weight and threshold of the al-
gorithm. Generally, SVMs have a high degree of adaptability to various types of data.
From its structure, it can be observed that it predicts by screening feature vectors, which
indicates that there are many choices in the process of feature vector screening, and the
optimization of the weight and threshold after feature vector selection is also a crucial
aspect. Therefore, research in the field of carbon emission prediction models based on
SVMs is extensive, while research on carbon emission prediction models based on BPNNs,
ELMs and LSTM is mainly focused on data mining and processing. Currently, there is
limited reference for carbon emission models based on random forest in both the data and
algorithm layers. However, the existing research suggests that a random forest can achieve
a high prediction accuracy and has a significant advantage in processing speed, which
makes it a worthwhile topic of discussion. Table 9 summarizes the primary optimization
methods used in related algorithms.
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Table 8. Optimization method of data layer (source: Web of Science).

BPNN

Random forest [42], Rough set theory [43], empirical mode decomposition [23,44],
principal component analysis [45], Mean impact value method [46], Grey relational
analysis [16,47,48], Bivariate correlation analysis [49], Generalized fisher index
decomposition [50], Influence coefficient method [22]

SVM

Principal component analysis [19,29], Grey relational analysis [18,51,52], factor
analysis [53], Detection of steady state [54], Cointegration test [54], Granger
causality test [54–56], random forest [57], Impulse response function [58], Variance
decomposition [58], Bivariate correlation analysis [19,29], Copula function [59],
ridge regression analysis [32]

LSTM

Principal component analysis [33,60], Grey relational analysis [60], ensemble
empirical mode decomposition [61], variational mode decomposition [61], multiple
linear regression [33], regression analysis of quadratic assignment process [31],
ARDL boundary test [17]

RF Generalized additive models [62], Cluster analysis [63], random forest [63], Pearson
test [35]

ELM

Bivariate correlation analysis [8,64], factor analysis [8,64,65], Linear analysis [64,65],
random forest [66], Mean impact value [41,67], ensemble empirical mode
decomposition method [20], partial autocorrelation function [20,68], ReliefF
algorithm [20], Logarithmic average division [67], principal component analysis [68],
Pearson test [68]

Table 9. Optimization method of algorithm layer (source: Web of Science).

BPNN
Particle swarm optimization algorithm [22,42,48], genetic algorithm [16,69],
Improved particle swarm optimization algorithm based on noninertial weight
coefficient [49,50,70,71]

SVM

Particle swarm optimization algorithm [29,72–74], Firefly Algorithm [26], FCS
Algorithm [28], chicken swarm optimization algorithm [19], Fruit Fly Algorithm
[53], Lion Optimizer [75], genetic algorithm [55,75], Grey Wolf Optimizer [76],
Shuffled Frog Leaping Algorithm [51], Ocean Predator Algorithm [77], Bacterial
Foraging Optimization Algorithm [52], Whale Optimization Algorithm [78],
sparrow search algorithm [57], Gaussian perturbation bat algorithm [54], Butterfly
Optimization Algorithm [19], Salp Swarm Algorithm [79]

LSTM Bilstm [80], Attention-LSTM [81], sparrow search algorithm [31]

RF
The performance mainly depends on the initial settings of the model parameters,
such as the values of nodesize, ntree and mtry [35,36,63,66]. At present, there is no
other optimization method for the random forest algorithm.

ELM
Particle swarm optimization algorithm [15], genetic algorithm [64,65], Flame
optimization [66], Manta foraging optimization [41], sparrow search algorithm [20],
Gaussian perturbation bat algorithm [67]

The primary evaluation criteria for the accuracy of each carbon emission prediction
model are the variance (R2), mean square error (RMSE) and mean absolute percentage error
(MAPE), as shown in Equations (7)–(9):

RMSE =

√√√√ 1
m

m

∑
1
(yi − ŷi)

2

(7)

where m is the number of actual (predicted) values, yi is the ith actual value and ŷi is the
ith predicted value.

R2 =
1
n

n

∑
1
(xi − x)2 (8)
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where n is the number of actual (predicted) values, xi is the ith predicted value and x is the
average value of the predicted values.

MAPE =
100%

n

n

∑
1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (9)

where n is the number of actual (predicted) values, yi is the ith actual value and ŷi is the ith
predicted value.

5. Summary

1. In comparison to traditional carbon emission prediction methods, intelligent pre-
diction methods offer significant advantages in terms of efficiency and accuracy,
particularly when dealing with large and complex data samples. Perhaps the most
prominent benefit is that it can self-learn through vast amounts of data, which reduces
the workload of humans and yields even better prediction results than traditional
models. Numerous scholars have employed machine learning techniques such as
BPNN, SVM, LSTM, RF and ELM for carbon emission prediction applications. While
a few have used other methods such as decision trees, linear regression and Markov
models to achieve their prediction goals, the five categories of the machine learning
predictive models discussed remain the most widely used approaches in the field of
carbon emission prediction.

2. Whether it is a conventional or intelligent model, the data it analyzes are basically
derived from official statistical reports. The corresponding carbon emissions are
computed through energy consumption data by using the IPCC carbon emission
calculation method. The input variable represents the influencing factors of carbon
emissions, while the output variable is the actual amount of carbon emissions.

3. In terms of prediction accuracy, the SVM- and ELM-based carbon emission models
demonstrate the better performance with a lower mean square error or average
absolute percentage error than other algorithms. Following closely are the BPNN
and LSTM models. At present, the reference research on carbon emission prediction
models based on random forest is not very sufficient, but as shown by the existing
research, its accuracy can also reach a relatively high level, but its overall prediction
level is uneven, so we think that the carbon emission prediction model based on
random forest still has a lot of room for development.

4. Researchers have made significant progress in improving carbon emission prediction
models by using machine learning. Currently, researchers are primarily focused on
three major areas in their ideas for developing these models: collecting and calculating
carbon emission data, processing and optimizing carbon emission data and selecting
and improving model algorithms (Figure 10).
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6. Prospect

Currently, most data collection methods rely on official releases. However, with the
development of smart cities, more regions are implementing their own energy consumption
monitoring systems. The data obtained from these systems are more accurate and reliable
than the data collected from human statistics. Researchers in areas with well-established
monitoring systems can extract information from these systems to perform corresponding
carbon emission calculations, which can improve the accuracy of the data. Combining
official statistics with monitoring systems can further enhance the accuracy of the data.
However, in cities and regions without widely available monitoring systems, researchers
still primarily rely on official and relevant organization survey data.

Based on post-2020 research, the number of publications related to LSTM- and SVM-
based carbon emission prediction models surpasses that of other prediction models. From
an application standpoint, SVMs and ELMs show a more prominent performance, with
overall better results compared to other methods. This phenomenon may be due to LSTM’s
natural suitability for time-series data in other fields, and since most of the data related
to carbon emissions are also time-series data, researchers tend to prioritize LSTM, but the
results may not always meet expectations. SVMs can adapt well to large amounts of data
such as data on carbon emissions, while the effect of ELMs may be ignored by researchers.
The principle behind it is worth studying.

However, the development of machine learning is quite rapid, and the elimination
rate is also very high. While studying the field of carbon emission predictions, researchers
should also pay attention to the relevant developments in the field of machine learning, in-
cluding the latest improvement and optimization methods of these five types of algorithms
and the emerging prediction methods that perform well in other industries.

Generally, machine-learning-based carbon emission prediction models offer significant
advantages in terms of efficiency and accuracy over traditional artificial-theory-based
models. However, due to their inherent complexity, these models are not easily modifiable,
which can result in certain drawbacks, such as the limited interpretability of their results.
To overcome this, future carbon emission prediction models based on machine learning
should integrate traditional theories, not just by borrowing some general machine learning
prediction algorithms, but also by incorporating domain knowledge. By doing so, these
models can improve both their prediction accuracy and efficiency, while also making their
predicted results more interpretable.

Moreover, recent studies have shown that many researchers are utilizing the latest
algorithm called “transfer learning” from the field of artificial intelligence to predict energy
consumption [82–84]. However, there is limited research on applying transfer learning
to carbon emission prediction, despite the high correlation between carbon emission and
energy consumption. Hence, it is highly likely that the development of transfer learning
in the field of carbon emission prediction will become a growing trend. Transfer learning
involves the development of a new model by using the model developed by task A as
the initial point of task B (Figure 11). Currently, the data available for carbon emission
prediction are huge and extremely complex, with only a few regions having popularized
carbon emission monitoring systems. Most regions lack sufficient data to develop carbon
emission prediction models, and the application of transfer learning can greatly reduce the
amount of data required. Although many carbon emission prediction models exist, there
are still limited studies on the mutual reference and optimization of these models. In the
future, transfer learning is expected to play a significant role in the integration of carbon
emission models.
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